You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
276 lines
10 KiB
276 lines
10 KiB
#ifndef BOOST_PYTHON_SLICE_JDB20040105_HPP |
|
#define BOOST_PYTHON_SLICE_JDB20040105_HPP |
|
|
|
// Copyright (c) 2004 Jonathan Brandmeyer |
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. (See accompanying file |
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
#include <boost/python/detail/prefix.hpp> |
|
#include <boost/config.hpp> |
|
#include <boost/python/object.hpp> |
|
#include <boost/python/extract.hpp> |
|
#include <boost/python/converter/pytype_object_mgr_traits.hpp> |
|
|
|
#include <boost/iterator/iterator_traits.hpp> |
|
|
|
#include <iterator> |
|
#include <algorithm> |
|
|
|
namespace boost { namespace python { |
|
|
|
namespace detail |
|
{ |
|
class BOOST_PYTHON_DECL slice_base : public object |
|
{ |
|
public: |
|
// Get the Python objects associated with the slice. In principle, these |
|
// may be any arbitrary Python type, but in practice they are usually |
|
// integers. If one or more parameter is ommited in the Python expression |
|
// that created this slice, than that parameter is None here, and compares |
|
// equal to a default-constructed boost::python::object. |
|
// If a user-defined type wishes to support slicing, then support for the |
|
// special meaning associated with negative indices is up to the user. |
|
object start() const; |
|
object stop() const; |
|
object step() const; |
|
|
|
protected: |
|
explicit slice_base(PyObject*, PyObject*, PyObject*); |
|
|
|
BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice_base, object) |
|
}; |
|
} |
|
|
|
class slice : public detail::slice_base |
|
{ |
|
typedef detail::slice_base base; |
|
public: |
|
// Equivalent to slice(::) |
|
slice() : base(0,0,0) {} |
|
|
|
// Each argument must be slice_nil, or implicitly convertable to object. |
|
// They should normally be integers. |
|
template<typename Integer1, typename Integer2> |
|
slice( Integer1 start, Integer2 stop) |
|
: base( object(start).ptr(), object(stop).ptr(), 0 ) |
|
{} |
|
|
|
template<typename Integer1, typename Integer2, typename Integer3> |
|
slice( Integer1 start, Integer2 stop, Integer3 stride) |
|
: base( object(start).ptr(), object(stop).ptr(), object(stride).ptr() ) |
|
{} |
|
|
|
// The following algorithm is intended to automate the process of |
|
// determining a slice range when you want to fully support negative |
|
// indices and non-singular step sizes. Its functionallity is simmilar to |
|
// PySlice_GetIndicesEx() in the Python/C API, but tailored for C++ users. |
|
// This template returns a slice::range struct that, when used in the |
|
// following iterative loop, will traverse a slice of the function's |
|
// arguments. |
|
// while (start != end) { |
|
// do_foo(...); |
|
// std::advance( start, step); |
|
// } |
|
// do_foo(...); // repeat exactly once more. |
|
|
|
// Arguments: a [begin, end) pair of STL-conforming random-access iterators. |
|
|
|
// Return: slice::range, where start and stop define a _closed_ interval |
|
// that covers at most [begin, end-1] of the provided arguments, and a step |
|
// that is non-zero. |
|
|
|
// Throws: error_already_set() if any of the indices are neither None nor |
|
// integers, or the slice has a step value of zero. |
|
// std::invalid_argument if the resulting range would be empty. Normally, |
|
// you should catch this exception and return an empty sequence of the |
|
// appropriate type. |
|
|
|
// Performance: constant time for random-access iterators. |
|
|
|
// Rationale: |
|
// closed-interval: If an open interval were used, then for a non-singular |
|
// value for step, the required state for the end iterator could be |
|
// beyond the one-past-the-end postion of the specified range. While |
|
// probably harmless, the behavior of STL-conforming iterators is |
|
// undefined in this case. |
|
// exceptions on zero-length range: It is impossible to define a closed |
|
// interval over an empty range, so some other form of error checking |
|
// would have to be used by the user to prevent undefined behavior. In |
|
// the case where the user fails to catch the exception, it will simply |
|
// be translated to Python by the default exception handling mechanisms. |
|
|
|
template<typename RandomAccessIterator> |
|
struct range |
|
{ |
|
RandomAccessIterator start; |
|
RandomAccessIterator stop; |
|
typename iterator_difference<RandomAccessIterator>::type step; |
|
}; |
|
|
|
template<typename RandomAccessIterator> |
|
slice::range<RandomAccessIterator> |
|
get_indices( const RandomAccessIterator& begin, |
|
const RandomAccessIterator& end) const |
|
{ |
|
// This is based loosely on PySlice_GetIndicesEx(), but it has been |
|
// carefully crafted to ensure that these iterators never fall out of |
|
// the range of the container. |
|
slice::range<RandomAccessIterator> ret; |
|
|
|
typedef typename iterator_difference<RandomAccessIterator>::type difference_type; |
|
difference_type max_dist = std::distance(begin, end); |
|
|
|
object slice_start = this->start(); |
|
object slice_stop = this->stop(); |
|
object slice_step = this->step(); |
|
|
|
// Extract the step. |
|
if (slice_step == object()) { |
|
ret.step = 1; |
|
} |
|
else { |
|
ret.step = extract<long>( slice_step); |
|
if (ret.step == 0) { |
|
PyErr_SetString( PyExc_IndexError, "step size cannot be zero."); |
|
throw_error_already_set(); |
|
} |
|
} |
|
|
|
// Setup the start iterator. |
|
if (slice_start == object()) { |
|
if (ret.step < 0) { |
|
ret.start = end; |
|
--ret.start; |
|
} |
|
else |
|
ret.start = begin; |
|
} |
|
else { |
|
difference_type i = extract<long>( slice_start); |
|
if (i >= max_dist && ret.step > 0) |
|
throw std::invalid_argument( "Zero-length slice"); |
|
if (i >= 0) { |
|
ret.start = begin; |
|
BOOST_USING_STD_MIN(); |
|
std::advance( ret.start, min BOOST_PREVENT_MACRO_SUBSTITUTION(i, max_dist-1)); |
|
} |
|
else { |
|
if (i < -max_dist && ret.step < 0) |
|
throw std::invalid_argument( "Zero-length slice"); |
|
ret.start = end; |
|
// Advance start (towards begin) not farther than begin. |
|
std::advance( ret.start, (-i < max_dist) ? i : -max_dist ); |
|
} |
|
} |
|
|
|
// Set up the stop iterator. This one is a little trickier since slices |
|
// define a [) range, and we are returning a [] range. |
|
if (slice_stop == object()) { |
|
if (ret.step < 0) { |
|
ret.stop = begin; |
|
} |
|
else { |
|
ret.stop = end; |
|
std::advance( ret.stop, -1); |
|
} |
|
} |
|
else { |
|
difference_type i = extract<long>(slice_stop); |
|
// First, branch on which direction we are going with this. |
|
if (ret.step < 0) { |
|
if (i+1 >= max_dist || i == -1) |
|
throw std::invalid_argument( "Zero-length slice"); |
|
|
|
if (i >= 0) { |
|
ret.stop = begin; |
|
std::advance( ret.stop, i+1); |
|
} |
|
else { // i is negative, but more negative than -1. |
|
ret.stop = end; |
|
std::advance( ret.stop, (-i < max_dist) ? i : -max_dist); |
|
} |
|
} |
|
else { // stepping forward |
|
if (i == 0 || -i >= max_dist) |
|
throw std::invalid_argument( "Zero-length slice"); |
|
|
|
if (i > 0) { |
|
ret.stop = begin; |
|
std::advance( ret.stop, (std::min)( i-1, max_dist-1)); |
|
} |
|
else { // i is negative, but not more negative than -max_dist |
|
ret.stop = end; |
|
std::advance( ret.stop, i-1); |
|
} |
|
} |
|
} |
|
|
|
// Now the fun part, handling the possibilites surrounding step. |
|
// At this point, step has been initialized, ret.stop, and ret.step |
|
// represent the widest possible range that could be traveled |
|
// (inclusive), and final_dist is the maximum distance covered by the |
|
// slice. |
|
typename iterator_difference<RandomAccessIterator>::type final_dist = |
|
std::distance( ret.start, ret.stop); |
|
|
|
// First case, if both ret.start and ret.stop are equal, then step |
|
// is irrelevant and we can return here. |
|
if (final_dist == 0) |
|
return ret; |
|
|
|
// Second, if there is a sign mismatch, than the resulting range and |
|
// step size conflict: std::advance( ret.start, ret.step) goes away from |
|
// ret.stop. |
|
if ((final_dist > 0) != (ret.step > 0)) |
|
throw std::invalid_argument( "Zero-length slice."); |
|
|
|
// Finally, if the last step puts us past the end, we move ret.stop |
|
// towards ret.start in the amount of the remainder. |
|
// I don't remember all of the oolies surrounding negative modulii, |
|
// so I am handling each of these cases separately. |
|
if (final_dist < 0) { |
|
difference_type remainder = -final_dist % -ret.step; |
|
std::advance( ret.stop, remainder); |
|
} |
|
else { |
|
difference_type remainder = final_dist % ret.step; |
|
std::advance( ret.stop, -remainder); |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
// Incorrect spelling. DO NOT USE. Only here for backward compatibility. |
|
// Corrected 2011-06-14. |
|
template<typename RandomAccessIterator> |
|
slice::range<RandomAccessIterator> |
|
get_indicies( const RandomAccessIterator& begin, |
|
const RandomAccessIterator& end) const |
|
{ |
|
return get_indices(begin, end); |
|
} |
|
|
|
public: |
|
// This declaration, in conjunction with the specialization of |
|
// object_manager_traits<> below, allows C++ functions accepting slice |
|
// arguments to be called from from Python. These constructors should never |
|
// be used in client code. |
|
BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice, detail::slice_base) |
|
}; |
|
|
|
|
|
namespace converter { |
|
|
|
template<> |
|
struct object_manager_traits<slice> |
|
: pytype_object_manager_traits<&PySlice_Type, slice> |
|
{ |
|
}; |
|
|
|
} // !namesapce converter |
|
|
|
} } // !namespace ::boost::python |
|
|
|
|
|
#endif // !defined BOOST_PYTHON_SLICE_JDB20040105_HPP
|
|
|