You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
214 lines
6.0 KiB
214 lines
6.0 KiB
// (C) Copyright John Maddock 2005. |
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. (See accompanying file |
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
#ifndef BOOST_MATH_COMPLEX_ATANH_INCLUDED |
|
#define BOOST_MATH_COMPLEX_ATANH_INCLUDED |
|
|
|
#ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED |
|
# include <boost/math/complex/details.hpp> |
|
#endif |
|
#ifndef BOOST_MATH_LOG1P_INCLUDED |
|
# include <boost/math/special_functions/log1p.hpp> |
|
#endif |
|
#include <boost/assert.hpp> |
|
|
|
#ifdef BOOST_NO_STDC_NAMESPACE |
|
namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; } |
|
#endif |
|
|
|
namespace boost{ namespace math{ |
|
|
|
template<class T> |
|
std::complex<T> atanh(const std::complex<T>& z) |
|
{ |
|
// |
|
// References: |
|
// |
|
// Eric W. Weisstein. "Inverse Hyperbolic Tangent." |
|
// From MathWorld--A Wolfram Web Resource. |
|
// http://mathworld.wolfram.com/InverseHyperbolicTangent.html |
|
// |
|
// Also: The Wolfram Functions Site, |
|
// http://functions.wolfram.com/ElementaryFunctions/ArcTanh/ |
|
// |
|
// Also "Abramowitz and Stegun. Handbook of Mathematical Functions." |
|
// at : http://jove.prohosting.com/~skripty/toc.htm |
|
// |
|
// See also: https://svn.boost.org/trac/boost/ticket/7291 |
|
// |
|
|
|
static const T pi = boost::math::constants::pi<T>(); |
|
static const T half_pi = pi / 2; |
|
static const T one = static_cast<T>(1.0L); |
|
static const T two = static_cast<T>(2.0L); |
|
static const T four = static_cast<T>(4.0L); |
|
static const T zero = static_cast<T>(0); |
|
static const T log_two = boost::math::constants::ln_two<T>(); |
|
|
|
#ifdef BOOST_MSVC |
|
#pragma warning(push) |
|
#pragma warning(disable:4127) |
|
#endif |
|
|
|
T x = std::fabs(z.real()); |
|
T y = std::fabs(z.imag()); |
|
|
|
T real, imag; // our results |
|
|
|
T safe_upper = detail::safe_max(two); |
|
T safe_lower = detail::safe_min(static_cast<T>(2)); |
|
|
|
// |
|
// Begin by handling the special cases specified in C99: |
|
// |
|
if((boost::math::isnan)(x)) |
|
{ |
|
if((boost::math::isnan)(y)) |
|
return std::complex<T>(x, x); |
|
else if((boost::math::isinf)(y)) |
|
return std::complex<T>(0, ((boost::math::signbit)(z.imag()) ? -half_pi : half_pi)); |
|
else |
|
return std::complex<T>(x, x); |
|
} |
|
else if((boost::math::isnan)(y)) |
|
{ |
|
if(x == 0) |
|
return std::complex<T>(x, y); |
|
if((boost::math::isinf)(x)) |
|
return std::complex<T>(0, y); |
|
else |
|
return std::complex<T>(y, y); |
|
} |
|
else if((x > safe_lower) && (x < safe_upper) && (y > safe_lower) && (y < safe_upper)) |
|
{ |
|
|
|
T yy = y*y; |
|
T mxm1 = one - x; |
|
/// |
|
// The real part is given by: |
|
// |
|
// real(atanh(z)) == log1p(4*x / ((x-1)*(x-1) + y^2)) |
|
// |
|
real = boost::math::log1p(four * x / (mxm1*mxm1 + yy)); |
|
real /= four; |
|
if((boost::math::signbit)(z.real())) |
|
real = (boost::math::changesign)(real); |
|
|
|
imag = std::atan2((y * two), (mxm1*(one+x) - yy)); |
|
imag /= two; |
|
if(z.imag() < 0) |
|
imag = (boost::math::changesign)(imag); |
|
} |
|
else |
|
{ |
|
// |
|
// This section handles exception cases that would normally cause |
|
// underflow or overflow in the main formulas. |
|
// |
|
// Begin by working out the real part, we need to approximate |
|
// real = boost::math::log1p(4x / ((x-1)^2 + y^2)) |
|
// without either overflow or underflow in the squared terms. |
|
// |
|
T mxm1 = one - x; |
|
if(x >= safe_upper) |
|
{ |
|
// x-1 = x to machine precision: |
|
if((boost::math::isinf)(x) || (boost::math::isinf)(y)) |
|
{ |
|
real = 0; |
|
} |
|
else if(y >= safe_upper) |
|
{ |
|
// Big x and y: divide through by x*y: |
|
real = boost::math::log1p((four/y) / (x/y + y/x)); |
|
} |
|
else if(y > one) |
|
{ |
|
// Big x: divide through by x: |
|
real = boost::math::log1p(four / (x + y*y/x)); |
|
} |
|
else |
|
{ |
|
// Big x small y, as above but neglect y^2/x: |
|
real = boost::math::log1p(four/x); |
|
} |
|
} |
|
else if(y >= safe_upper) |
|
{ |
|
if(x > one) |
|
{ |
|
// Big y, medium x, divide through by y: |
|
real = boost::math::log1p((four*x/y) / (y + mxm1*mxm1/y)); |
|
} |
|
else |
|
{ |
|
// Small or medium x, large y: |
|
real = four*x/y/y; |
|
} |
|
} |
|
else if (x != one) |
|
{ |
|
// y is small, calculate divisor carefully: |
|
T div = mxm1*mxm1; |
|
if(y > safe_lower) |
|
div += y*y; |
|
real = boost::math::log1p(four*x/div); |
|
} |
|
else |
|
real = boost::math::changesign(two * (std::log(y) - log_two)); |
|
|
|
real /= four; |
|
if((boost::math::signbit)(z.real())) |
|
real = (boost::math::changesign)(real); |
|
|
|
// |
|
// Now handle imaginary part, this is much easier, |
|
// if x or y are large, then the formula: |
|
// atan2(2y, (1-x)*(1+x) - y^2) |
|
// evaluates to +-(PI - theta) where theta is negligible compared to PI. |
|
// |
|
if((x >= safe_upper) || (y >= safe_upper)) |
|
{ |
|
imag = pi; |
|
} |
|
else if(x <= safe_lower) |
|
{ |
|
// |
|
// If both x and y are small then atan(2y), |
|
// otherwise just x^2 is negligible in the divisor: |
|
// |
|
if(y <= safe_lower) |
|
imag = std::atan2(two*y, one); |
|
else |
|
{ |
|
if((y == zero) && (x == zero)) |
|
imag = 0; |
|
else |
|
imag = std::atan2(two*y, one - y*y); |
|
} |
|
} |
|
else |
|
{ |
|
// |
|
// y^2 is negligible: |
|
// |
|
if((y == zero) && (x == one)) |
|
imag = 0; |
|
else |
|
imag = std::atan2(two*y, mxm1*(one+x)); |
|
} |
|
imag /= two; |
|
if((boost::math::signbit)(z.imag())) |
|
imag = (boost::math::changesign)(imag); |
|
} |
|
return std::complex<T>(real, imag); |
|
#ifdef BOOST_MSVC |
|
#pragma warning(pop) |
|
#endif |
|
} |
|
|
|
} } // namespaces |
|
|
|
#endif // BOOST_MATH_COMPLEX_ATANH_INCLUDED
|
|
|