You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
872 lines
36 KiB
872 lines
36 KiB
/* boost random/hyperexponential_distribution.hpp header file |
|
* |
|
* Copyright Marco Guazzone 2014 |
|
* Distributed under the Boost Software License, Version 1.0. (See |
|
* accompanying file LICENSE_1_0.txt or copy at |
|
* http://www.boost.org/LICENSE_1_0.txt) |
|
* |
|
* See http://www.boost.org for most recent version including documentation. |
|
* |
|
* Much of the code here taken by boost::math::hyperexponential_distribution. |
|
* To this end, we would like to thank Paul Bristow and John Maddock for their |
|
* valuable feedback. |
|
* |
|
* \author Marco Guazzone (marco.guazzone@gmail.com) |
|
*/ |
|
|
|
#ifndef BOOST_RANDOM_HYPEREXPONENTIAL_DISTRIBUTION_HPP |
|
#define BOOST_RANDOM_HYPEREXPONENTIAL_DISTRIBUTION_HPP |
|
|
|
|
|
#include <boost/config.hpp> |
|
#include <boost/math/special_functions/fpclassify.hpp> |
|
#include <boost/random/detail/operators.hpp> |
|
#include <boost/random/detail/vector_io.hpp> |
|
#include <boost/random/discrete_distribution.hpp> |
|
#include <boost/random/exponential_distribution.hpp> |
|
#include <boost/range/begin.hpp> |
|
#include <boost/range/end.hpp> |
|
#include <boost/range/size.hpp> |
|
#include <boost/type_traits/has_pre_increment.hpp> |
|
#include <cassert> |
|
#include <cmath> |
|
#include <cstddef> |
|
#include <iterator> |
|
#ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST |
|
# include <initializer_list> |
|
#endif // BOOST_NO_CXX11_HDR_INITIALIZER_LIST |
|
#include <iostream> |
|
#include <limits> |
|
#include <numeric> |
|
#include <vector> |
|
|
|
|
|
namespace boost { namespace random { |
|
|
|
namespace hyperexp_detail { |
|
|
|
template <typename T> |
|
std::vector<T>& normalize(std::vector<T>& v) |
|
{ |
|
if (v.size() == 0) |
|
{ |
|
return v; |
|
} |
|
|
|
const T sum = std::accumulate(v.begin(), v.end(), static_cast<T>(0)); |
|
T final_sum = 0; |
|
|
|
const typename std::vector<T>::iterator end = --v.end(); |
|
for (typename std::vector<T>::iterator it = v.begin(); |
|
it != end; |
|
++it) |
|
{ |
|
*it /= sum; |
|
final_sum += *it; |
|
} |
|
*end = 1-final_sum; // avoids round off errors thus ensuring the probabilities really sum to 1 |
|
|
|
return v; |
|
} |
|
|
|
template <typename RealT> |
|
bool check_probabilities(std::vector<RealT> const& probabilities) |
|
{ |
|
const std::size_t n = probabilities.size(); |
|
RealT sum = 0; |
|
for (std::size_t i = 0; i < n; ++i) |
|
{ |
|
if (probabilities[i] < 0 |
|
|| probabilities[i] > 1 |
|
|| !(boost::math::isfinite)(probabilities[i])) |
|
{ |
|
return false; |
|
} |
|
sum += probabilities[i]; |
|
} |
|
|
|
//NOTE: the check below seems to fail on some architectures. |
|
// So we commented it. |
|
//// - We try to keep phase probabilities correctly normalized in the distribution constructors |
|
//// - However in practice we have to allow for a very slight divergence from a sum of exactly 1: |
|
////if (std::abs(sum-1) > (std::numeric_limits<RealT>::epsilon()*2)) |
|
//// This is from Knuth "The Art of Computer Programming: Vol.2, 3rd Ed", and can be used to |
|
//// check is two numbers are approximately equal |
|
//const RealT one = 1; |
|
//const RealT tol = std::numeric_limits<RealT>::epsilon()*2.0; |
|
//if (std::abs(sum-one) > (std::max(std::abs(sum), std::abs(one))*tol)) |
|
//{ |
|
// return false; |
|
//} |
|
|
|
return true; |
|
} |
|
|
|
template <typename RealT> |
|
bool check_rates(std::vector<RealT> const& rates) |
|
{ |
|
const std::size_t n = rates.size(); |
|
for (std::size_t i = 0; i < n; ++i) |
|
{ |
|
if (rates[i] <= 0 |
|
|| !(boost::math::isfinite)(rates[i])) |
|
{ |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
template <typename RealT> |
|
bool check_params(std::vector<RealT> const& probabilities, std::vector<RealT> const& rates) |
|
{ |
|
if (probabilities.size() != rates.size()) |
|
{ |
|
return false; |
|
} |
|
|
|
return check_probabilities(probabilities) |
|
&& check_rates(rates); |
|
} |
|
|
|
} // Namespace hyperexp_detail |
|
|
|
|
|
/** |
|
* The hyperexponential distribution is a real-valued continuous distribution |
|
* with two parameters, the <em>phase probability vector</em> \c probs and the |
|
* <em>rate vector</em> \c rates. |
|
* |
|
* A \f$k\f$-phase hyperexponential distribution is a mixture of \f$k\f$ |
|
* exponential distributions. |
|
* For this reason, it is also referred to as <em>mixed exponential |
|
* distribution</em> or <em>parallel \f$k\f$-phase exponential |
|
* distribution</em>. |
|
* |
|
* A \f$k\f$-phase hyperexponential distribution is characterized by two |
|
* parameters, namely a <em>phase probability vector</em> \f$\mathbf{\alpha}=(\alpha_1,\ldots,\alpha_k)\f$ and a <em>rate vector</em> \f$\mathbf{\lambda}=(\lambda_1,\ldots,\lambda_k)\f$. |
|
* |
|
* A \f$k\f$-phase hyperexponential distribution is frequently used in |
|
* <em>queueing theory</em> to model the distribution of the superposition of |
|
* \f$k\f$ independent events, like, for instance, the service time distribution |
|
* of a queueing station with \f$k\f$ servers in parallel where the \f$i\f$-th |
|
* server is chosen with probability \f$\alpha_i\f$ and its service time |
|
* distribution is an exponential distribution with rate \f$\lambda_i\f$ |
|
* (Allen,1990; Papadopolous et al.,1993; Trivedi,2002). |
|
* |
|
* For instance, CPUs service-time distribution in a computing system has often |
|
* been observed to possess such a distribution (Rosin,1965). |
|
* Also, the arrival of different types of customer to a single queueing station |
|
* is often modeled as a hyperexponential distribution (Papadopolous et al.,1993). |
|
* Similarly, if a product manufactured in several parallel assemply lines and |
|
* the outputs are merged, the failure density of the overall product is likely |
|
* to be hyperexponential (Trivedi,2002). |
|
* |
|
* Finally, since the hyperexponential distribution exhibits a high Coefficient |
|
* of Variation (CoV), that is a CoV > 1, it is especially suited to fit |
|
* empirical data with large CoV (Feitelson,2014; Wolski et al.,2013) and to |
|
* approximate <em>long-tail probability distributions</em> (Feldmann et al.,1998). |
|
* |
|
* See (Boost,2014) for more information and examples. |
|
* |
|
* A \f$k\f$-phase hyperexponential distribution has a probability density |
|
* function |
|
* \f[ |
|
* f(x) = \sum_{i=1}^k \alpha_i \lambda_i e^{-x\lambda_i} |
|
* \f] |
|
* where: |
|
* - \f$k\f$ is the <em>number of phases</em> and also the size of the input |
|
* vector parameters, |
|
* - \f$\mathbf{\alpha}=(\alpha_1,\ldots,\alpha_k)\f$ is the <em>phase probability |
|
* vector</em> parameter, and |
|
* - \f$\mathbf{\lambda}=(\lambda_1,\ldots,\lambda_k)\f$ is the <em>rate vector</em> |
|
* parameter. |
|
* . |
|
* |
|
* Given a \f$k\f$-phase hyperexponential distribution with phase probability |
|
* vector \f$\mathbf{\alpha}\f$ and rate vector \f$\mathbf{\lambda}\f$, the |
|
* random variate generation algorithm consists of the following steps (Tyszer,1999): |
|
* -# Generate a random variable \f$U\f$ uniformly distribution on the interval \f$(0,1)\f$. |
|
* -# Use \f$U\f$ to select the appropriate \f$\lambda_i\f$ (e.g., the |
|
* <em>alias method</em> can possibly be used for this step). |
|
* -# Generate an exponentially distributed random variable \f$X\f$ with rate parameter \f$\lambda_i\f$. |
|
* -# Return \f$X\f$. |
|
* . |
|
* |
|
* References: |
|
* -# A.O. Allen, <em>Probability, Statistics, and Queuing Theory with Computer Science Applications, Second Edition</em>, Academic Press, 1990. |
|
* -# Boost C++ Libraries, <em>Boost.Math / Statistical Distributions: Hyperexponential Distribution</em>, Online: http://www.boost.org/doc/libs/release/libs/math/doc/html/dist.html , 2014. |
|
* -# D.G. Feitelson, <em>Workload Modeling for Computer Systems Performance Evaluation</em>, Cambridge University Press, 2014 |
|
* -# A. Feldmann and W. Whitt, <em>Fitting mixtures of exponentials to long-tail distributions to analyze network performance models</em>, Performance Evaluation 31(3-4):245, doi:10.1016/S0166-5316(97)00003-5, 1998. |
|
* -# H.T. Papadopolous, C. Heavey and J. Browne, <em>Queueing Theory in Manufacturing Systems Analysis and Design</em>, Chapman & Hall/CRC, 1993, p. 35. |
|
* -# R.F. Rosin, <em>Determining a computing center environment</em>, Communications of the ACM 8(7):463-468, 1965. |
|
* -# K.S. Trivedi, <em>Probability and Statistics with Reliability, Queueing, and Computer Science Applications</em>, John Wiley & Sons, Inc., 2002. |
|
* -# J. Tyszer, <em>Object-Oriented Computer Simulation of Discrete-Event Systems</em>, Springer, 1999. |
|
* -# Wikipedia, <em>Hyperexponential Distribution</em>, Online: http://en.wikipedia.org/wiki/Hyperexponential_distribution , 2014. |
|
* -# Wolfram Mathematica, <em>Hyperexponential Distribution</em>, Online: http://reference.wolfram.com/language/ref/HyperexponentialDistribution.html , 2014. |
|
* . |
|
* |
|
* \author Marco Guazzone (marco.guazzone@gmail.com) |
|
*/ |
|
template<class RealT = double> |
|
class hyperexponential_distribution |
|
{ |
|
public: typedef RealT result_type; |
|
public: typedef RealT input_type; |
|
|
|
|
|
/** |
|
* The parameters of a hyperexponential distribution. |
|
* |
|
* Stores the <em>phase probability vector</em> and the <em>rate vector</em> |
|
* of the hyperexponential distribution. |
|
* |
|
* \author Marco Guazzone (marco.guazzone@gmail.com) |
|
*/ |
|
public: class param_type |
|
{ |
|
public: typedef hyperexponential_distribution distribution_type; |
|
|
|
/** |
|
* Constructs a \c param_type with the default parameters |
|
* of the distribution. |
|
*/ |
|
public: param_type() |
|
: probs_(1, 1), |
|
rates_(1, 1) |
|
{ |
|
} |
|
|
|
/** |
|
* Constructs a \c param_type from the <em>phase probability vector</em> |
|
* and <em>rate vector</em> parameters of the distribution. |
|
* |
|
* The <em>phase probability vector</em> parameter is given by the range |
|
* defined by [\a prob_first, \a prob_last) iterator pair, and the |
|
* <em>rate vector</em> parameter is given by the range defined by |
|
* [\a rate_first, \a rate_last) iterator pair. |
|
* |
|
* \tparam ProbIterT Must meet the requirements of \c InputIterator concept (ISO,2014,sec. 24.2.3 [input.iterators]). |
|
* \tparam RateIterT Must meet the requirements of \c InputIterator concept (ISO,2014,sec. 24.2.3 [input.iterators]). |
|
* |
|
* \param prob_first The iterator to the beginning of the range of non-negative real elements representing the phase probabilities; if elements don't sum to 1, they are normalized. |
|
* \param prob_last The iterator to the ending of the range of non-negative real elements representing the phase probabilities; if elements don't sum to 1, they are normalized. |
|
* \param rate_first The iterator to the beginning of the range of non-negative real elements representing the rates. |
|
* \param rate_last The iterator to the ending of the range of non-negative real elements representing the rates. |
|
* |
|
* References: |
|
* -# ISO, <em>ISO/IEC 14882-2014: Information technology - Programming languages - C++</em>, 2014 |
|
* . |
|
*/ |
|
public: template <typename ProbIterT, typename RateIterT> |
|
param_type(ProbIterT prob_first, ProbIterT prob_last, |
|
RateIterT rate_first, RateIterT rate_last) |
|
: probs_(prob_first, prob_last), |
|
rates_(rate_first, rate_last) |
|
{ |
|
hyperexp_detail::normalize(probs_); |
|
|
|
assert( hyperexp_detail::check_params(probs_, rates_) ); |
|
} |
|
|
|
/** |
|
* Constructs a \c param_type from the <em>phase probability vector</em> |
|
* and <em>rate vector</em> parameters of the distribution. |
|
* |
|
* The <em>phase probability vector</em> parameter is given by the range |
|
* defined by \a prob_range, and the <em>rate vector</em> parameter is |
|
* given by the range defined by \a rate_range. |
|
* |
|
* \tparam ProbRangeT Must meet the requirements of <a href="boost:/libs/range/doc/html/range/concepts.html">Range</a> concept. |
|
* \tparam RateRangeT Must meet the requirements of <a href="boost:/libs/range/doc/html/range/concepts.html">Range</a> concept. |
|
* |
|
* \param prob_range The range of non-negative real elements representing the phase probabilities; if elements don't sum to 1, they are normalized. |
|
* \param rate_range The range of positive real elements representing the rates. |
|
* |
|
* \note |
|
* The final \c disable_if parameter is an implementation detail that |
|
* differentiates between this two argument constructor and the |
|
* iterator-based two argument constructor described below. |
|
*/ |
|
// We SFINAE this out of existance if either argument type is |
|
// incrementable as in that case the type is probably an iterator: |
|
public: template <typename ProbRangeT, typename RateRangeT> |
|
param_type(ProbRangeT const& prob_range, |
|
RateRangeT const& rate_range, |
|
typename boost::disable_if_c<boost::has_pre_increment<ProbRangeT>::value || boost::has_pre_increment<RateRangeT>::value>::type* = 0) |
|
: probs_(boost::begin(prob_range), boost::end(prob_range)), |
|
rates_(boost::begin(rate_range), boost::end(rate_range)) |
|
{ |
|
hyperexp_detail::normalize(probs_); |
|
|
|
assert( hyperexp_detail::check_params(probs_, rates_) ); |
|
} |
|
|
|
/** |
|
* Constructs a \c param_type from the <em>rate vector</em> parameter of |
|
* the distribution and with equal phase probabilities. |
|
* |
|
* The <em>rate vector</em> parameter is given by the range defined by |
|
* [\a rate_first, \a rate_last) iterator pair, and the <em>phase |
|
* probability vector</em> parameter is set to the equal phase |
|
* probabilities (i.e., to a vector of the same length \f$k\f$ of the |
|
* <em>rate vector</em> and with each element set to \f$1.0/k\f$). |
|
* |
|
* \tparam RateIterT Must meet the requirements of \c InputIterator concept (ISO,2014,sec. 24.2.3 [input.iterators]). |
|
* \tparam RateIterT2 Must meet the requirements of \c InputIterator concept (ISO,2014,sec. 24.2.3 [input.iterators]). |
|
* |
|
* \param rate_first The iterator to the beginning of the range of non-negative real elements representing the rates. |
|
* \param rate_last The iterator to the ending of the range of non-negative real elements representing the rates. |
|
* |
|
* \note |
|
* The final \c disable_if parameter is an implementation detail that |
|
* differentiates between this two argument constructor and the |
|
* range-based two argument constructor described above. |
|
* |
|
* References: |
|
* -# ISO, <em>ISO/IEC 14882-2014: Information technology - Programming languages - C++</em>, 2014 |
|
* . |
|
*/ |
|
// We SFINAE this out of existance if the argument type is |
|
// incrementable as in that case the type is probably an iterator. |
|
public: template <typename RateIterT> |
|
param_type(RateIterT rate_first, |
|
RateIterT rate_last, |
|
typename boost::enable_if_c<boost::has_pre_increment<RateIterT>::value>::type* = 0) |
|
: probs_(std::distance(rate_first, rate_last), 1), // will be normalized below |
|
rates_(rate_first, rate_last) |
|
{ |
|
assert(probs_.size() == rates_.size()); |
|
} |
|
|
|
/** |
|
* Constructs a @c param_type from the "rates" parameters |
|
* of the distribution and with equal phase probabilities. |
|
* |
|
* The <em>rate vector</em> parameter is given by the range defined by |
|
* \a rate_range, and the <em>phase probability vector</em> parameter is |
|
* set to the equal phase probabilities (i.e., to a vector of the same |
|
* length \f$k\f$ of the <em>rate vector</em> and with each element set |
|
* to \f$1.0/k\f$). |
|
* |
|
* \tparam RateRangeT Must meet the requirements of <a href="boost:/libs/range/doc/html/range/concepts.html">Range</a> concept. |
|
* |
|
* \param rate_range The range of positive real elements representing the rates. |
|
*/ |
|
public: template <typename RateRangeT> |
|
param_type(RateRangeT const& rate_range) |
|
: probs_(boost::size(rate_range), 1), // Will be normalized below |
|
rates_(boost::begin(rate_range), boost::end(rate_range)) |
|
{ |
|
hyperexp_detail::normalize(probs_); |
|
|
|
assert( hyperexp_detail::check_params(probs_, rates_) ); |
|
} |
|
|
|
#ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST |
|
/** |
|
* Constructs a \c param_type from the <em>phase probability vector</em> |
|
* and <em>rate vector</em> parameters of the distribution. |
|
* |
|
* The <em>phase probability vector</em> parameter is given by the |
|
* <em>brace-init-list</em> (ISO,2014,sec. 8.5.4 [dcl.init.list]) |
|
* defined by \a l1, and the <em>rate vector</em> parameter is given by the |
|
* <em>brace-init-list</em> (ISO,2014,sec. 8.5.4 [dcl.init.list]) |
|
* defined by \a l2. |
|
* |
|
* \param l1 The initializer list for inizializing the phase probability vector. |
|
* \param l2 The initializer list for inizializing the rate vector. |
|
* |
|
* References: |
|
* -# ISO, <em>ISO/IEC 14882-2014: Information technology - Programming languages - C++</em>, 2014 |
|
* . |
|
*/ |
|
public: param_type(std::initializer_list<RealT> l1, std::initializer_list<RealT> l2) |
|
: probs_(l1.begin(), l1.end()), |
|
rates_(l2.begin(), l2.end()) |
|
{ |
|
hyperexp_detail::normalize(probs_); |
|
|
|
assert( hyperexp_detail::check_params(probs_, rates_) ); |
|
} |
|
|
|
/** |
|
* Constructs a \c param_type from the <em>rate vector</em> parameter |
|
* of the distribution and with equal phase probabilities. |
|
* |
|
* The <em>rate vector</em> parameter is given by the |
|
* <em>brace-init-list</em> (ISO,2014,sec. 8.5.4 [dcl.init.list]) |
|
* defined by \a l1, and the <em>phase probability vector</em> parameter is |
|
* set to the equal phase probabilities (i.e., to a vector of the same |
|
* length \f$k\f$ of the <em>rate vector</em> and with each element set |
|
* to \f$1.0/k\f$). |
|
* |
|
* \param l1 The initializer list for inizializing the rate vector. |
|
* |
|
* References: |
|
* -# ISO, <em>ISO/IEC 14882-2014: Information technology - Programming languages - C++</em>, 2014 |
|
* . |
|
*/ |
|
public: param_type(std::initializer_list<RealT> l1) |
|
: probs_(std::distance(l1.begin(), l1.end()), 1), // Will be normalized below |
|
rates_(l1.begin(), l1.end()) |
|
{ |
|
hyperexp_detail::normalize(probs_); |
|
|
|
assert( hyperexp_detail::check_params(probs_, rates_) ); |
|
} |
|
#endif // BOOST_NO_CXX11_HDR_INITIALIZER_LIST |
|
|
|
/** |
|
* Gets the <em>phase probability vector</em> parameter of the distribtuion. |
|
* |
|
* \return The <em>phase probability vector</em> parameter of the distribution. |
|
* |
|
* \note |
|
* The returned probabilities are the normalized version of the ones |
|
* passed at construction time. |
|
*/ |
|
public: std::vector<RealT> probabilities() const |
|
{ |
|
return probs_; |
|
} |
|
|
|
/** |
|
* Gets the <em>rate vector</em> parameter of the distribtuion. |
|
* |
|
* \return The <em>rate vector</em> parameter of the distribution. |
|
*/ |
|
public: std::vector<RealT> rates() const |
|
{ |
|
return rates_; |
|
} |
|
|
|
/** Writes a \c param_type to a \c std::ostream. */ |
|
public: BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, param) |
|
{ |
|
detail::print_vector(os, param.probs_); |
|
os << ' '; |
|
detail::print_vector(os, param.rates_); |
|
|
|
return os; |
|
} |
|
|
|
/** Reads a \c param_type from a \c std::istream. */ |
|
public: BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, param) |
|
{ |
|
// NOTE: if \c std::ios_base::exceptions is set, the code below may |
|
// throw in case of a I/O failure. |
|
// To prevent leaving the state of \c param inconsistent: |
|
// - if an exception is thrown, the state of \c param is left |
|
// unchanged (i.e., is the same as the one at the beginning |
|
// of the function's execution), and |
|
// - the state of \c param only after reading the whole input. |
|
|
|
std::vector<RealT> probs; |
|
std::vector<RealT> rates; |
|
|
|
// Reads probability and rate vectors |
|
detail::read_vector(is, probs); |
|
if (!is) |
|
{ |
|
return is; |
|
} |
|
is >> std::ws; |
|
detail::read_vector(is, rates); |
|
if (!is) |
|
{ |
|
return is; |
|
} |
|
|
|
// Update the state of the param_type object |
|
if (probs.size() > 0) |
|
{ |
|
param.probs_.swap(probs); |
|
probs.clear(); |
|
} |
|
if (rates.size() > 0) |
|
{ |
|
param.rates_.swap(rates); |
|
rates.clear(); |
|
} |
|
|
|
// Adjust vector sizes (if needed) |
|
if (param.probs_.size() != param.rates_.size() |
|
|| param.probs_.size() == 0) |
|
{ |
|
const std::size_t np = param.probs_.size(); |
|
const std::size_t nr = param.rates_.size(); |
|
|
|
if (np > nr) |
|
{ |
|
param.rates_.resize(np, 1); |
|
} |
|
else if (nr > np) |
|
{ |
|
param.probs_.resize(nr, 1); |
|
} |
|
else |
|
{ |
|
param.probs_.resize(1, 1); |
|
param.rates_.resize(1, 1); |
|
} |
|
} |
|
|
|
// Normalize probabilities |
|
// NOTE: this cannot be done earlier since the probability vector |
|
// can be changed due to size conformance |
|
hyperexp_detail::normalize(param.probs_); |
|
|
|
//post: vector size conformance |
|
assert(param.probs_.size() == param.rates_.size()); |
|
|
|
return is; |
|
} |
|
|
|
/** Returns true if the two sets of parameters are the same. */ |
|
public: BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs) |
|
{ |
|
return lhs.probs_ == rhs.probs_ |
|
&& lhs.rates_ == rhs.rates_; |
|
} |
|
|
|
/** Returns true if the two sets of parameters are the different. */ |
|
public: BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type) |
|
|
|
|
|
private: std::vector<RealT> probs_; ///< The <em>phase probability vector</em> parameter of the distribution |
|
private: std::vector<RealT> rates_; ///< The <em>rate vector</em> parameter of the distribution |
|
}; // param_type |
|
|
|
|
|
/** |
|
* Constructs a 1-phase \c hyperexponential_distribution (i.e., an |
|
* exponential distribution) with rate 1. |
|
*/ |
|
public: hyperexponential_distribution() |
|
: dd_(std::vector<RealT>(1, 1)), |
|
rates_(1, 1) |
|
{ |
|
// empty |
|
} |
|
|
|
/** |
|
* Constructs a \c hyperexponential_distribution from the <em>phase |
|
* probability vector</em> and <em>rate vector</em> parameters of the |
|
* distribution. |
|
* |
|
* The <em>phase probability vector</em> parameter is given by the range |
|
* defined by [\a prob_first, \a prob_last) iterator pair, and the |
|
* <em>rate vector</em> parameter is given by the range defined by |
|
* [\a rate_first, \a rate_last) iterator pair. |
|
* |
|
* \tparam ProbIterT Must meet the requirements of \c InputIterator concept (ISO,2014,sec. 24.2.3 [input.iterators]). |
|
* \tparam RateIterT Must meet the requirements of \c InputIterator concept (ISO,2014,sec. 24.2.3 [input.iterators]). |
|
* |
|
* \param prob_first The iterator to the beginning of the range of non-negative real elements representing the phase probabilities; if elements don't sum to 1, they are normalized. |
|
* \param prob_last The iterator to the ending of the range of non-negative real elements representing the phase probabilities; if elements don't sum to 1, they are normalized. |
|
* \param rate_first The iterator to the beginning of the range of non-negative real elements representing the rates. |
|
* \param rate_last The iterator to the ending of the range of non-negative real elements representing the rates. |
|
* |
|
* References: |
|
* -# ISO, <em>ISO/IEC 14882-2014: Information technology - Programming languages - C++</em>, 2014 |
|
* . |
|
*/ |
|
public: template <typename ProbIterT, typename RateIterT> |
|
hyperexponential_distribution(ProbIterT prob_first, ProbIterT prob_last, |
|
RateIterT rate_first, RateIterT rate_last) |
|
: dd_(prob_first, prob_last), |
|
rates_(rate_first, rate_last) |
|
{ |
|
assert( hyperexp_detail::check_params(dd_.probabilities(), rates_) ); |
|
} |
|
|
|
/** |
|
* Constructs a \c hyperexponential_distribution from the <em>phase |
|
* probability vector</em> and <em>rate vector</em> parameters of the |
|
* distribution. |
|
* |
|
* The <em>phase probability vector</em> parameter is given by the range |
|
* defined by \a prob_range, and the <em>rate vector</em> parameter is |
|
* given by the range defined by \a rate_range. |
|
* |
|
* \tparam ProbRangeT Must meet the requirements of <a href="boost:/libs/range/doc/html/range/concepts.html">Range</a> concept. |
|
* \tparam RateRangeT Must meet the requirements of <a href="boost:/libs/range/doc/html/range/concepts.html">Range</a> concept. |
|
* |
|
* \param prob_range The range of non-negative real elements representing the phase probabilities; if elements don't sum to 1, they are normalized. |
|
* \param rate_range The range of positive real elements representing the rates. |
|
* |
|
* \note |
|
* The final \c disable_if parameter is an implementation detail that |
|
* differentiates between this two argument constructor and the |
|
* iterator-based two argument constructor described below. |
|
*/ |
|
// We SFINAE this out of existance if either argument type is |
|
// incrementable as in that case the type is probably an iterator: |
|
public: template <typename ProbRangeT, typename RateRangeT> |
|
hyperexponential_distribution(ProbRangeT const& prob_range, |
|
RateRangeT const& rate_range, |
|
typename boost::disable_if_c<boost::has_pre_increment<ProbRangeT>::value || boost::has_pre_increment<RateRangeT>::value>::type* = 0) |
|
: dd_(prob_range), |
|
rates_(boost::begin(rate_range), boost::end(rate_range)) |
|
{ |
|
assert( hyperexp_detail::check_params(dd_.probabilities(), rates_) ); |
|
} |
|
|
|
/** |
|
* Constructs a \c hyperexponential_distribution from the <em>rate |
|
* vector</em> parameter of the distribution and with equal phase |
|
* probabilities. |
|
* |
|
* The <em>rate vector</em> parameter is given by the range defined by |
|
* [\a rate_first, \a rate_last) iterator pair, and the <em>phase |
|
* probability vector</em> parameter is set to the equal phase |
|
* probabilities (i.e., to a vector of the same length \f$k\f$ of the |
|
* <em>rate vector</em> and with each element set to \f$1.0/k\f$). |
|
* |
|
* \tparam RateIterT Must meet the requirements of \c InputIterator concept (ISO,2014,sec. 24.2.3 [input.iterators]). |
|
* \tparam RateIterT2 Must meet the requirements of \c InputIterator concept (ISO,2014,sec. 24.2.3 [input.iterators]). |
|
* |
|
* \param rate_first The iterator to the beginning of the range of non-negative real elements representing the rates. |
|
* \param rate_last The iterator to the ending of the range of non-negative real elements representing the rates. |
|
* |
|
* \note |
|
* The final \c disable_if parameter is an implementation detail that |
|
* differentiates between this two argument constructor and the |
|
* range-based two argument constructor described above. |
|
* |
|
* References: |
|
* -# ISO, <em>ISO/IEC 14882-2014: Information technology - Programming languages - C++</em>, 2014 |
|
* . |
|
*/ |
|
// We SFINAE this out of existance if the argument type is |
|
// incrementable as in that case the type is probably an iterator. |
|
public: template <typename RateIterT> |
|
hyperexponential_distribution(RateIterT rate_first, |
|
RateIterT rate_last, |
|
typename boost::enable_if_c<boost::has_pre_increment<RateIterT>::value>::type* = 0) |
|
: dd_(std::vector<RealT>(std::distance(rate_first, rate_last), 1)), |
|
rates_(rate_first, rate_last) |
|
{ |
|
assert( hyperexp_detail::check_params(dd_.probabilities(), rates_) ); |
|
} |
|
|
|
/** |
|
* Constructs a @c param_type from the "rates" parameters |
|
* of the distribution and with equal phase probabilities. |
|
* |
|
* The <em>rate vector</em> parameter is given by the range defined by |
|
* \a rate_range, and the <em>phase probability vector</em> parameter is |
|
* set to the equal phase probabilities (i.e., to a vector of the same |
|
* length \f$k\f$ of the <em>rate vector</em> and with each element set |
|
* to \f$1.0/k\f$). |
|
* |
|
* \tparam RateRangeT Must meet the requirements of <a href="boost:/libs/range/doc/html/range/concepts.html">Range</a> concept. |
|
* |
|
* \param rate_range The range of positive real elements representing the rates. |
|
*/ |
|
public: template <typename RateRangeT> |
|
hyperexponential_distribution(RateRangeT const& rate_range) |
|
: dd_(std::vector<RealT>(boost::size(rate_range), 1)), |
|
rates_(boost::begin(rate_range), boost::end(rate_range)) |
|
{ |
|
assert( hyperexp_detail::check_params(dd_.probabilities(), rates_) ); |
|
} |
|
|
|
/** |
|
* Constructs a \c hyperexponential_distribution from its parameters. |
|
* |
|
* \param param The parameters of the distribution. |
|
*/ |
|
public: explicit hyperexponential_distribution(param_type const& param) |
|
: dd_(param.probabilities()), |
|
rates_(param.rates()) |
|
{ |
|
assert( hyperexp_detail::check_params(dd_.probabilities(), rates_) ); |
|
} |
|
|
|
#ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST |
|
/** |
|
* Constructs a \c hyperexponential_distribution from the <em>phase |
|
* probability vector</em> and <em>rate vector</em> parameters of the |
|
* distribution. |
|
* |
|
* The <em>phase probability vector</em> parameter is given by the |
|
* <em>brace-init-list</em> (ISO,2014,sec. 8.5.4 [dcl.init.list]) |
|
* defined by \a l1, and the <em>rate vector</em> parameter is given by the |
|
* <em>brace-init-list</em> (ISO,2014,sec. 8.5.4 [dcl.init.list]) |
|
* defined by \a l2. |
|
* |
|
* \param l1 The initializer list for inizializing the phase probability vector. |
|
* \param l2 The initializer list for inizializing the rate vector. |
|
* |
|
* References: |
|
* -# ISO, <em>ISO/IEC 14882-2014: Information technology - Programming languages - C++</em>, 2014 |
|
* . |
|
*/ |
|
public: hyperexponential_distribution(std::initializer_list<RealT> const& l1, std::initializer_list<RealT> const& l2) |
|
: dd_(l1.begin(), l1.end()), |
|
rates_(l2.begin(), l2.end()) |
|
{ |
|
assert( hyperexp_detail::check_params(dd_.probabilities(), rates_) ); |
|
} |
|
|
|
/** |
|
* Constructs a \c hyperexponential_distribution from the <em>rate |
|
* vector</em> parameter of the distribution and with equal phase |
|
* probabilities. |
|
* |
|
* The <em>rate vector</em> parameter is given by the |
|
* <em>brace-init-list</em> (ISO,2014,sec. 8.5.4 [dcl.init.list]) |
|
* defined by \a l1, and the <em>phase probability vector</em> parameter is |
|
* set to the equal phase probabilities (i.e., to a vector of the same |
|
* length \f$k\f$ of the <em>rate vector</em> and with each element set |
|
* to \f$1.0/k\f$). |
|
* |
|
* \param l1 The initializer list for inizializing the rate vector. |
|
* |
|
* References: |
|
* -# ISO, <em>ISO/IEC 14882-2014: Information technology - Programming languages - C++</em>, 2014 |
|
* . |
|
*/ |
|
public: hyperexponential_distribution(std::initializer_list<RealT> const& l1) |
|
: dd_(std::vector<RealT>(std::distance(l1.begin(), l1.end()), 1)), |
|
rates_(l1.begin(), l1.end()) |
|
{ |
|
assert( hyperexp_detail::check_params(dd_.probabilities(), rates_) ); |
|
} |
|
#endif |
|
|
|
/** |
|
* Gets a random variate distributed according to the |
|
* hyperexponential distribution. |
|
* |
|
* \tparam URNG Must meet the requirements of \uniform_random_number_generator. |
|
* |
|
* \param urng A uniform random number generator object. |
|
* |
|
* \return A random variate distributed according to the hyperexponential distribution. |
|
*/ |
|
public: template<class URNG>\ |
|
RealT operator()(URNG& urng) const |
|
{ |
|
const int i = dd_(urng); |
|
|
|
return boost::random::exponential_distribution<RealT>(rates_[i])(urng); |
|
} |
|
|
|
/** |
|
* Gets a random variate distributed according to the hyperexponential |
|
* distribution with parameters specified by \c param. |
|
* |
|
* \tparam URNG Must meet the requirements of \uniform_random_number_generator. |
|
* |
|
* \param urng A uniform random number generator object. |
|
* \param param A distribution parameter object. |
|
* |
|
* \return A random variate distributed according to the hyperexponential distribution. |
|
* distribution with parameters specified by \c param. |
|
*/ |
|
public: template<class URNG> |
|
RealT operator()(URNG& urng, const param_type& param) const |
|
{ |
|
return hyperexponential_distribution(param)(urng); |
|
} |
|
|
|
/** Returns the number of phases of the distribution. */ |
|
public: std::size_t num_phases() const |
|
{ |
|
return rates_.size(); |
|
} |
|
|
|
/** Returns the <em>phase probability vector</em> parameter of the distribution. */ |
|
public: std::vector<RealT> probabilities() const |
|
{ |
|
return dd_.probabilities(); |
|
} |
|
|
|
/** Returns the <em>rate vector</em> parameter of the distribution. */ |
|
public: std::vector<RealT> rates() const |
|
{ |
|
return rates_; |
|
} |
|
|
|
/** Returns the smallest value that the distribution can produce. */ |
|
public: RealT min BOOST_PREVENT_MACRO_SUBSTITUTION () const |
|
{ |
|
return 0; |
|
} |
|
|
|
/** Returns the largest value that the distribution can produce. */ |
|
public: RealT max BOOST_PREVENT_MACRO_SUBSTITUTION () const |
|
{ |
|
return std::numeric_limits<RealT>::infinity(); |
|
} |
|
|
|
/** Returns the parameters of the distribution. */ |
|
public: param_type param() const |
|
{ |
|
std::vector<RealT> probs = dd_.probabilities(); |
|
|
|
return param_type(probs.begin(), probs.end(), rates_.begin(), rates_.end()); |
|
} |
|
|
|
/** Sets the parameters of the distribution. */ |
|
public: void param(param_type const& param) |
|
{ |
|
dd_.param(typename boost::random::discrete_distribution<int,RealT>::param_type(param.probabilities())); |
|
rates_ = param.rates(); |
|
} |
|
|
|
/** |
|
* Effects: Subsequent uses of the distribution do not depend |
|
* on values produced by any engine prior to invoking reset. |
|
*/ |
|
public: void reset() |
|
{ |
|
// empty |
|
} |
|
|
|
/** Writes an @c hyperexponential_distribution to a @c std::ostream. */ |
|
public: BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, hyperexponential_distribution, hd) |
|
{ |
|
os << hd.param(); |
|
return os; |
|
} |
|
|
|
/** Reads an @c hyperexponential_distribution from a @c std::istream. */ |
|
public: BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, hyperexponential_distribution, hd) |
|
{ |
|
param_type param; |
|
if(is >> param) |
|
{ |
|
hd.param(param); |
|
} |
|
return is; |
|
} |
|
|
|
/** |
|
* Returns true if the two instances of @c hyperexponential_distribution will |
|
* return identical sequences of values given equal generators. |
|
*/ |
|
public: BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(hyperexponential_distribution, lhs, rhs) |
|
{ |
|
return lhs.dd_ == rhs.dd_ |
|
&& lhs.rates_ == rhs.rates_; |
|
} |
|
|
|
/** |
|
* Returns true if the two instances of @c hyperexponential_distribution will |
|
* return different sequences of values given equal generators. |
|
*/ |
|
public: BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(hyperexponential_distribution) |
|
|
|
|
|
private: boost::random::discrete_distribution<int,RealT> dd_; ///< The \c discrete_distribution used to sample the phase probability and choose the rate |
|
private: std::vector<RealT> rates_; ///< The <em>rate vector</em> parameter of the distribution |
|
}; // hyperexponential_distribution |
|
|
|
}} // namespace boost::random |
|
|
|
|
|
#endif // BOOST_RANDOM_HYPEREXPONENTIAL_DISTRIBUTION_HPP
|
|
|