mirror of
https://github.com/PurpleI2P/Boost-for-Android-Prebuilt
synced 2025-01-25 14:04:30 +00:00
798 lines
25 KiB
C++
798 lines
25 KiB
C++
// Copyright (C) 2008-2013 Tim Blechmann
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0. (See
|
|
// accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_LOCKFREE_STACK_HPP_INCLUDED
|
|
#define BOOST_LOCKFREE_STACK_HPP_INCLUDED
|
|
|
|
#include <boost/assert.hpp>
|
|
#include <boost/checked_delete.hpp>
|
|
#include <boost/core/no_exceptions_support.hpp>
|
|
#include <boost/integer_traits.hpp>
|
|
#include <boost/static_assert.hpp>
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include <boost/type_traits/is_copy_constructible.hpp>
|
|
|
|
#include <boost/lockfree/detail/allocator_rebind_helper.hpp>
|
|
#include <boost/lockfree/detail/atomic.hpp>
|
|
#include <boost/lockfree/detail/copy_payload.hpp>
|
|
#include <boost/lockfree/detail/freelist.hpp>
|
|
#include <boost/lockfree/detail/parameter.hpp>
|
|
#include <boost/lockfree/detail/tagged_ptr.hpp>
|
|
|
|
#include <boost/lockfree/lockfree_forward.hpp>
|
|
|
|
#ifdef BOOST_HAS_PRAGMA_ONCE
|
|
#pragma once
|
|
#endif
|
|
|
|
namespace boost {
|
|
namespace lockfree {
|
|
namespace detail {
|
|
|
|
typedef parameter::parameters<boost::parameter::optional<tag::allocator>,
|
|
boost::parameter::optional<tag::capacity>
|
|
> stack_signature;
|
|
|
|
}
|
|
|
|
/** The stack class provides a multi-writer/multi-reader stack, pushing and popping is lock-free,
|
|
* construction/destruction has to be synchronized. It uses a freelist for memory management,
|
|
* freed nodes are pushed to the freelist and not returned to the OS before the stack is destroyed.
|
|
*
|
|
* \b Policies:
|
|
*
|
|
* - \c boost::lockfree::fixed_sized<>, defaults to \c boost::lockfree::fixed_sized<false> <br>
|
|
* Can be used to completely disable dynamic memory allocations during push in order to ensure lockfree behavior.<br>
|
|
* If the data structure is configured as fixed-sized, the internal nodes are stored inside an array and they are addressed
|
|
* by array indexing. This limits the possible size of the stack to the number of elements that can be addressed by the index
|
|
* type (usually 2**16-2), but on platforms that lack double-width compare-and-exchange instructions, this is the best way
|
|
* to achieve lock-freedom.
|
|
*
|
|
* - \c boost::lockfree::capacity<>, optional <br>
|
|
* If this template argument is passed to the options, the size of the stack is set at compile-time. <br>
|
|
* It this option implies \c fixed_sized<true>
|
|
*
|
|
* - \c boost::lockfree::allocator<>, defaults to \c boost::lockfree::allocator<std::allocator<void>> <br>
|
|
* Specifies the allocator that is used for the internal freelist
|
|
*
|
|
* \b Requirements:
|
|
* - T must have a copy constructor
|
|
* */
|
|
#ifdef BOOST_NO_CXX11_VARIADIC_TEMPLATES
|
|
template <typename T, class A0, class A1, class A2>
|
|
#else
|
|
template <typename T, typename ...Options>
|
|
#endif
|
|
class stack
|
|
{
|
|
private:
|
|
#ifndef BOOST_DOXYGEN_INVOKED
|
|
BOOST_STATIC_ASSERT(boost::is_copy_constructible<T>::value);
|
|
|
|
#ifdef BOOST_NO_CXX11_VARIADIC_TEMPLATES
|
|
typedef typename detail::stack_signature::bind<A0, A1, A2>::type bound_args;
|
|
#else
|
|
typedef typename detail::stack_signature::bind<Options...>::type bound_args;
|
|
#endif
|
|
|
|
static const bool has_capacity = detail::extract_capacity<bound_args>::has_capacity;
|
|
static const size_t capacity = detail::extract_capacity<bound_args>::capacity;
|
|
static const bool fixed_sized = detail::extract_fixed_sized<bound_args>::value;
|
|
static const bool node_based = !(has_capacity || fixed_sized);
|
|
static const bool compile_time_sized = has_capacity;
|
|
|
|
struct node
|
|
{
|
|
node(T const & val):
|
|
v(val)
|
|
{}
|
|
|
|
typedef typename detail::select_tagged_handle<node, node_based>::handle_type handle_t;
|
|
handle_t next;
|
|
const T v;
|
|
};
|
|
|
|
typedef typename detail::extract_allocator<bound_args, node>::type node_allocator;
|
|
typedef typename detail::select_freelist<node, node_allocator, compile_time_sized, fixed_sized, capacity>::type pool_t;
|
|
typedef typename pool_t::tagged_node_handle tagged_node_handle;
|
|
|
|
// check compile-time capacity
|
|
BOOST_STATIC_ASSERT((mpl::if_c<has_capacity,
|
|
mpl::bool_<capacity - 1 < boost::integer_traits<boost::uint16_t>::const_max>,
|
|
mpl::true_
|
|
>::type::value));
|
|
|
|
struct implementation_defined
|
|
{
|
|
typedef node_allocator allocator;
|
|
typedef std::size_t size_type;
|
|
};
|
|
|
|
#endif
|
|
|
|
BOOST_DELETED_FUNCTION(stack(stack const&))
|
|
BOOST_DELETED_FUNCTION(stack& operator= (stack const&))
|
|
|
|
public:
|
|
typedef T value_type;
|
|
typedef typename implementation_defined::allocator allocator;
|
|
typedef typename implementation_defined::size_type size_type;
|
|
|
|
/**
|
|
* \return true, if implementation is lock-free.
|
|
*
|
|
* \warning It only checks, if the top stack node and the freelist can be modified in a lock-free manner.
|
|
* On most platforms, the whole implementation is lock-free, if this is true. Using c++0x-style atomics,
|
|
* there is no possibility to provide a completely accurate implementation, because one would need to test
|
|
* every internal node, which is impossible if further nodes will be allocated from the operating system.
|
|
*
|
|
* */
|
|
bool is_lock_free (void) const
|
|
{
|
|
return tos.is_lock_free() && pool.is_lock_free();
|
|
}
|
|
|
|
//! Construct stack
|
|
// @{
|
|
stack(void):
|
|
pool(node_allocator(), capacity)
|
|
{
|
|
BOOST_ASSERT(has_capacity);
|
|
initialize();
|
|
}
|
|
|
|
template <typename U>
|
|
explicit stack(typename detail::allocator_rebind_helper<node_allocator, U>::type const & alloc):
|
|
pool(alloc, capacity)
|
|
{
|
|
BOOST_STATIC_ASSERT(has_capacity);
|
|
initialize();
|
|
}
|
|
|
|
explicit stack(allocator const & alloc):
|
|
pool(alloc, capacity)
|
|
{
|
|
BOOST_ASSERT(has_capacity);
|
|
initialize();
|
|
}
|
|
// @}
|
|
|
|
//! Construct stack, allocate n nodes for the freelist.
|
|
// @{
|
|
explicit stack(size_type n):
|
|
pool(node_allocator(), n)
|
|
{
|
|
BOOST_ASSERT(!has_capacity);
|
|
initialize();
|
|
}
|
|
|
|
template <typename U>
|
|
stack(size_type n, typename detail::allocator_rebind_helper<node_allocator, U>::type const & alloc):
|
|
pool(alloc, n)
|
|
{
|
|
BOOST_STATIC_ASSERT(!has_capacity);
|
|
initialize();
|
|
}
|
|
// @}
|
|
|
|
/** Allocate n nodes for freelist
|
|
*
|
|
* \pre only valid if no capacity<> argument given
|
|
* \note thread-safe, may block if memory allocator blocks
|
|
*
|
|
* */
|
|
void reserve(size_type n)
|
|
{
|
|
BOOST_STATIC_ASSERT(!has_capacity);
|
|
pool.template reserve<true>(n);
|
|
}
|
|
|
|
/** Allocate n nodes for freelist
|
|
*
|
|
* \pre only valid if no capacity<> argument given
|
|
* \note not thread-safe, may block if memory allocator blocks
|
|
*
|
|
* */
|
|
void reserve_unsafe(size_type n)
|
|
{
|
|
BOOST_STATIC_ASSERT(!has_capacity);
|
|
pool.template reserve<false>(n);
|
|
}
|
|
|
|
/** Destroys stack, free all nodes from freelist.
|
|
*
|
|
* \note not thread-safe
|
|
*
|
|
* */
|
|
~stack(void)
|
|
{
|
|
T dummy;
|
|
while(unsynchronized_pop(dummy))
|
|
{}
|
|
}
|
|
|
|
private:
|
|
#ifndef BOOST_DOXYGEN_INVOKED
|
|
void initialize(void)
|
|
{
|
|
tos.store(tagged_node_handle(pool.null_handle(), 0));
|
|
}
|
|
|
|
void link_nodes_atomic(node * new_top_node, node * end_node)
|
|
{
|
|
tagged_node_handle old_tos = tos.load(detail::memory_order_relaxed);
|
|
for (;;) {
|
|
tagged_node_handle new_tos (pool.get_handle(new_top_node), old_tos.get_tag());
|
|
end_node->next = pool.get_handle(old_tos);
|
|
|
|
if (tos.compare_exchange_weak(old_tos, new_tos))
|
|
break;
|
|
}
|
|
}
|
|
|
|
void link_nodes_unsafe(node * new_top_node, node * end_node)
|
|
{
|
|
tagged_node_handle old_tos = tos.load(detail::memory_order_relaxed);
|
|
|
|
tagged_node_handle new_tos (pool.get_handle(new_top_node), old_tos.get_tag());
|
|
end_node->next = pool.get_pointer(old_tos);
|
|
|
|
tos.store(new_tos, memory_order_relaxed);
|
|
}
|
|
|
|
template <bool Threadsafe, bool Bounded, typename ConstIterator>
|
|
tuple<node*, node*> prepare_node_list(ConstIterator begin, ConstIterator end, ConstIterator & ret)
|
|
{
|
|
ConstIterator it = begin;
|
|
node * end_node = pool.template construct<Threadsafe, Bounded>(*it++);
|
|
if (end_node == NULL) {
|
|
ret = begin;
|
|
return make_tuple<node*, node*>(NULL, NULL);
|
|
}
|
|
|
|
node * new_top_node = end_node;
|
|
end_node->next = NULL;
|
|
|
|
BOOST_TRY {
|
|
/* link nodes */
|
|
for (; it != end; ++it) {
|
|
node * newnode = pool.template construct<Threadsafe, Bounded>(*it);
|
|
if (newnode == NULL)
|
|
break;
|
|
newnode->next = new_top_node;
|
|
new_top_node = newnode;
|
|
}
|
|
} BOOST_CATCH (...) {
|
|
for (node * current_node = new_top_node; current_node != NULL;) {
|
|
node * next = current_node->next;
|
|
pool.template destruct<Threadsafe>(current_node);
|
|
current_node = next;
|
|
}
|
|
BOOST_RETHROW;
|
|
}
|
|
BOOST_CATCH_END
|
|
|
|
ret = it;
|
|
return make_tuple(new_top_node, end_node);
|
|
}
|
|
#endif
|
|
|
|
public:
|
|
/** Pushes object t to the stack.
|
|
*
|
|
* \post object will be pushed to the stack, if internal node can be allocated
|
|
* \returns true, if the push operation is successful.
|
|
*
|
|
* \note Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated
|
|
* from the OS. This may not be lock-free.
|
|
* \throws if memory allocator throws
|
|
* */
|
|
bool push(T const & v)
|
|
{
|
|
return do_push<false>(v);
|
|
}
|
|
|
|
/** Pushes object t to the stack.
|
|
*
|
|
* \post object will be pushed to the stack, if internal node can be allocated
|
|
* \returns true, if the push operation is successful.
|
|
*
|
|
* \note Thread-safe and non-blocking. If internal memory pool is exhausted, the push operation will fail
|
|
* */
|
|
bool bounded_push(T const & v)
|
|
{
|
|
return do_push<true>(v);
|
|
}
|
|
|
|
#ifndef BOOST_DOXYGEN_INVOKED
|
|
private:
|
|
template <bool Bounded>
|
|
bool do_push(T const & v)
|
|
{
|
|
node * newnode = pool.template construct<true, Bounded>(v);
|
|
if (newnode == 0)
|
|
return false;
|
|
|
|
link_nodes_atomic(newnode, newnode);
|
|
return true;
|
|
}
|
|
|
|
template <bool Bounded, typename ConstIterator>
|
|
ConstIterator do_push(ConstIterator begin, ConstIterator end)
|
|
{
|
|
node * new_top_node;
|
|
node * end_node;
|
|
ConstIterator ret;
|
|
|
|
tie(new_top_node, end_node) = prepare_node_list<true, Bounded>(begin, end, ret);
|
|
if (new_top_node)
|
|
link_nodes_atomic(new_top_node, end_node);
|
|
|
|
return ret;
|
|
}
|
|
|
|
public:
|
|
#endif
|
|
|
|
/** Pushes as many objects from the range [begin, end) as freelist node can be allocated.
|
|
*
|
|
* \return iterator to the first element, which has not been pushed
|
|
*
|
|
* \note Operation is applied atomically
|
|
* \note Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated
|
|
* from the OS. This may not be lock-free.
|
|
* \throws if memory allocator throws
|
|
*/
|
|
template <typename ConstIterator>
|
|
ConstIterator push(ConstIterator begin, ConstIterator end)
|
|
{
|
|
return do_push<false, ConstIterator>(begin, end);
|
|
}
|
|
|
|
/** Pushes as many objects from the range [begin, end) as freelist node can be allocated.
|
|
*
|
|
* \return iterator to the first element, which has not been pushed
|
|
*
|
|
* \note Operation is applied atomically
|
|
* \note Thread-safe and non-blocking. If internal memory pool is exhausted, the push operation will fail
|
|
* \throws if memory allocator throws
|
|
*/
|
|
template <typename ConstIterator>
|
|
ConstIterator bounded_push(ConstIterator begin, ConstIterator end)
|
|
{
|
|
return do_push<true, ConstIterator>(begin, end);
|
|
}
|
|
|
|
|
|
/** Pushes object t to the stack.
|
|
*
|
|
* \post object will be pushed to the stack, if internal node can be allocated
|
|
* \returns true, if the push operation is successful.
|
|
*
|
|
* \note Not thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated
|
|
* from the OS. This may not be lock-free.
|
|
* \throws if memory allocator throws
|
|
* */
|
|
bool unsynchronized_push(T const & v)
|
|
{
|
|
node * newnode = pool.template construct<false, false>(v);
|
|
if (newnode == 0)
|
|
return false;
|
|
|
|
link_nodes_unsafe(newnode, newnode);
|
|
return true;
|
|
}
|
|
|
|
/** Pushes as many objects from the range [begin, end) as freelist node can be allocated.
|
|
*
|
|
* \return iterator to the first element, which has not been pushed
|
|
*
|
|
* \note Not thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated
|
|
* from the OS. This may not be lock-free.
|
|
* \throws if memory allocator throws
|
|
*/
|
|
template <typename ConstIterator>
|
|
ConstIterator unsynchronized_push(ConstIterator begin, ConstIterator end)
|
|
{
|
|
node * new_top_node;
|
|
node * end_node;
|
|
ConstIterator ret;
|
|
|
|
tie(new_top_node, end_node) = prepare_node_list<false, false>(begin, end, ret);
|
|
if (new_top_node)
|
|
link_nodes_unsafe(new_top_node, end_node);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/** Pops object from stack.
|
|
*
|
|
* \post if pop operation is successful, object will be copied to ret.
|
|
* \returns true, if the pop operation is successful, false if stack was empty.
|
|
*
|
|
* \note Thread-safe and non-blocking
|
|
*
|
|
* */
|
|
bool pop(T & ret)
|
|
{
|
|
return pop<T>(ret);
|
|
}
|
|
|
|
/** Pops object from stack.
|
|
*
|
|
* \pre type T must be convertible to U
|
|
* \post if pop operation is successful, object will be copied to ret.
|
|
* \returns true, if the pop operation is successful, false if stack was empty.
|
|
*
|
|
* \note Thread-safe and non-blocking
|
|
*
|
|
* */
|
|
template <typename U>
|
|
bool pop(U & ret)
|
|
{
|
|
BOOST_STATIC_ASSERT((boost::is_convertible<T, U>::value));
|
|
detail::consume_via_copy<U> consumer(ret);
|
|
|
|
return consume_one(consumer);
|
|
}
|
|
|
|
|
|
/** Pops object from stack.
|
|
*
|
|
* \post if pop operation is successful, object will be copied to ret.
|
|
* \returns true, if the pop operation is successful, false if stack was empty.
|
|
*
|
|
* \note Not thread-safe, but non-blocking
|
|
*
|
|
* */
|
|
bool unsynchronized_pop(T & ret)
|
|
{
|
|
return unsynchronized_pop<T>(ret);
|
|
}
|
|
|
|
/** Pops object from stack.
|
|
*
|
|
* \pre type T must be convertible to U
|
|
* \post if pop operation is successful, object will be copied to ret.
|
|
* \returns true, if the pop operation is successful, false if stack was empty.
|
|
*
|
|
* \note Not thread-safe, but non-blocking
|
|
*
|
|
* */
|
|
template <typename U>
|
|
bool unsynchronized_pop(U & ret)
|
|
{
|
|
BOOST_STATIC_ASSERT((boost::is_convertible<T, U>::value));
|
|
tagged_node_handle old_tos = tos.load(detail::memory_order_relaxed);
|
|
node * old_tos_pointer = pool.get_pointer(old_tos);
|
|
|
|
if (!pool.get_pointer(old_tos))
|
|
return false;
|
|
|
|
node * new_tos_ptr = pool.get_pointer(old_tos_pointer->next);
|
|
tagged_node_handle new_tos(pool.get_handle(new_tos_ptr), old_tos.get_next_tag());
|
|
|
|
tos.store(new_tos, memory_order_relaxed);
|
|
detail::copy_payload(old_tos_pointer->v, ret);
|
|
pool.template destruct<false>(old_tos);
|
|
return true;
|
|
}
|
|
|
|
/** consumes one element via a functor
|
|
*
|
|
* pops one element from the stack and applies the functor on this object
|
|
*
|
|
* \returns true, if one element was consumed
|
|
*
|
|
* \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
|
|
* */
|
|
template <typename Functor>
|
|
bool consume_one(Functor & f)
|
|
{
|
|
tagged_node_handle old_tos = tos.load(detail::memory_order_consume);
|
|
|
|
for (;;) {
|
|
node * old_tos_pointer = pool.get_pointer(old_tos);
|
|
if (!old_tos_pointer)
|
|
return false;
|
|
|
|
tagged_node_handle new_tos(old_tos_pointer->next, old_tos.get_next_tag());
|
|
|
|
if (tos.compare_exchange_weak(old_tos, new_tos)) {
|
|
f(old_tos_pointer->v);
|
|
pool.template destruct<true>(old_tos);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \copydoc boost::lockfree::stack::consume_one(Functor & rhs)
|
|
template <typename Functor>
|
|
bool consume_one(Functor const & f)
|
|
{
|
|
tagged_node_handle old_tos = tos.load(detail::memory_order_consume);
|
|
|
|
for (;;) {
|
|
node * old_tos_pointer = pool.get_pointer(old_tos);
|
|
if (!old_tos_pointer)
|
|
return false;
|
|
|
|
tagged_node_handle new_tos(old_tos_pointer->next, old_tos.get_next_tag());
|
|
|
|
if (tos.compare_exchange_weak(old_tos, new_tos)) {
|
|
f(old_tos_pointer->v);
|
|
pool.template destruct<true>(old_tos);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** consumes all elements via a functor
|
|
*
|
|
* sequentially pops all elements from the stack and applies the functor on each object
|
|
*
|
|
* \returns number of elements that are consumed
|
|
*
|
|
* \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
|
|
* */
|
|
template <typename Functor>
|
|
size_t consume_all(Functor & f)
|
|
{
|
|
size_t element_count = 0;
|
|
while (consume_one(f))
|
|
element_count += 1;
|
|
|
|
return element_count;
|
|
}
|
|
|
|
/// \copydoc boost::lockfree::stack::consume_all(Functor & rhs)
|
|
template <typename Functor>
|
|
size_t consume_all(Functor const & f)
|
|
{
|
|
size_t element_count = 0;
|
|
while (consume_one(f))
|
|
element_count += 1;
|
|
|
|
return element_count;
|
|
}
|
|
|
|
/** consumes all elements via a functor
|
|
*
|
|
* atomically pops all elements from the stack and applies the functor on each object
|
|
*
|
|
* \returns number of elements that are consumed
|
|
*
|
|
* \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
|
|
* */
|
|
template <typename Functor>
|
|
size_t consume_all_atomic(Functor & f)
|
|
{
|
|
size_t element_count = 0;
|
|
tagged_node_handle old_tos = tos.load(detail::memory_order_consume);
|
|
|
|
for (;;) {
|
|
node * old_tos_pointer = pool.get_pointer(old_tos);
|
|
if (!old_tos_pointer)
|
|
return 0;
|
|
|
|
tagged_node_handle new_tos(pool.null_handle(), old_tos.get_next_tag());
|
|
|
|
if (tos.compare_exchange_weak(old_tos, new_tos))
|
|
break;
|
|
}
|
|
|
|
tagged_node_handle nodes_to_consume = old_tos;
|
|
|
|
for(;;) {
|
|
node * node_pointer = pool.get_pointer(nodes_to_consume);
|
|
f(node_pointer->v);
|
|
element_count += 1;
|
|
|
|
node * next_node = pool.get_pointer(node_pointer->next);
|
|
|
|
if (!next_node) {
|
|
pool.template destruct<true>(nodes_to_consume);
|
|
break;
|
|
}
|
|
|
|
tagged_node_handle next(pool.get_handle(next_node), nodes_to_consume.get_next_tag());
|
|
pool.template destruct<true>(nodes_to_consume);
|
|
nodes_to_consume = next;
|
|
}
|
|
|
|
return element_count;
|
|
}
|
|
|
|
/// \copydoc boost::lockfree::stack::consume_all_atomic(Functor & rhs)
|
|
template <typename Functor>
|
|
size_t consume_all_atomic(Functor const & f)
|
|
{
|
|
size_t element_count = 0;
|
|
tagged_node_handle old_tos = tos.load(detail::memory_order_consume);
|
|
|
|
for (;;) {
|
|
node * old_tos_pointer = pool.get_pointer(old_tos);
|
|
if (!old_tos_pointer)
|
|
return 0;
|
|
|
|
tagged_node_handle new_tos(pool.null_handle(), old_tos.get_next_tag());
|
|
|
|
if (tos.compare_exchange_weak(old_tos, new_tos))
|
|
break;
|
|
}
|
|
|
|
tagged_node_handle nodes_to_consume = old_tos;
|
|
|
|
for(;;) {
|
|
node * node_pointer = pool.get_pointer(nodes_to_consume);
|
|
f(node_pointer->v);
|
|
element_count += 1;
|
|
|
|
node * next_node = pool.get_pointer(node_pointer->next);
|
|
|
|
if (!next_node) {
|
|
pool.template destruct<true>(nodes_to_consume);
|
|
break;
|
|
}
|
|
|
|
tagged_node_handle next(pool.get_handle(next_node), nodes_to_consume.get_next_tag());
|
|
pool.template destruct<true>(nodes_to_consume);
|
|
nodes_to_consume = next;
|
|
}
|
|
|
|
return element_count;
|
|
}
|
|
|
|
/** consumes all elements via a functor
|
|
*
|
|
* atomically pops all elements from the stack and applies the functor on each object in reversed order
|
|
*
|
|
* \returns number of elements that are consumed
|
|
*
|
|
* \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
|
|
* */
|
|
template <typename Functor>
|
|
size_t consume_all_atomic_reversed(Functor & f)
|
|
{
|
|
size_t element_count = 0;
|
|
tagged_node_handle old_tos = tos.load(detail::memory_order_consume);
|
|
|
|
for (;;) {
|
|
node * old_tos_pointer = pool.get_pointer(old_tos);
|
|
if (!old_tos_pointer)
|
|
return 0;
|
|
|
|
tagged_node_handle new_tos(pool.null_handle(), old_tos.get_next_tag());
|
|
|
|
if (tos.compare_exchange_weak(old_tos, new_tos))
|
|
break;
|
|
}
|
|
|
|
tagged_node_handle nodes_to_consume = old_tos;
|
|
|
|
node * last_node_pointer = NULL;
|
|
tagged_node_handle nodes_in_reversed_order;
|
|
for(;;) {
|
|
node * node_pointer = pool.get_pointer(nodes_to_consume);
|
|
node * next_node = pool.get_pointer(node_pointer->next);
|
|
|
|
node_pointer->next = pool.get_handle(last_node_pointer);
|
|
last_node_pointer = node_pointer;
|
|
|
|
if (!next_node) {
|
|
nodes_in_reversed_order = nodes_to_consume;
|
|
break;
|
|
}
|
|
|
|
tagged_node_handle next(pool.get_handle(next_node), nodes_to_consume.get_next_tag());
|
|
nodes_to_consume = next;
|
|
}
|
|
|
|
for(;;) {
|
|
node * node_pointer = pool.get_pointer(nodes_in_reversed_order);
|
|
f(node_pointer->v);
|
|
element_count += 1;
|
|
|
|
node * next_node = pool.get_pointer(node_pointer->next);
|
|
|
|
if (!next_node) {
|
|
pool.template destruct<true>(nodes_in_reversed_order);
|
|
break;
|
|
}
|
|
|
|
tagged_node_handle next(pool.get_handle(next_node), nodes_in_reversed_order.get_next_tag());
|
|
pool.template destruct<true>(nodes_in_reversed_order);
|
|
nodes_in_reversed_order = next;
|
|
}
|
|
|
|
return element_count;
|
|
}
|
|
|
|
/// \copydoc boost::lockfree::stack::consume_all_atomic_reversed(Functor & rhs)
|
|
template <typename Functor>
|
|
size_t consume_all_atomic_reversed(Functor const & f)
|
|
{
|
|
size_t element_count = 0;
|
|
tagged_node_handle old_tos = tos.load(detail::memory_order_consume);
|
|
|
|
for (;;) {
|
|
node * old_tos_pointer = pool.get_pointer(old_tos);
|
|
if (!old_tos_pointer)
|
|
return 0;
|
|
|
|
tagged_node_handle new_tos(pool.null_handle(), old_tos.get_next_tag());
|
|
|
|
if (tos.compare_exchange_weak(old_tos, new_tos))
|
|
break;
|
|
}
|
|
|
|
tagged_node_handle nodes_to_consume = old_tos;
|
|
|
|
node * last_node_pointer = NULL;
|
|
tagged_node_handle nodes_in_reversed_order;
|
|
for(;;) {
|
|
node * node_pointer = pool.get_pointer(nodes_to_consume);
|
|
node * next_node = pool.get_pointer(node_pointer->next);
|
|
|
|
node_pointer->next = pool.get_handle(last_node_pointer);
|
|
last_node_pointer = node_pointer;
|
|
|
|
if (!next_node) {
|
|
nodes_in_reversed_order = nodes_to_consume;
|
|
break;
|
|
}
|
|
|
|
tagged_node_handle next(pool.get_handle(next_node), nodes_to_consume.get_next_tag());
|
|
nodes_to_consume = next;
|
|
}
|
|
|
|
for(;;) {
|
|
node * node_pointer = pool.get_pointer(nodes_in_reversed_order);
|
|
f(node_pointer->v);
|
|
element_count += 1;
|
|
|
|
node * next_node = pool.get_pointer(node_pointer->next);
|
|
|
|
if (!next_node) {
|
|
pool.template destruct<true>(nodes_in_reversed_order);
|
|
break;
|
|
}
|
|
|
|
tagged_node_handle next(pool.get_handle(next_node), nodes_in_reversed_order.get_next_tag());
|
|
pool.template destruct<true>(nodes_in_reversed_order);
|
|
nodes_in_reversed_order = next;
|
|
}
|
|
|
|
return element_count;
|
|
}
|
|
/**
|
|
* \return true, if stack is empty.
|
|
*
|
|
* \note It only guarantees that at some point during the execution of the function the stack has been empty.
|
|
* It is rarely practical to use this value in program logic, because the stack can be modified by other threads.
|
|
* */
|
|
bool empty(void) const
|
|
{
|
|
return pool.get_pointer(tos.load()) == NULL;
|
|
}
|
|
|
|
private:
|
|
#ifndef BOOST_DOXYGEN_INVOKED
|
|
detail::atomic<tagged_node_handle> tos;
|
|
|
|
static const int padding_size = BOOST_LOCKFREE_CACHELINE_BYTES - sizeof(tagged_node_handle);
|
|
char padding[padding_size];
|
|
|
|
pool_t pool;
|
|
#endif
|
|
};
|
|
|
|
} /* namespace lockfree */
|
|
} /* namespace boost */
|
|
|
|
#endif /* BOOST_LOCKFREE_STACK_HPP_INCLUDED */
|