1
0
mirror of https://github.com/PurpleI2P/Boost-for-Android-Prebuilt synced 2025-01-10 14:57:52 +00:00
Boost-for-Android-Prebuilt/boost-1_72_0/include/boost/numeric/ublas/hermitian.hpp
r4sas 93de5720b8
add boost 1.72.0
Signed-off-by: r4sas <r4sas@i2pmail.org>
2020-02-29 22:43:48 +00:00

2634 lines
100 KiB
C++

//
// Copyright (c) 2000-2010
// Joerg Walter, Mathias Koch, David Bellot
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef BOOST_UBLAS_HERMITIAN_H
#define BOOST_UBLAS_HERMITIAN_H
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/triangular.hpp> // for resize_preserve
#include <boost/numeric/ublas/detail/temporary.hpp>
// Iterators based on ideas of Jeremy Siek
// Hermitian matrices are square. Thanks to Peter Schmitteckert for spotting this.
namespace boost { namespace numeric { namespace ublas {
template<class M>
bool is_hermitian (const M &m) {
typedef typename M::size_type size_type;
if (m.size1 () != m.size2 ())
return false;
size_type size = BOOST_UBLAS_SAME (m.size1 (), m.size2 ());
for (size_type i = 0; i < size; ++ i) {
for (size_type j = i; j < size; ++ j) {
if (m (i, j) != conj (m (j, i)))
return false;
}
}
return true;
}
#ifdef BOOST_UBLAS_STRICT_HERMITIAN
template<class M>
class hermitian_matrix_element:
public container_reference<M> {
public:
typedef M matrix_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef value_type *pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
hermitian_matrix_element (matrix_type &m, size_type i, size_type j, value_type d):
container_reference<matrix_type> (m), i_ (i), j_ (j), d_ (d), dirty_ (false) {}
BOOST_UBLAS_INLINE
~hermitian_matrix_element () {
if (dirty_)
(*this) ().insert_element (i_, j_, d_);
}
// Assignment
BOOST_UBLAS_INLINE
hermitian_matrix_element &operator = (const hermitian_matrix_element &p) {
// Overide the implict copy assignment
d_ = p.d_;
dirty_ = true;
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
hermitian_matrix_element &operator = (const D &d) {
d_ = d;
dirty_ = true;
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
hermitian_matrix_element &operator += (const D &d) {
d_ += d;
dirty_ = true;
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
hermitian_matrix_element &operator -= (const D &d) {
d_ -= d;
dirty_ = true;
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
hermitian_matrix_element &operator *= (const D &d) {
d_ *= d;
dirty_ = true;
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
hermitian_matrix_element &operator /= (const D &d) {
d_ /= d;
dirty_ = true;
return *this;
}
// Comparison
template<class D>
BOOST_UBLAS_INLINE
bool operator == (const D &d) const {
return d_ == d;
}
template<class D>
BOOST_UBLAS_INLINE
bool operator != (const D &d) const {
return d_ != d;
}
// Conversion
BOOST_UBLAS_INLINE
operator const_reference () const {
return d_;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (hermitian_matrix_element p) {
if (this != &p) {
dirty_ = true;
p.dirty_ = true;
std::swap (d_, p.d_);
}
}
BOOST_UBLAS_INLINE
friend void swap (hermitian_matrix_element p1, hermitian_matrix_element p2) {
p1.swap (p2);
}
private:
size_type i_;
size_type j_;
value_type d_;
bool dirty_;
};
template<class M>
struct type_traits<hermitian_matrix_element<M> > {
typedef typename M::value_type element_type;
typedef type_traits<hermitian_matrix_element<M> > self_type;
typedef typename type_traits<element_type>::value_type value_type;
typedef typename type_traits<element_type>::const_reference const_reference;
typedef hermitian_matrix_element<M> reference;
typedef typename type_traits<element_type>::real_type real_type;
typedef typename type_traits<element_type>::precision_type precision_type;
static const unsigned plus_complexity = type_traits<element_type>::plus_complexity;
static const unsigned multiplies_complexity = type_traits<element_type>::multiplies_complexity;
static
BOOST_UBLAS_INLINE
real_type real (const_reference t) {
return type_traits<element_type>::real (t);
}
static
BOOST_UBLAS_INLINE
real_type imag (const_reference t) {
return type_traits<element_type>::imag (t);
}
static
BOOST_UBLAS_INLINE
value_type conj (const_reference t) {
return type_traits<element_type>::conj (t);
}
static
BOOST_UBLAS_INLINE
real_type type_abs (const_reference t) {
return type_traits<element_type>::type_abs (t);
}
static
BOOST_UBLAS_INLINE
value_type type_sqrt (const_reference t) {
return type_traits<element_type>::type_sqrt (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_1 (const_reference t) {
return type_traits<element_type>::norm_1 (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_2 (const_reference t) {
return type_traits<element_type>::norm_2 (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_inf (const_reference t) {
return type_traits<element_type>::norm_inf (t);
}
static
BOOST_UBLAS_INLINE
bool equals (const_reference t1, const_reference t2) {
return type_traits<element_type>::equals (t1, t2);
}
};
template<class M1, class T2>
struct promote_traits<hermitian_matrix_element<M1>, T2> {
typedef typename promote_traits<typename hermitian_matrix_element<M1>::value_type, T2>::promote_type promote_type;
};
template<class T1, class M2>
struct promote_traits<T1, hermitian_matrix_element<M2> > {
typedef typename promote_traits<T1, typename hermitian_matrix_element<M2>::value_type>::promote_type promote_type;
};
template<class M1, class M2>
struct promote_traits<hermitian_matrix_element<M1>, hermitian_matrix_element<M2> > {
typedef typename promote_traits<typename hermitian_matrix_element<M1>::value_type,
typename hermitian_matrix_element<M2>::value_type>::promote_type promote_type;
};
#endif
/** \brief A hermitian matrix of values of type \c T
*
* For a \f$(n \times n)\f$-dimensional matrix and \f$ 0 \leq i < n, 0 \leq j < n\f$, every element
* \f$m_{i,j}\f$ is mapped to the \f$(i.n + j)\f$-th element of the container for row major orientation
* or the \f$(i + j.m)\f$-th element of the container for column major orientation. And
* \f$\forall i,j\f$, \f$m_{i,j} = \overline{m_{i,j}}\f$.
*
* Orientation and storage can also be specified, otherwise a row major and unbounded array are used.
* It is \b not required by the storage to initialize elements of the matrix.
* Moreover, only the given triangular matrix is stored and the storage of hermitian matrices is packed.
*
* See http://en.wikipedia.org/wiki/Hermitian_matrix for more details on hermitian matrices.
*
* \tparam T the type of object stored in the matrix (like double, float, complex, etc...)
* \tparam TRI the type of triangular matrix is either \c lower or \c upper. Default is \c lower
* \tparam L the storage organization. It is either \c row_major or \c column_major. Default is \c row_major
* \tparam A the type of Storage array. Default is \unbounded_array.
*/
template<class T, class TRI, class L, class A>
class hermitian_matrix:
public matrix_container<hermitian_matrix<T, TRI, L, A> > {
typedef T &true_reference;
typedef T *pointer;
typedef TRI triangular_type;
typedef L layout_type;
typedef hermitian_matrix<T, TRI, L, A> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_container<self_type>::operator ();
#endif
typedef typename A::size_type size_type;
typedef typename A::difference_type difference_type;
typedef T value_type;
// FIXME no better way to not return the address of a temporary?
// typedef const T &const_reference;
typedef const T const_reference;
#ifndef BOOST_UBLAS_STRICT_HERMITIAN
typedef T &reference;
#else
typedef hermitian_matrix_element<self_type> reference;
#endif
typedef A array_type;
typedef const matrix_reference<const self_type> const_closure_type;
typedef matrix_reference<self_type> closure_type;
typedef vector<T, A> vector_temporary_type;
typedef matrix<T, L, A> matrix_temporary_type; // general sub-matrix
typedef packed_tag storage_category;
typedef typename L::orientation_category orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
hermitian_matrix ():
matrix_container<self_type> (),
size_ (0), data_ (0) {}
BOOST_UBLAS_INLINE
hermitian_matrix (size_type size):
matrix_container<self_type> (),
size_ (BOOST_UBLAS_SAME (size, size)), data_ (triangular_type::packed_size (layout_type (), size, size)) {
}
BOOST_UBLAS_INLINE
hermitian_matrix (size_type size1, size_type size2):
matrix_container<self_type> (),
size_ (BOOST_UBLAS_SAME (size1, size2)), data_ (triangular_type::packed_size (layout_type (), size1, size2)) {
}
BOOST_UBLAS_INLINE
hermitian_matrix (size_type size, const array_type &data):
matrix_container<self_type> (),
size_ (size), data_ (data) {}
BOOST_UBLAS_INLINE
hermitian_matrix (const hermitian_matrix &m):
matrix_container<self_type> (),
size_ (m.size_), data_ (m.data_) {}
template<class AE>
BOOST_UBLAS_INLINE
hermitian_matrix (const matrix_expression<AE> &ae):
matrix_container<self_type> (),
size_ (BOOST_UBLAS_SAME (ae ().size1 (), ae ().size2 ())),
data_ (triangular_type::packed_size (layout_type (), size_, size_)) {
matrix_assign<scalar_assign> (*this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return size_;
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return size_;
}
// Storage accessors
BOOST_UBLAS_INLINE
const array_type &data () const {
return data_;
}
BOOST_UBLAS_INLINE
array_type &data () {
return data_;
}
// Resizing
BOOST_UBLAS_INLINE
void resize (size_type size, bool preserve = true) {
if (preserve) {
self_type temporary (size, size);
detail::matrix_resize_preserve<layout_type, triangular_type> (*this, temporary);
}
else {
data ().resize (triangular_type::packed_size (layout_type (), size, size));
size_ = size;
}
}
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, bool preserve = true) {
resize (BOOST_UBLAS_SAME (size1, size2), preserve);
}
BOOST_UBLAS_INLINE
void resize_packed_preserve (size_type size) {
size_ = BOOST_UBLAS_SAME (size, size);
data ().resize (triangular_type::packed_size (layout_type (), size_, size_), value_type ());
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
BOOST_UBLAS_CHECK (j < size_, bad_index ());
// if (i == j)
// return type_traits<value_type>::real (data () [triangular_type::element (layout_type (), i, size_, i, size_)]);
// else
if (triangular_type::other (i, j))
return data () [triangular_type::element (layout_type (), i, size_, j, size_)];
else
return type_traits<value_type>::conj (data () [triangular_type::element (layout_type (), j, size_, i, size_)]);
}
BOOST_UBLAS_INLINE
true_reference at_element (size_type i, size_type j) {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
BOOST_UBLAS_CHECK (j < size_, bad_index ());
BOOST_UBLAS_CHECK (triangular_type::other (i, j), bad_index ());
return data () [triangular_type::element (layout_type (), i, size_, j, size_)];
}
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
#ifndef BOOST_UBLAS_STRICT_HERMITIAN
if (!triangular_type::other (i, j)) {
bad_index ().raise ();
// NEVER reached
}
return at_element (i, j);
#else
if (triangular_type::other (i, j))
return reference (*this, i, j, data () [triangular_type::element (layout_type (), i, size_, j, size_)]);
else
return reference (*this, i, j, type_traits<value_type>::conj (data () [triangular_type::element (layout_type (), j, size_, i, size_)]));
#endif
}
// Element assignemnt
BOOST_UBLAS_INLINE
true_reference insert_element (size_type i, size_type j, const_reference t) {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
BOOST_UBLAS_CHECK (j < size_, bad_index ());
if (triangular_type::other (i, j)) {
return (data () [triangular_type::element (layout_type (), i, size_, j, size_)] = t);
} else {
return (data () [triangular_type::element (layout_type (), j, size_, i, size_)] = type_traits<value_type>::conj (t));
}
}
BOOST_UBLAS_INLINE
void erase_element (size_type i, size_type j) {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
BOOST_UBLAS_CHECK (j < size_, bad_index ());
data () [triangular_type::element (layout_type (), i, size_, j, size_)] = value_type/*zero*/();
}
// Zeroing
BOOST_UBLAS_INLINE
void clear () {
std::fill (data ().begin (), data ().end (), value_type/*zero*/());
}
// Assignment
BOOST_UBLAS_INLINE
hermitian_matrix &operator = (const hermitian_matrix &m) {
size_ = m.size_;
data () = m.data ();
return *this;
}
BOOST_UBLAS_INLINE
hermitian_matrix &assign_temporary (hermitian_matrix &m) {
swap (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
hermitian_matrix &operator = (const matrix_expression<AE> &ae) {
self_type temporary (ae);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
hermitian_matrix &assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
hermitian_matrix& operator += (const matrix_expression<AE> &ae) {
self_type temporary (*this + ae);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
hermitian_matrix &plus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
hermitian_matrix& operator -= (const matrix_expression<AE> &ae) {
self_type temporary (*this - ae);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
hermitian_matrix &minus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
hermitian_matrix& operator *= (const AT &at) {
// Multiplication is only allowed for real scalars,
// otherwise the resulting matrix isn't hermitian.
// Thanks to Peter Schmitteckert for spotting this.
BOOST_UBLAS_CHECK (type_traits<value_type>::imag (at) == 0, non_real ());
matrix_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
hermitian_matrix& operator /= (const AT &at) {
// Multiplication is only allowed for real scalars,
// otherwise the resulting matrix isn't hermitian.
// Thanks to Peter Schmitteckert for spotting this.
BOOST_UBLAS_CHECK (type_traits<value_type>::imag (at) == 0, non_real ());
matrix_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (hermitian_matrix &m) {
if (this != &m) {
std::swap (size_, m.size_);
data ().swap (m.data ());
}
}
BOOST_UBLAS_INLINE
friend void swap (hermitian_matrix &m1, hermitian_matrix &m2) {
m1.swap (m2);
}
// Iterator types
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_iterator1<self_type, packed_random_access_iterator_tag> iterator1;
typedef indexed_iterator2<self_type, packed_random_access_iterator_tag> iterator2;
typedef indexed_const_iterator1<self_type, packed_random_access_iterator_tag> const_iterator1;
typedef indexed_const_iterator2<self_type, packed_random_access_iterator_tag> const_iterator2;
#else
class const_iterator1;
class iterator1;
class const_iterator2;
class iterator2;
#endif
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base1<iterator1> reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
typedef reverse_iterator_base2<iterator2> reverse_iterator2;
// Element lookup
BOOST_UBLAS_INLINE
const_iterator1 find1 (int /* rank */, size_type i, size_type j) const {
return const_iterator1 (*this, i, j);
}
BOOST_UBLAS_INLINE
iterator1 find1 (int rank, size_type i, size_type j) {
if (rank == 1)
i = triangular_type::mutable_restrict1 (i, j, size1(), size2());
if (rank == 0)
i = triangular_type::global_mutable_restrict1 (i, size1(), j, size2());
return iterator1 (*this, i, j);
}
BOOST_UBLAS_INLINE
const_iterator2 find2 (int /* rank */, size_type i, size_type j) const {
return const_iterator2 (*this, i, j);
}
BOOST_UBLAS_INLINE
iterator2 find2 (int rank, size_type i, size_type j) {
if (rank == 1)
j = triangular_type::mutable_restrict2 (i, j, size1(), size2());
if (rank == 0)
j = triangular_type::global_mutable_restrict2 (i, size1(), j, size2());
return iterator2 (*this, i, j);
}
// Iterators simply are indices.
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator1:
public container_const_reference<hermitian_matrix>,
public random_access_iterator_base<packed_random_access_iterator_tag,
const_iterator1, value_type> {
public:
typedef typename hermitian_matrix::value_type value_type;
typedef typename hermitian_matrix::difference_type difference_type;
typedef typename hermitian_matrix::const_reference reference;
typedef const typename hermitian_matrix::pointer pointer;
typedef const_iterator2 dual_iterator_type;
typedef const_reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator1 ():
container_const_reference<self_type> (), it1_ (), it2_ () {}
BOOST_UBLAS_INLINE
const_iterator1 (const self_type &m, size_type it1, size_type it2):
container_const_reference<self_type> (m), it1_ (it1), it2_ (it2) {}
BOOST_UBLAS_INLINE
const_iterator1 (const iterator1 &it):
container_const_reference<self_type> (it ()), it1_ (it.it1_), it2_ (it.it2_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator1 &operator ++ () {
++ it1_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -- () {
-- it1_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator += (difference_type n) {
it1_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -= (difference_type n) {
it1_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ - it.it1_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
return (*this) () (it1_, it2_);
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 begin () const {
return (*this) ().find2 (1, it1_, 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 end () const {
return (*this) ().find2 (1, it1_, (*this) ().size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 cend () const {
return end ();
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rbegin () const {
return const_reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rend () const {
return const_reverse_iterator2 (begin ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 crend () const {
return rend ();
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it1_;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it2_;
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator1 &operator = (const const_iterator1 &it) {
container_const_reference<self_type>::assign (&it ());
it1_ = it.it1_;
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ == it.it1_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ < it.it1_;
}
private:
size_type it1_;
size_type it2_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator1 begin1 () const {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator1 cbegin1 () const {
return begin1 ();
}
BOOST_UBLAS_INLINE
const_iterator1 end1 () const {
return find1 (0, size_, 0);
}
BOOST_UBLAS_INLINE
const_iterator1 cend1 () const {
return end1 ();
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator1:
public container_reference<hermitian_matrix>,
public random_access_iterator_base<packed_random_access_iterator_tag,
iterator1, value_type> {
public:
typedef typename hermitian_matrix::value_type value_type;
typedef typename hermitian_matrix::difference_type difference_type;
typedef typename hermitian_matrix::true_reference reference;
typedef typename hermitian_matrix::pointer pointer;
typedef iterator2 dual_iterator_type;
typedef reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator1 ():
container_reference<self_type> (), it1_ (), it2_ () {}
BOOST_UBLAS_INLINE
iterator1 (self_type &m, size_type it1, size_type it2):
container_reference<self_type> (m), it1_ (it1), it2_ (it2) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator1 &operator ++ () {
++ it1_;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -- () {
-- it1_;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator += (difference_type n) {
it1_ += n;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -= (difference_type n) {
it1_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ - it.it1_;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
return (*this) ().at_element (it1_, it2_);
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 begin () const {
return (*this) ().find2 (1, it1_, 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 end () const {
return (*this) ().find2 (1, it1_, (*this) ().size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rbegin () const {
return reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rend () const {
return reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it1_;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it2_;
}
// Assignment
BOOST_UBLAS_INLINE
iterator1 &operator = (const iterator1 &it) {
container_reference<self_type>::assign (&it ());
it1_ = it.it1_;
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ == it.it1_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ < it.it1_;
}
private:
size_type it1_;
size_type it2_;
friend class const_iterator1;
};
#endif
BOOST_UBLAS_INLINE
iterator1 begin1 () {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator1 end1 () {
return find1 (0, size_, 0);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator2:
public container_const_reference<hermitian_matrix>,
public random_access_iterator_base<packed_random_access_iterator_tag,
const_iterator2, value_type> {
public:
typedef typename hermitian_matrix::value_type value_type;
typedef typename hermitian_matrix::difference_type difference_type;
typedef typename hermitian_matrix::const_reference reference;
typedef const typename hermitian_matrix::pointer pointer;
typedef const_iterator1 dual_iterator_type;
typedef const_reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator2 ():
container_const_reference<self_type> (), it1_ (), it2_ () {}
BOOST_UBLAS_INLINE
const_iterator2 (const self_type &m, size_type it1, size_type it2):
container_const_reference<self_type> (m), it1_ (it1), it2_ (it2) {}
BOOST_UBLAS_INLINE
const_iterator2 (const iterator2 &it):
container_const_reference<self_type> (it ()), it1_ (it.it1_), it2_ (it.it2_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator2 &operator ++ () {
++ it2_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -- () {
-- it2_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator += (difference_type n) {
it2_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -= (difference_type n) {
it2_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ - it.it2_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
return (*this) () (it1_, it2_);
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 begin () const {
return (*this) ().find1 (1, 0, it2_);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 end () const {
return (*this) ().find1 (1, (*this) ().size1 (), it2_);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 cend () const {
return end ();
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rbegin () const {
return const_reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rend () const {
return const_reverse_iterator1 (begin ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 crend () const {
return rend ();
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it1_;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it2_;
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator2 &operator = (const const_iterator2 &it) {
container_const_reference<self_type>::assign (&it ());
it1_ = it.it1_;
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ == it.it2_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ < it.it2_;
}
private:
size_type it1_;
size_type it2_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator2 begin2 () const {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator2 cbegin2 () const {
return begin2 ();
}
BOOST_UBLAS_INLINE
const_iterator2 end2 () const {
return find2 (0, 0, size_);
}
BOOST_UBLAS_INLINE
const_iterator2 cend2 () const {
return end2 ();
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator2:
public container_reference<hermitian_matrix>,
public random_access_iterator_base<packed_random_access_iterator_tag,
iterator2, value_type> {
public:
typedef typename hermitian_matrix::value_type value_type;
typedef typename hermitian_matrix::difference_type difference_type;
typedef typename hermitian_matrix::true_reference reference;
typedef typename hermitian_matrix::pointer pointer;
typedef iterator1 dual_iterator_type;
typedef reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator2 ():
container_reference<self_type> (), it1_ (), it2_ () {}
BOOST_UBLAS_INLINE
iterator2 (self_type &m, size_type it1, size_type it2):
container_reference<self_type> (m), it1_ (it1), it2_ (it2) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator2 &operator ++ () {
++ it2_;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -- () {
-- it2_;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator += (difference_type n) {
it2_ += n;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -= (difference_type n) {
it2_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ - it.it2_;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
return (*this) ().at_element (it1_, it2_);
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 begin () const {
return (*this) ().find1 (1, 0, it2_);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 end () const {
return (*this) ().find1 (1, (*this) ().size1 (), it2_);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rbegin () const {
return reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rend () const {
return reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it1_;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it2_;
}
// Assignment
BOOST_UBLAS_INLINE
iterator2 &operator = (const iterator2 &it) {
container_reference<self_type>::assign (&it ());
it1_ = it.it1_;
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ == it.it2_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ < it.it2_;
}
private:
size_type it1_;
size_type it2_;
friend class const_iterator2;
};
#endif
BOOST_UBLAS_INLINE
iterator2 begin2 () {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator2 end2 () {
return find2 (0, 0, size_);
}
// Reverse iterators
BOOST_UBLAS_INLINE
const_reverse_iterator1 rbegin1 () const {
return const_reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 crbegin1 () const {
return rbegin1 ();
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 rend1 () const {
return const_reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 crend1 () const {
return rend1 ();
}
BOOST_UBLAS_INLINE
reverse_iterator1 rbegin1 () {
return reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rend1 () {
return reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rbegin2 () const {
return const_reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 crbegin2 () const {
return rbegin2();
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rend2 () const {
return const_reverse_iterator2 (begin2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 crend2 () const {
return rend2 ();
}
BOOST_UBLAS_INLINE
reverse_iterator2 rbegin2 () {
return reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rend2 () {
return reverse_iterator2 (begin2 ());
}
private:
size_type size_;
array_type data_;
};
/** \brief A Hermitian matrix adaptator: convert a any matrix into a Hermitian matrix expression
*
* For a \f$(m\times n)\f$-dimensional matrix, the \c hermitian_adaptor will provide a hermitian matrix.
* Storage and location are based on those of the underlying matrix. This is important because
* a \c hermitian_adaptor does not copy the matrix data to a new place. Therefore, modifying values
* in a \c hermitian_adaptor matrix will also modify the underlying matrix too.
*
* \tparam M the type of matrix used to generate a hermitian matrix
*/
template<class M, class TRI>
class hermitian_adaptor:
public matrix_expression<hermitian_adaptor<M, TRI> > {
typedef hermitian_adaptor<M, TRI> self_type;
typedef typename M::value_type &true_reference;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_expression<self_type>::operator ();
#endif
typedef const M const_matrix_type;
typedef M matrix_type;
typedef TRI triangular_type;
typedef typename M::size_type size_type;
typedef typename M::difference_type difference_type;
typedef typename M::value_type value_type;
typedef typename M::value_type const_reference;
#ifndef BOOST_UBLAS_STRICT_HERMITIAN
typedef typename boost::mpl::if_<boost::is_const<M>,
typename M::value_type,
typename M::reference>::type reference;
#else
typedef typename boost::mpl::if_<boost::is_const<M>,
typename M::value_type,
hermitian_matrix_element<self_type> >::type reference;
#endif
typedef typename boost::mpl::if_<boost::is_const<M>,
typename M::const_closure_type,
typename M::closure_type>::type matrix_closure_type;
typedef const self_type const_closure_type;
typedef self_type closure_type;
// Replaced by _temporary_traits to avoid type requirements on M
//typedef typename M::vector_temporary_type vector_temporary_type;
//typedef typename M::matrix_temporary_type matrix_temporary_type;
typedef typename storage_restrict_traits<typename M::storage_category,
packed_proxy_tag>::storage_category storage_category;
typedef typename M::orientation_category orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
hermitian_adaptor (matrix_type &data):
matrix_expression<self_type> (),
data_ (data) {
BOOST_UBLAS_CHECK (data_.size1 () == data_.size2 (), bad_size ());
}
BOOST_UBLAS_INLINE
hermitian_adaptor (const hermitian_adaptor &m):
matrix_expression<self_type> (),
data_ (m.data_) {
BOOST_UBLAS_CHECK (data_.size1 () == data_.size2 (), bad_size ());
}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return data_.size1 ();
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return data_.size2 ();
}
// Storage accessors
BOOST_UBLAS_INLINE
const matrix_closure_type &data () const {
return data_;
}
BOOST_UBLAS_INLINE
matrix_closure_type &data () {
return data_;
}
// Element access
#ifndef BOOST_UBLAS_PROXY_CONST_MEMBER
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
BOOST_UBLAS_CHECK (i < size1 (), bad_index ());
BOOST_UBLAS_CHECK (j < size2 (), bad_index ());
// if (i == j)
// return type_traits<value_type>::real (data () (i, i));
// else
if (triangular_type::other (i, j))
return data () (i, j);
else
return type_traits<value_type>::conj (data () (j, i));
}
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
BOOST_UBLAS_CHECK (i < size1 (), bad_index ());
BOOST_UBLAS_CHECK (j < size2 (), bad_index ());
#ifndef BOOST_UBLAS_STRICT_HERMITIAN
if (triangular_type::other (i, j))
return data () (i, j);
else {
external_logic ().raise ();
return conj_ = type_traits<value_type>::conj (data () (j, i));
}
#else
if (triangular_type::other (i, j))
return reference (*this, i, j, data () (i, j));
else
return reference (*this, i, j, type_traits<value_type>::conj (data () (j, i)));
#endif
}
BOOST_UBLAS_INLINE
true_reference insert_element (size_type i, size_type j, value_type t) {
BOOST_UBLAS_CHECK (i < size1 (), bad_index ());
BOOST_UBLAS_CHECK (j < size2 (), bad_index ());
// if (i == j)
// data () (i, i) = type_traits<value_type>::real (t);
// else
if (triangular_type::other (i, j))
return data () (i, j) = t;
else
return data () (j, i) = type_traits<value_type>::conj (t);
}
#else
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
BOOST_UBLAS_CHECK (i < size1 (), bad_index ());
BOOST_UBLAS_CHECK (j < size2 (), bad_index ());
#ifndef BOOST_UBLAS_STRICT_HERMITIAN
if (triangular_type::other (i, j))
return data () (i, j);
else {
external_logic ().raise ();
return conj_ = type_traits<value_type>::conj (data () (j, i));
}
#else
if (triangular_type::other (i, j))
return reference (*this, i, j, data () (i, j));
else
return reference (*this, i, j, type_traits<value_type>::conj (data () (j, i)));
#endif
}
BOOST_UBLAS_INLINE
true_reference insert_element (size_type i, size_type j, value_type t) {
BOOST_UBLAS_CHECK (i < size1 (), bad_index ());
BOOST_UBLAS_CHECK (j < size2 (), bad_index ());
// if (i == j)
// data () (i, i) = type_traits<value_type>::real (t);
// else
if (triangular_type::other (i, j))
return data () (i, j) = t;
else
return data () (j, i) = type_traits<value_type>::conj (t);
}
#endif
// Assignment
BOOST_UBLAS_INLINE
hermitian_adaptor &operator = (const hermitian_adaptor &m) {
matrix_assign<scalar_assign, triangular_type> (*this, m);
return *this;
}
BOOST_UBLAS_INLINE
hermitian_adaptor &assign_temporary (hermitian_adaptor &m) {
*this = m;
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
hermitian_adaptor &operator = (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign, triangular_type> (*this, matrix<value_type> (ae));
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
hermitian_adaptor &assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign, triangular_type> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
hermitian_adaptor& operator += (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign, triangular_type> (*this, matrix<value_type> (*this + ae));
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
hermitian_adaptor &plus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_plus_assign, triangular_type> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
hermitian_adaptor& operator -= (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign, triangular_type> (*this, matrix<value_type> (*this - ae));
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
hermitian_adaptor &minus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_minus_assign, triangular_type> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
hermitian_adaptor& operator *= (const AT &at) {
// Multiplication is only allowed for real scalars,
// otherwise the resulting matrix isn't hermitian.
// Thanks to Peter Schmitteckert for spotting this.
BOOST_UBLAS_CHECK (type_traits<value_type>::imag (at) == 0, non_real ());
matrix_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
hermitian_adaptor& operator /= (const AT &at) {
// Multiplication is only allowed for real scalars,
// otherwise the resulting matrix isn't hermitian.
// Thanks to Peter Schmitteckert for spotting this.
BOOST_UBLAS_CHECK (type_traits<value_type>::imag (at) == 0, non_real ());
matrix_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Closure comparison
BOOST_UBLAS_INLINE
bool same_closure (const hermitian_adaptor &ha) const {
return (*this).data ().same_closure (ha.data ());
}
// Swapping
BOOST_UBLAS_INLINE
void swap (hermitian_adaptor &m) {
if (this != &m)
matrix_swap<scalar_swap, triangular_type> (*this, m);
}
BOOST_UBLAS_INLINE
friend void swap (hermitian_adaptor &m1, hermitian_adaptor &m2) {
m1.swap (m2);
}
// Iterator types
private:
// Use matrix iterator
typedef typename M::const_iterator1 const_subiterator1_type;
typedef typename boost::mpl::if_<boost::is_const<M>,
typename M::const_iterator1,
typename M::iterator1>::type subiterator1_type;
typedef typename M::const_iterator2 const_subiterator2_type;
typedef typename boost::mpl::if_<boost::is_const<M>,
typename M::const_iterator2,
typename M::iterator2>::type subiterator2_type;
public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_iterator1<self_type, packed_random_access_iterator_tag> iterator1;
typedef indexed_iterator2<self_type, packed_random_access_iterator_tag> iterator2;
typedef indexed_const_iterator1<self_type, dense_random_access_iterator_tag> const_iterator1;
typedef indexed_const_iterator2<self_type, dense_random_access_iterator_tag> const_iterator2;
#else
class const_iterator1;
class iterator1;
class const_iterator2;
class iterator2;
#endif
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base1<iterator1> reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
typedef reverse_iterator_base2<iterator2> reverse_iterator2;
// Element lookup
BOOST_UBLAS_INLINE
const_iterator1 find1 (int rank, size_type i, size_type j) const {
if (triangular_type::other (i, j)) {
if (triangular_type::other (size1 (), j)) {
return const_iterator1 (*this, 0, 0,
data ().find1 (rank, i, j), data ().find1 (rank, size1 (), j),
data ().find2 (rank, size2 (), size1 ()), data ().find2 (rank, size2 (), size1 ()));
} else {
return const_iterator1 (*this, 0, 1,
data ().find1 (rank, i, j), data ().find1 (rank, j, j),
data ().find2 (rank, j, j), data ().find2 (rank, j, size1 ()));
}
} else {
if (triangular_type::other (size1 (), j)) {
return const_iterator1 (*this, 1, 0,
data ().find1 (rank, j, j), data ().find1 (rank, size1 (), j),
data ().find2 (rank, j, i), data ().find2 (rank, j, j));
} else {
return const_iterator1 (*this, 1, 1,
data ().find1 (rank, size1 (), size2 ()), data ().find1 (rank, size1 (), size2 ()),
data ().find2 (rank, j, i), data ().find2 (rank, j, size1 ()));
}
}
}
BOOST_UBLAS_INLINE
iterator1 find1 (int rank, size_type i, size_type j) {
if (rank == 1)
i = triangular_type::mutable_restrict1 (i, j, size1(), size2());
if (rank == 0)
i = triangular_type::global_mutable_restrict1 (i, size1(), j, size2());
return iterator1 (*this, data ().find1 (rank, i, j));
}
BOOST_UBLAS_INLINE
const_iterator2 find2 (int rank, size_type i, size_type j) const {
if (triangular_type::other (i, j)) {
if (triangular_type::other (i, size2 ())) {
return const_iterator2 (*this, 1, 1,
data ().find1 (rank, size2 (), size1 ()), data ().find1 (rank, size2 (), size1 ()),
data ().find2 (rank, i, j), data ().find2 (rank, i, size2 ()));
} else {
return const_iterator2 (*this, 1, 0,
data ().find1 (rank, i, i), data ().find1 (rank, size2 (), i),
data ().find2 (rank, i, j), data ().find2 (rank, i, i));
}
} else {
if (triangular_type::other (i, size2 ())) {
return const_iterator2 (*this, 0, 1,
data ().find1 (rank, j, i), data ().find1 (rank, i, i),
data ().find2 (rank, i, i), data ().find2 (rank, i, size2 ()));
} else {
return const_iterator2 (*this, 0, 0,
data ().find1 (rank, j, i), data ().find1 (rank, size2 (), i),
data ().find2 (rank, size1 (), size2 ()), data ().find2 (rank, size2 (), size2 ()));
}
}
}
BOOST_UBLAS_INLINE
iterator2 find2 (int rank, size_type i, size_type j) {
if (rank == 1)
j = triangular_type::mutable_restrict2 (i, j, size1(), size2());
if (rank == 0)
j = triangular_type::global_mutable_restrict2 (i, size1(), j, size2());
return iterator2 (*this, data ().find2 (rank, i, j));
}
// Iterators simply are indices.
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator1:
public container_const_reference<hermitian_adaptor>,
public random_access_iterator_base<typename iterator_restrict_traits<
typename const_subiterator1_type::iterator_category, dense_random_access_iterator_tag>::iterator_category,
const_iterator1, value_type> {
public:
typedef typename const_subiterator1_type::value_type value_type;
typedef typename const_subiterator1_type::difference_type difference_type;
// FIXME no better way to not return the address of a temporary?
// typedef typename const_subiterator1_type::reference reference;
typedef typename const_subiterator1_type::value_type reference;
typedef typename const_subiterator1_type::pointer pointer;
typedef const_iterator2 dual_iterator_type;
typedef const_reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator1 ():
container_const_reference<self_type> (),
begin_ (-1), end_ (-1), current_ (-1),
it1_begin_ (), it1_end_ (), it1_ (),
it2_begin_ (), it2_end_ (), it2_ () {}
BOOST_UBLAS_INLINE
const_iterator1 (const self_type &m, int begin, int end,
const const_subiterator1_type &it1_begin, const const_subiterator1_type &it1_end,
const const_subiterator2_type &it2_begin, const const_subiterator2_type &it2_end):
container_const_reference<self_type> (m),
begin_ (begin), end_ (end), current_ (begin),
it1_begin_ (it1_begin), it1_end_ (it1_end), it1_ (it1_begin_),
it2_begin_ (it2_begin), it2_end_ (it2_end), it2_ (it2_begin_) {
if (current_ == 0 && it1_ == it1_end_)
current_ = 1;
if (current_ == 1 && it2_ == it2_end_)
current_ = 0;
if ((current_ == 0 && it1_ == it1_end_) ||
(current_ == 1 && it2_ == it2_end_))
current_ = end_;
BOOST_UBLAS_CHECK (current_ == end_ ||
(current_ == 0 && it1_ != it1_end_) ||
(current_ == 1 && it2_ != it2_end_), internal_logic ());
}
// FIXME cannot compile
// iterator1 does not have these members!
BOOST_UBLAS_INLINE
const_iterator1 (const iterator1 &it):
container_const_reference<self_type> (it ()),
begin_ (it.begin_), end_ (it.end_), current_ (it.current_),
it1_begin_ (it.it1_begin_), it1_end_ (it.it1_end_), it1_ (it.it1_),
it2_begin_ (it.it2_begin_), it2_end_ (it.it2_end_), it2_ (it.it2_) {
BOOST_UBLAS_CHECK (current_ == end_ ||
(current_ == 0 && it1_ != it1_end_) ||
(current_ == 1 && it2_ != it2_end_), internal_logic ());
}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator1 &operator ++ () {
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
if (current_ == 0) {
BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ());
++ it1_;
if (it1_ == it1_end_ && end_ == 1) {
it2_ = it2_begin_;
current_ = 1;
}
} else /* if (current_ == 1) */ {
BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ());
++ it2_;
if (it2_ == it2_end_ && end_ == 0) {
it1_ = it1_begin_;
current_ = 0;
}
}
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -- () {
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
if (current_ == 0) {
if (it1_ == it1_begin_ && begin_ == 1) {
it2_ = it2_end_;
BOOST_UBLAS_CHECK (it2_ != it2_begin_, internal_logic ());
-- it2_;
current_ = 1;
} else {
-- it1_;
}
} else /* if (current_ == 1) */ {
if (it2_ == it2_begin_ && begin_ == 0) {
it1_ = it1_end_;
BOOST_UBLAS_CHECK (it1_ != it1_begin_, internal_logic ());
-- it1_;
current_ = 0;
} else {
-- it2_;
}
}
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator += (difference_type n) {
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
if (current_ == 0) {
size_type d = (std::min) (n, it1_end_ - it1_);
it1_ += d;
n -= d;
if (n > 0 || (end_ == 1 && it1_ == it1_end_)) {
BOOST_UBLAS_CHECK (end_ == 1, external_logic ());
d = (std::min) (n, it2_end_ - it2_begin_);
it2_ = it2_begin_ + d;
n -= d;
current_ = 1;
}
} else /* if (current_ == 1) */ {
size_type d = (std::min) (n, it2_end_ - it2_);
it2_ += d;
n -= d;
if (n > 0 || (end_ == 0 && it2_ == it2_end_)) {
BOOST_UBLAS_CHECK (end_ == 0, external_logic ());
d = (std::min) (n, it1_end_ - it1_begin_);
it1_ = it1_begin_ + d;
n -= d;
current_ = 0;
}
}
BOOST_UBLAS_CHECK (n == 0, external_logic ());
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -= (difference_type n) {
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
if (current_ == 0) {
size_type d = (std::min) (n, it1_ - it1_begin_);
it1_ -= d;
n -= d;
if (n > 0) {
BOOST_UBLAS_CHECK (end_ == 1, external_logic ());
d = (std::min) (n, it2_end_ - it2_begin_);
it2_ = it2_end_ - d;
n -= d;
current_ = 1;
}
} else /* if (current_ == 1) */ {
size_type d = (std::min) (n, it2_ - it2_begin_);
it2_ -= d;
n -= d;
if (n > 0) {
BOOST_UBLAS_CHECK (end_ == 0, external_logic ());
d = (std::min) (n, it1_end_ - it1_begin_);
it1_ = it1_end_ - d;
n -= d;
current_ = 0;
}
}
BOOST_UBLAS_CHECK (n == 0, external_logic ());
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
BOOST_UBLAS_CHECK (it.current_ == 0 || it.current_ == 1, internal_logic ());
BOOST_UBLAS_CHECK (/* begin_ == it.begin_ && */ end_ == it.end_, internal_logic ());
if (current_ == 0 && it.current_ == 0) {
return it1_ - it.it1_;
} else if (current_ == 0 && it.current_ == 1) {
if (end_ == 1 && it.end_ == 1) {
return (it1_ - it.it1_end_) + (it.it2_begin_ - it.it2_);
} else /* if (end_ == 0 && it.end_ == 0) */ {
return (it1_ - it.it1_begin_) + (it.it2_end_ - it.it2_);
}
} else if (current_ == 1 && it.current_ == 0) {
if (end_ == 1 && it.end_ == 1) {
return (it2_ - it.it2_begin_) + (it.it1_end_ - it.it1_);
} else /* if (end_ == 0 && it.end_ == 0) */ {
return (it2_ - it.it2_end_) + (it.it1_begin_ - it.it1_);
}
} else /* if (current_ == 1 && it.current_ == 1) */ {
return it2_ - it.it2_;
}
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
if (current_ == 0) {
BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ());
if (triangular_type::other (index1 (), index2 ()))
return *it1_;
else
return type_traits<value_type>::conj (*it1_);
} else /* if (current_ == 1) */ {
BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ());
if (triangular_type::other (index1 (), index2 ()))
return *it2_;
else
return type_traits<value_type>::conj (*it2_);
}
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 begin () const {
return (*this) ().find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 end () const {
return (*this) ().find2 (1, index1 (), (*this) ().size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 cend () const {
return end ();
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rbegin () const {
return const_reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rend () const {
return const_reverse_iterator2 (begin ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 crend () const {
return rend ();
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
if (current_ == 0) {
BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ());
return it1_.index1 ();
} else /* if (current_ == 1) */ {
BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ());
return it2_.index2 ();
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
if (current_ == 0) {
BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ());
return it1_.index2 ();
} else /* if (current_ == 1) */ {
BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ());
return it2_.index1 ();
}
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator1 &operator = (const const_iterator1 &it) {
container_const_reference<self_type>::assign (&it ());
begin_ = it.begin_;
end_ = it.end_;
current_ = it.current_;
it1_begin_ = it.it1_begin_;
it1_end_ = it.it1_end_;
it1_ = it.it1_;
it2_begin_ = it.it2_begin_;
it2_end_ = it.it2_end_;
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
BOOST_UBLAS_CHECK (it.current_ == 0 || it.current_ == 1, internal_logic ());
BOOST_UBLAS_CHECK (/* begin_ == it.begin_ && */ end_ == it.end_, internal_logic ());
return (current_ == 0 && it.current_ == 0 && it1_ == it.it1_) ||
(current_ == 1 && it.current_ == 1 && it2_ == it.it2_);
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it - *this > 0;
}
private:
int begin_;
int end_;
int current_;
const_subiterator1_type it1_begin_;
const_subiterator1_type it1_end_;
const_subiterator1_type it1_;
const_subiterator2_type it2_begin_;
const_subiterator2_type it2_end_;
const_subiterator2_type it2_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator1 begin1 () const {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator1 cbegin1 () const {
return begin1 ();
}
BOOST_UBLAS_INLINE
const_iterator1 end1 () const {
return find1 (0, size1 (), 0);
}
BOOST_UBLAS_INLINE
const_iterator1 cend1 () const {
return end1 ();
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator1:
public container_reference<hermitian_adaptor>,
public random_access_iterator_base<typename iterator_restrict_traits<
typename subiterator1_type::iterator_category, packed_random_access_iterator_tag>::iterator_category,
iterator1, value_type> {
public:
typedef typename subiterator1_type::value_type value_type;
typedef typename subiterator1_type::difference_type difference_type;
typedef typename subiterator1_type::reference reference;
typedef typename subiterator1_type::pointer pointer;
typedef iterator2 dual_iterator_type;
typedef reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator1 ():
container_reference<self_type> (), it1_ () {}
BOOST_UBLAS_INLINE
iterator1 (self_type &m, const subiterator1_type &it1):
container_reference<self_type> (m), it1_ (it1) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator1 &operator ++ () {
++ it1_;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -- () {
-- it1_;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator += (difference_type n) {
it1_ += n;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -= (difference_type n) {
it1_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it1_ - it.it1_;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
return *it1_;
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 begin () const {
return (*this) ().find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 end () const {
return (*this) ().find2 (1, index1 (), (*this) ().size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rbegin () const {
return reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rend () const {
return reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it1_.index1 ();
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it1_.index2 ();
}
// Assignment
BOOST_UBLAS_INLINE
iterator1 &operator = (const iterator1 &it) {
container_reference<self_type>::assign (&it ());
it1_ = it.it1_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it1_ == it.it1_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it1_ < it.it1_;
}
private:
subiterator1_type it1_;
friend class const_iterator1;
};
#endif
BOOST_UBLAS_INLINE
iterator1 begin1 () {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator1 end1 () {
return find1 (0, size1 (), 0);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator2:
public container_const_reference<hermitian_adaptor>,
public random_access_iterator_base<typename iterator_restrict_traits<
typename const_subiterator2_type::iterator_category, dense_random_access_iterator_tag>::iterator_category,
const_iterator2, value_type> {
public:
typedef typename const_subiterator2_type::value_type value_type;
typedef typename const_subiterator2_type::difference_type difference_type;
// FIXME no better way to not return the address of a temporary?
// typedef typename const_subiterator2_type::reference reference;
typedef typename const_subiterator2_type::value_type reference;
typedef typename const_subiterator2_type::pointer pointer;
typedef const_iterator1 dual_iterator_type;
typedef const_reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator2 ():
container_const_reference<self_type> (),
begin_ (-1), end_ (-1), current_ (-1),
it1_begin_ (), it1_end_ (), it1_ (),
it2_begin_ (), it2_end_ (), it2_ () {}
BOOST_UBLAS_INLINE
const_iterator2 (const self_type &m, int begin, int end,
const const_subiterator1_type &it1_begin, const const_subiterator1_type &it1_end,
const const_subiterator2_type &it2_begin, const const_subiterator2_type &it2_end):
container_const_reference<self_type> (m),
begin_ (begin), end_ (end), current_ (begin),
it1_begin_ (it1_begin), it1_end_ (it1_end), it1_ (it1_begin_),
it2_begin_ (it2_begin), it2_end_ (it2_end), it2_ (it2_begin_) {
if (current_ == 0 && it1_ == it1_end_)
current_ = 1;
if (current_ == 1 && it2_ == it2_end_)
current_ = 0;
if ((current_ == 0 && it1_ == it1_end_) ||
(current_ == 1 && it2_ == it2_end_))
current_ = end_;
BOOST_UBLAS_CHECK (current_ == end_ ||
(current_ == 0 && it1_ != it1_end_) ||
(current_ == 1 && it2_ != it2_end_), internal_logic ());
}
// FIXME cannot compiler
// iterator2 does not have these members!
BOOST_UBLAS_INLINE
const_iterator2 (const iterator2 &it):
container_const_reference<self_type> (it ()),
begin_ (it.begin_), end_ (it.end_), current_ (it.current_),
it1_begin_ (it.it1_begin_), it1_end_ (it.it1_end_), it1_ (it.it1_),
it2_begin_ (it.it2_begin_), it2_end_ (it.it2_end_), it2_ (it.it2_) {
BOOST_UBLAS_CHECK (current_ == end_ ||
(current_ == 0 && it1_ != it1_end_) ||
(current_ == 1 && it2_ != it2_end_), internal_logic ());
}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator2 &operator ++ () {
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
if (current_ == 0) {
BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ());
++ it1_;
if (it1_ == it1_end_ && end_ == 1) {
it2_ = it2_begin_;
current_ = 1;
}
} else /* if (current_ == 1) */ {
BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ());
++ it2_;
if (it2_ == it2_end_ && end_ == 0) {
it1_ = it1_begin_;
current_ = 0;
}
}
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -- () {
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
if (current_ == 0) {
if (it1_ == it1_begin_ && begin_ == 1) {
it2_ = it2_end_;
BOOST_UBLAS_CHECK (it2_ != it2_begin_, internal_logic ());
-- it2_;
current_ = 1;
} else {
-- it1_;
}
} else /* if (current_ == 1) */ {
if (it2_ == it2_begin_ && begin_ == 0) {
it1_ = it1_end_;
BOOST_UBLAS_CHECK (it1_ != it1_begin_, internal_logic ());
-- it1_;
current_ = 0;
} else {
-- it2_;
}
}
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator += (difference_type n) {
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
if (current_ == 0) {
size_type d = (std::min) (n, it1_end_ - it1_);
it1_ += d;
n -= d;
if (n > 0 || (end_ == 1 && it1_ == it1_end_)) {
BOOST_UBLAS_CHECK (end_ == 1, external_logic ());
d = (std::min) (n, it2_end_ - it2_begin_);
it2_ = it2_begin_ + d;
n -= d;
current_ = 1;
}
} else /* if (current_ == 1) */ {
size_type d = (std::min) (n, it2_end_ - it2_);
it2_ += d;
n -= d;
if (n > 0 || (end_ == 0 && it2_ == it2_end_)) {
BOOST_UBLAS_CHECK (end_ == 0, external_logic ());
d = (std::min) (n, it1_end_ - it1_begin_);
it1_ = it1_begin_ + d;
n -= d;
current_ = 0;
}
}
BOOST_UBLAS_CHECK (n == 0, external_logic ());
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -= (difference_type n) {
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
if (current_ == 0) {
size_type d = (std::min) (n, it1_ - it1_begin_);
it1_ -= d;
n -= d;
if (n > 0) {
BOOST_UBLAS_CHECK (end_ == 1, external_logic ());
d = (std::min) (n, it2_end_ - it2_begin_);
it2_ = it2_end_ - d;
n -= d;
current_ = 1;
}
} else /* if (current_ == 1) */ {
size_type d = (std::min) (n, it2_ - it2_begin_);
it2_ -= d;
n -= d;
if (n > 0) {
BOOST_UBLAS_CHECK (end_ == 0, external_logic ());
d = (std::min) (n, it1_end_ - it1_begin_);
it1_ = it1_end_ - d;
n -= d;
current_ = 0;
}
}
BOOST_UBLAS_CHECK (n == 0, external_logic ());
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
BOOST_UBLAS_CHECK (it.current_ == 0 || it.current_ == 1, internal_logic ());
BOOST_UBLAS_CHECK (/* begin_ == it.begin_ && */ end_ == it.end_, internal_logic ());
if (current_ == 0 && it.current_ == 0) {
return it1_ - it.it1_;
} else if (current_ == 0 && it.current_ == 1) {
if (end_ == 1 && it.end_ == 1) {
return (it1_ - it.it1_end_) + (it.it2_begin_ - it.it2_);
} else /* if (end_ == 0 && it.end_ == 0) */ {
return (it1_ - it.it1_begin_) + (it.it2_end_ - it.it2_);
}
} else if (current_ == 1 && it.current_ == 0) {
if (end_ == 1 && it.end_ == 1) {
return (it2_ - it.it2_begin_) + (it.it1_end_ - it.it1_);
} else /* if (end_ == 0 && it.end_ == 0) */ {
return (it2_ - it.it2_end_) + (it.it1_begin_ - it.it1_);
}
} else /* if (current_ == 1 && it.current_ == 1) */ {
return it2_ - it.it2_;
}
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
if (current_ == 0) {
BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ());
if (triangular_type::other (index1 (), index2 ()))
return *it1_;
else
return type_traits<value_type>::conj (*it1_);
} else /* if (current_ == 1) */ {
BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ());
if (triangular_type::other (index1 (), index2 ()))
return *it2_;
else
return type_traits<value_type>::conj (*it2_);
}
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 begin () const {
return (*this) ().find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 end () const {
return (*this) ().find1 (1, (*this) ().size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 cend () const {
return end ();
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rbegin () const {
return const_reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rend () const {
return const_reverse_iterator1 (begin ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 crend () const {
return end ();
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
if (current_ == 0) {
BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ());
return it1_.index2 ();
} else /* if (current_ == 1) */ {
BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ());
return it2_.index1 ();
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
if (current_ == 0) {
BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ());
return it1_.index1 ();
} else /* if (current_ == 1) */ {
BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ());
return it2_.index2 ();
}
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator2 &operator = (const const_iterator2 &it) {
container_const_reference<self_type>::assign (&it ());
begin_ = it.begin_;
end_ = it.end_;
current_ = it.current_;
it1_begin_ = it.it1_begin_;
it1_end_ = it.it1_end_;
it1_ = it.it1_;
it2_begin_ = it.it2_begin_;
it2_end_ = it.it2_end_;
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());
BOOST_UBLAS_CHECK (it.current_ == 0 || it.current_ == 1, internal_logic ());
BOOST_UBLAS_CHECK (/* begin_ == it.begin_ && */ end_ == it.end_, internal_logic ());
return (current_ == 0 && it.current_ == 0 && it1_ == it.it1_) ||
(current_ == 1 && it.current_ == 1 && it2_ == it.it2_);
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it - *this > 0;
}
private:
int begin_;
int end_;
int current_;
const_subiterator1_type it1_begin_;
const_subiterator1_type it1_end_;
const_subiterator1_type it1_;
const_subiterator2_type it2_begin_;
const_subiterator2_type it2_end_;
const_subiterator2_type it2_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator2 begin2 () const {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator2 cbegin2 () const {
return begin2 ();
}
BOOST_UBLAS_INLINE
const_iterator2 end2 () const {
return find2 (0, 0, size2 ());
}
BOOST_UBLAS_INLINE
const_iterator2 cend2 () const {
return end2 ();
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator2:
public container_reference<hermitian_adaptor>,
public random_access_iterator_base<typename iterator_restrict_traits<
typename subiterator2_type::iterator_category, packed_random_access_iterator_tag>::iterator_category,
iterator2, value_type> {
public:
typedef typename subiterator2_type::value_type value_type;
typedef typename subiterator2_type::difference_type difference_type;
typedef typename subiterator2_type::reference reference;
typedef typename subiterator2_type::pointer pointer;
typedef iterator1 dual_iterator_type;
typedef reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator2 ():
container_reference<self_type> (), it2_ () {}
BOOST_UBLAS_INLINE
iterator2 (self_type &m, const subiterator2_type &it2):
container_reference<self_type> (m), it2_ (it2) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator2 &operator ++ () {
++ it2_;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -- () {
-- it2_;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator += (difference_type n) {
it2_ += n;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -= (difference_type n) {
it2_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it2_ - it.it2_;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
return *it2_;
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 begin () const {
return (*this) ().find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 end () const {
return (*this) ().find1 (1, (*this) ().size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rbegin () const {
return reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rend () const {
return reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it2_.index1 ();
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it2_.index2 ();
}
// Assignment
BOOST_UBLAS_INLINE
iterator2 &operator = (const iterator2 &it) {
container_reference<self_type>::assign (&it ());
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it2_ == it.it2_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it2_ < it.it2_;
}
private:
subiterator2_type it2_;
friend class const_iterator2;
};
#endif
BOOST_UBLAS_INLINE
iterator2 begin2 () {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator2 end2 () {
return find2 (0, 0, size2 ());
}
// Reverse iterators
BOOST_UBLAS_INLINE
const_reverse_iterator1 rbegin1 () const {
return const_reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 crbegin1 () const {
return rbegin1();
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 rend1 () const {
return const_reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 crend1 () const {
return rend1 ();
}
BOOST_UBLAS_INLINE
reverse_iterator1 rbegin1 () {
return reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rend1 () {
return reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rbegin2 () const {
return const_reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 crbegin2 () const {
return rbegin2 ();
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rend2 () const {
return const_reverse_iterator2 (begin2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 crend2 () const {
return rend2 ();
}
BOOST_UBLAS_INLINE
reverse_iterator2 rbegin2 () {
return reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rend2 () {
return reverse_iterator2 (begin2 ());
}
private:
matrix_closure_type data_;
static value_type conj_;
};
template<class M, class TRI>
typename hermitian_adaptor<M, TRI>::value_type hermitian_adaptor<M, TRI>::conj_;
// Specialization for temporary_traits
template <class M, class TRI>
struct vector_temporary_traits< hermitian_adaptor<M, TRI> >
: vector_temporary_traits< M > {} ;
template <class M, class TRI>
struct vector_temporary_traits< const hermitian_adaptor<M, TRI> >
: vector_temporary_traits< M > {} ;
template <class M, class TRI>
struct matrix_temporary_traits< hermitian_adaptor<M, TRI> >
: matrix_temporary_traits< M > {} ;
template <class M, class TRI>
struct matrix_temporary_traits< const hermitian_adaptor<M, TRI> >
: matrix_temporary_traits< M > {} ;
}}}
#endif