1
0
mirror of https://github.com/PurpleI2P/Boost-for-Android-Prebuilt synced 2025-01-08 22:08:01 +00:00
Boost-for-Android-Prebuilt/boost-1_72_0/include/boost/graph/reverse_graph.hpp
r4sas 93de5720b8
add boost 1.72.0
Signed-off-by: r4sas <r4sas@i2pmail.org>
2020-02-29 22:43:48 +00:00

528 lines
20 KiB
C++

// (C) Copyright David Abrahams 2000.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef REVERSE_GRAPH_DWA092300_H_
# define REVERSE_GRAPH_DWA092300_H_
#include <boost/graph/adjacency_iterator.hpp>
#include <boost/graph/properties.hpp>
#include <boost/iterator/transform_iterator.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/type_traits.hpp>
#include <boost/mpl/if.hpp>
namespace boost {
struct reverse_graph_tag { };
namespace detail {
template <typename EdgeDesc>
class reverse_graph_edge_descriptor {
public:
EdgeDesc underlying_descx; // Odd name is because this needs to be public but shouldn't be exposed to users anymore
private:
typedef EdgeDesc base_descriptor_type;
public:
explicit reverse_graph_edge_descriptor(const EdgeDesc& underlying_descx = EdgeDesc())
: underlying_descx(underlying_descx) {}
friend bool operator==(const reverse_graph_edge_descriptor& a, const reverse_graph_edge_descriptor& b) {
return a.underlying_descx == b.underlying_descx;
}
friend bool operator!=(const reverse_graph_edge_descriptor& a, const reverse_graph_edge_descriptor& b) {
return a.underlying_descx != b.underlying_descx;
}
friend bool operator<(const reverse_graph_edge_descriptor& a, const reverse_graph_edge_descriptor& b) {
return a.underlying_descx < b.underlying_descx;
}
friend bool operator>(const reverse_graph_edge_descriptor& a, const reverse_graph_edge_descriptor& b) {
return a.underlying_descx > b.underlying_descx;
}
friend bool operator<=(const reverse_graph_edge_descriptor& a, const reverse_graph_edge_descriptor& b) {
return a.underlying_descx <= b.underlying_descx;
}
friend bool operator>=(const reverse_graph_edge_descriptor& a, const reverse_graph_edge_descriptor& b) {
return a.underlying_descx >= b.underlying_descx;
}
};
template <typename EdgeDesc>
struct reverse_graph_edge_descriptor_maker {
typedef reverse_graph_edge_descriptor<EdgeDesc> result_type;
reverse_graph_edge_descriptor<EdgeDesc> operator()(const EdgeDesc& ed) const {
return reverse_graph_edge_descriptor<EdgeDesc>(ed);
}
};
template <typename EdgeDesc, typename Iter>
std::pair<transform_iterator<reverse_graph_edge_descriptor_maker<EdgeDesc>, Iter>,
transform_iterator<reverse_graph_edge_descriptor_maker<EdgeDesc>, Iter> >
reverse_edge_iter_pair(const std::pair<Iter, Iter>& ip) {
return std::make_pair(make_transform_iterator(ip.first, reverse_graph_edge_descriptor_maker<EdgeDesc>()),
make_transform_iterator(ip.second, reverse_graph_edge_descriptor_maker<EdgeDesc>()));
}
// Get the underlying descriptor from a vertex or edge descriptor
template <typename Desc>
struct get_underlying_descriptor_from_reverse_descriptor {
typedef Desc type;
static Desc convert(const Desc& d) {return d;}
};
template <typename Desc>
struct get_underlying_descriptor_from_reverse_descriptor<reverse_graph_edge_descriptor<Desc> > {
typedef Desc type;
static Desc convert(const reverse_graph_edge_descriptor<Desc>& d) {return d.underlying_descx;}
};
template <bool isEdgeList> struct choose_rev_edge_iter { };
template <> struct choose_rev_edge_iter<true> {
template <class G> struct bind_ {
typedef transform_iterator<reverse_graph_edge_descriptor_maker<typename graph_traits<G>::edge_descriptor>, typename graph_traits<G>::edge_iterator> type;
};
};
template <> struct choose_rev_edge_iter<false> {
template <class G> struct bind_ {
typedef void type;
};
};
} // namespace detail
template <class BidirectionalGraph, class GraphRef = const BidirectionalGraph&>
class reverse_graph {
typedef reverse_graph<BidirectionalGraph, GraphRef> Self;
typedef graph_traits<BidirectionalGraph> Traits;
public:
typedef BidirectionalGraph base_type;
typedef GraphRef base_ref_type;
// Constructor
reverse_graph(GraphRef g) : m_g(g) {}
// Conversion from reverse_graph on non-const reference to one on const reference
reverse_graph(const reverse_graph<BidirectionalGraph, BidirectionalGraph&>& o): m_g(o.m_g) {}
// Graph requirements
typedef typename Traits::vertex_descriptor vertex_descriptor;
typedef detail::reverse_graph_edge_descriptor<typename Traits::edge_descriptor> edge_descriptor;
typedef typename Traits::directed_category directed_category;
typedef typename Traits::edge_parallel_category edge_parallel_category;
typedef typename Traits::traversal_category traversal_category;
// IncidenceGraph requirements
typedef transform_iterator<detail::reverse_graph_edge_descriptor_maker<typename Traits::edge_descriptor>, typename Traits::in_edge_iterator> out_edge_iterator;
typedef typename Traits::degree_size_type degree_size_type;
// BidirectionalGraph requirements
typedef transform_iterator<detail::reverse_graph_edge_descriptor_maker<typename Traits::edge_descriptor>, typename Traits::out_edge_iterator> in_edge_iterator;
// AdjacencyGraph requirements
typedef typename adjacency_iterator_generator<Self, vertex_descriptor, out_edge_iterator>::type adjacency_iterator;
// VertexListGraph requirements
typedef typename Traits::vertex_iterator vertex_iterator;
// EdgeListGraph requirements
enum { is_edge_list = is_convertible<traversal_category,
edge_list_graph_tag>::value };
typedef detail::choose_rev_edge_iter<is_edge_list> ChooseEdgeIter;
typedef typename ChooseEdgeIter::
template bind_<BidirectionalGraph>::type edge_iterator;
typedef typename Traits::vertices_size_type vertices_size_type;
typedef typename Traits::edges_size_type edges_size_type;
typedef reverse_graph_tag graph_tag;
#ifndef BOOST_GRAPH_NO_BUNDLED_PROPERTIES
// Bundled properties support
template<typename Descriptor>
typename graph::detail::bundled_result<
BidirectionalGraph,
typename detail::get_underlying_descriptor_from_reverse_descriptor<Descriptor>::type
>::type&
operator[](Descriptor x)
{ return m_g[detail::get_underlying_descriptor_from_reverse_descriptor<Descriptor>::convert(x)]; }
template<typename Descriptor>
typename graph::detail::bundled_result<
BidirectionalGraph,
typename detail::get_underlying_descriptor_from_reverse_descriptor<Descriptor>::type
>::type const&
operator[](Descriptor x) const
{ return m_g[detail::get_underlying_descriptor_from_reverse_descriptor<Descriptor>::convert(x)]; }
#endif // BOOST_GRAPH_NO_BUNDLED_PROPERTIES
static vertex_descriptor null_vertex()
{ return Traits::null_vertex(); }
// would be private, but template friends aren't portable enough.
// private:
GraphRef m_g;
};
// These are separate so they are not instantiated unless used (see bug 1021)
template <class BidirectionalGraph, class GraphRef>
struct vertex_property_type<reverse_graph<BidirectionalGraph, GraphRef> > {
typedef typename boost::vertex_property_type<BidirectionalGraph>::type type;
};
template <class BidirectionalGraph, class GraphRef>
struct edge_property_type<reverse_graph<BidirectionalGraph, GraphRef> > {
typedef typename boost::edge_property_type<BidirectionalGraph>::type type;
};
template <class BidirectionalGraph, class GraphRef>
struct graph_property_type<reverse_graph<BidirectionalGraph, GraphRef> > {
typedef typename boost::graph_property_type<BidirectionalGraph>::type type;
};
#ifndef BOOST_GRAPH_NO_BUNDLED_PROPERTIES
template<typename Graph, typename GraphRef>
struct vertex_bundle_type<reverse_graph<Graph, GraphRef> >
: vertex_bundle_type<Graph> { };
template<typename Graph, typename GraphRef>
struct edge_bundle_type<reverse_graph<Graph, GraphRef> >
: edge_bundle_type<Graph> { };
template<typename Graph, typename GraphRef>
struct graph_bundle_type<reverse_graph<Graph, GraphRef> >
: graph_bundle_type<Graph> { };
#endif // BOOST_GRAPH_NO_BUNDLED_PROPERTIES
template <class BidirectionalGraph>
inline reverse_graph<BidirectionalGraph>
make_reverse_graph(const BidirectionalGraph& g)
{
return reverse_graph<BidirectionalGraph>(g);
}
template <class BidirectionalGraph>
inline reverse_graph<BidirectionalGraph, BidirectionalGraph&>
make_reverse_graph(BidirectionalGraph& g)
{
return reverse_graph<BidirectionalGraph, BidirectionalGraph&>(g);
}
template <class BidirectionalGraph, class GRef>
std::pair<typename reverse_graph<BidirectionalGraph>::vertex_iterator,
typename reverse_graph<BidirectionalGraph>::vertex_iterator>
vertices(const reverse_graph<BidirectionalGraph,GRef>& g)
{
return vertices(g.m_g);
}
template <class BidirectionalGraph, class GRef>
std::pair<typename reverse_graph<BidirectionalGraph>::edge_iterator,
typename reverse_graph<BidirectionalGraph>::edge_iterator>
edges(const reverse_graph<BidirectionalGraph,GRef>& g)
{
return detail::reverse_edge_iter_pair<typename graph_traits<BidirectionalGraph>::edge_descriptor>(edges(g.m_g));
}
template <class BidirectionalGraph, class GRef>
inline std::pair<typename reverse_graph<BidirectionalGraph>::out_edge_iterator,
typename reverse_graph<BidirectionalGraph>::out_edge_iterator>
out_edges(const typename graph_traits<BidirectionalGraph>::vertex_descriptor u,
const reverse_graph<BidirectionalGraph,GRef>& g)
{
return detail::reverse_edge_iter_pair<typename graph_traits<BidirectionalGraph>::edge_descriptor>(in_edges(u, g.m_g));
}
template <class BidirectionalGraph, class GRef>
inline typename graph_traits<BidirectionalGraph>::vertices_size_type
num_vertices(const reverse_graph<BidirectionalGraph,GRef>& g)
{
return num_vertices(g.m_g);
}
template <class BidirectionalGraph, class GRef>
inline typename reverse_graph<BidirectionalGraph>::edges_size_type
num_edges(const reverse_graph<BidirectionalGraph,GRef>& g)
{
return num_edges(g.m_g);
}
template <class BidirectionalGraph, class GRef>
inline typename graph_traits<BidirectionalGraph>::degree_size_type
out_degree(const typename graph_traits<BidirectionalGraph>::vertex_descriptor u,
const reverse_graph<BidirectionalGraph,GRef>& g)
{
return in_degree(u, g.m_g);
}
template <class BidirectionalGraph, class GRef>
inline typename graph_traits<BidirectionalGraph>::vertex_descriptor
vertex(const typename graph_traits<BidirectionalGraph>::vertices_size_type v,
const reverse_graph<BidirectionalGraph,GRef>& g)
{
return vertex(v, g.m_g);
}
template <class BidirectionalGraph, class GRef>
inline std::pair< typename graph_traits<reverse_graph<BidirectionalGraph,GRef> >::edge_descriptor,
bool>
edge(const typename graph_traits<BidirectionalGraph>::vertex_descriptor u,
const typename graph_traits<BidirectionalGraph>::vertex_descriptor v,
const reverse_graph<BidirectionalGraph,GRef>& g)
{
typedef typename graph_traits<BidirectionalGraph>::edge_descriptor underlying_edge_descriptor;
std::pair<underlying_edge_descriptor, bool> e = edge(v, u, g.m_g);
return std::make_pair(detail::reverse_graph_edge_descriptor<underlying_edge_descriptor>(e.first), e.second);
}
template <class BidirectionalGraph, class GRef>
inline std::pair<typename reverse_graph<BidirectionalGraph>::in_edge_iterator,
typename reverse_graph<BidirectionalGraph>::in_edge_iterator>
in_edges(const typename graph_traits<BidirectionalGraph>::vertex_descriptor u,
const reverse_graph<BidirectionalGraph,GRef>& g)
{
return detail::reverse_edge_iter_pair<typename graph_traits<BidirectionalGraph>::edge_descriptor>(out_edges(u, g.m_g));
}
template <class BidirectionalGraph, class GRef>
inline std::pair<typename reverse_graph<BidirectionalGraph,GRef>::adjacency_iterator,
typename reverse_graph<BidirectionalGraph,GRef>::adjacency_iterator>
adjacent_vertices(typename graph_traits<BidirectionalGraph>::vertex_descriptor u,
const reverse_graph<BidirectionalGraph,GRef>& g)
{
typedef reverse_graph<BidirectionalGraph,GRef> Graph;
typename graph_traits<Graph>::out_edge_iterator first, last;
boost::tie(first, last) = out_edges(u, g);
typedef typename graph_traits<Graph>::adjacency_iterator adjacency_iterator;
return std::make_pair(adjacency_iterator(first, const_cast<Graph*>(&g)),
adjacency_iterator(last, const_cast<Graph*>(&g)));
}
template <class BidirectionalGraph, class GRef>
inline typename graph_traits<BidirectionalGraph>::degree_size_type
in_degree(const typename graph_traits<BidirectionalGraph>::vertex_descriptor u,
const reverse_graph<BidirectionalGraph,GRef>& g)
{
return out_degree(u, g.m_g);
}
template <class Edge, class BidirectionalGraph, class GRef>
inline typename graph_traits<BidirectionalGraph>::vertex_descriptor
source(const detail::reverse_graph_edge_descriptor<Edge>& e, const reverse_graph<BidirectionalGraph,GRef>& g)
{
return target(e.underlying_descx, g.m_g);
}
template <class Edge, class BidirectionalGraph, class GRef>
inline typename graph_traits<BidirectionalGraph>::vertex_descriptor
target(const detail::reverse_graph_edge_descriptor<Edge>& e, const reverse_graph<BidirectionalGraph,GRef>& g)
{
return source(e.underlying_descx, g.m_g);
}
template <class BidirectionalGraph, class GRef>
inline typename graph_traits<BidirectionalGraph>::degree_size_type
degree(const typename graph_traits<BidirectionalGraph>::vertex_descriptor u,
const reverse_graph<BidirectionalGraph,GRef>& g)
{
return degree(u, g.m_g);
}
namespace detail {
template <typename PM>
struct reverse_graph_edge_property_map {
private:
PM underlying_pm;
public:
typedef reverse_graph_edge_descriptor<typename property_traits<PM>::key_type> key_type;
typedef typename property_traits<PM>::value_type value_type;
typedef typename property_traits<PM>::reference reference;
typedef typename property_traits<PM>::category category;
explicit reverse_graph_edge_property_map(const PM& pm): underlying_pm(pm) {}
friend reference
get(const reverse_graph_edge_property_map& m,
const key_type& e) {
return get(m.underlying_pm, e.underlying_descx);
}
friend void
put(const reverse_graph_edge_property_map& m,
const key_type& e,
const value_type& v) {
put(m.underlying_pm, e.underlying_descx, v);
}
reference operator[](const key_type& k) const {
return (this->underlying_pm)[k.underlying_descx];
}
};
} // namespace detail
template <class BidirGraph, class GRef, class Property>
struct property_map<reverse_graph<BidirGraph, GRef>, Property> {
typedef boost::is_same<typename detail::property_kind_from_graph<BidirGraph, Property>::type, edge_property_tag> is_edge_prop;
typedef boost::is_const<typename boost::remove_reference<GRef>::type> is_ref_const;
typedef typename boost::mpl::if_<
is_ref_const,
typename property_map<BidirGraph, Property>::const_type,
typename property_map<BidirGraph, Property>::type>::type
orig_type;
typedef typename property_map<BidirGraph, Property>::const_type orig_const_type;
typedef typename boost::mpl::if_<is_edge_prop, detail::reverse_graph_edge_property_map<orig_type>, orig_type>::type type;
typedef typename boost::mpl::if_<is_edge_prop, detail::reverse_graph_edge_property_map<orig_const_type>, orig_const_type>::type const_type;
};
template <class BidirGraph, class GRef, class Property>
struct property_map<const reverse_graph<BidirGraph, GRef>, Property> {
typedef boost::is_same<typename detail::property_kind_from_graph<BidirGraph, Property>::type, edge_property_tag> is_edge_prop;
typedef typename property_map<BidirGraph, Property>::const_type orig_const_type;
typedef typename boost::mpl::if_<is_edge_prop, detail::reverse_graph_edge_property_map<orig_const_type>, orig_const_type>::type const_type;
typedef const_type type;
};
template <class BidirGraph, class GRef, class Property>
typename disable_if<
is_same<Property, edge_underlying_t>,
typename property_map<reverse_graph<BidirGraph,GRef>, Property>::type>::type
get(Property p, reverse_graph<BidirGraph,GRef>& g)
{
return typename property_map<reverse_graph<BidirGraph,GRef>, Property>::type(get(p, g.m_g));
}
template <class BidirGraph, class GRef, class Property>
typename disable_if<
is_same<Property, edge_underlying_t>,
typename property_map<reverse_graph<BidirGraph,GRef>, Property>::const_type>::type
get(Property p, const reverse_graph<BidirGraph,GRef>& g)
{
const BidirGraph& gref = g.m_g; // in case GRef is non-const
return typename property_map<reverse_graph<BidirGraph,GRef>, Property>::const_type(get(p, gref));
}
template <class BidirectionalGraph, class GRef, class Property, class Key>
typename disable_if<
is_same<Property, edge_underlying_t>,
typename property_traits<
typename property_map<reverse_graph<BidirectionalGraph, GRef>, Property>::const_type
>::value_type>::type
get(Property p, const reverse_graph<BidirectionalGraph,GRef>& g, const Key& k)
{
return get(get(p, g), k);
}
template <class BidirectionalGraph, class GRef, class Property, class Key, class Value>
void
put(Property p, reverse_graph<BidirectionalGraph,GRef>& g, const Key& k,
const Value& val)
{
put(get(p, g), k, val);
}
// Get the underlying descriptor from a reverse_graph's wrapped edge descriptor
namespace detail {
template <class E>
struct underlying_edge_desc_map_type {
E operator[](const reverse_graph_edge_descriptor<E>& k) const {
return k.underlying_descx;
}
};
template <class E>
E
get(underlying_edge_desc_map_type<E> m,
const reverse_graph_edge_descriptor<E>& k)
{
return m[k];
}
}
template <class E>
struct property_traits<detail::underlying_edge_desc_map_type<E> > {
typedef detail::reverse_graph_edge_descriptor<E> key_type;
typedef E value_type;
typedef const E& reference;
typedef readable_property_map_tag category;
};
template <class Graph, class GRef>
struct property_map<reverse_graph<Graph, GRef>, edge_underlying_t> {
private:
typedef typename graph_traits<Graph>::edge_descriptor ed;
public:
typedef detail::underlying_edge_desc_map_type<ed> type;
typedef detail::underlying_edge_desc_map_type<ed> const_type;
};
template <typename T> struct is_reverse_graph: boost::mpl::false_ {};
template <typename G, typename R> struct is_reverse_graph<reverse_graph<G, R> >: boost::mpl::true_ {};
template <class G>
typename enable_if<is_reverse_graph<G>,
detail::underlying_edge_desc_map_type<typename graph_traits<typename G::base_type>::edge_descriptor> >::type
get(edge_underlying_t,
G&)
{
return detail::underlying_edge_desc_map_type<typename graph_traits<typename G::base_type>::edge_descriptor>();
}
template <class G>
typename enable_if<is_reverse_graph<G>, typename graph_traits<typename G::base_type>::edge_descriptor>::type
get(edge_underlying_t,
G&,
const typename graph_traits<G>::edge_descriptor& k)
{
return k.underlying_descx;
}
template <class G>
typename enable_if<is_reverse_graph<G>, detail::underlying_edge_desc_map_type<typename graph_traits<typename G::base_type>::edge_descriptor> >::type
get(edge_underlying_t,
const G&)
{
return detail::underlying_edge_desc_map_type<typename graph_traits<typename G::base_type>::edge_descriptor>();
}
template <class G>
typename enable_if<is_reverse_graph<G>, typename graph_traits<typename G::base_type>::edge_descriptor>::type
get(edge_underlying_t,
const G&,
const typename graph_traits<G>::edge_descriptor& k)
{
return k.underlying_descx;
}
// Access to wrapped graph's graph properties
template<typename BidirectionalGraph, typename GRef, typename Tag,
typename Value>
inline void
set_property(const reverse_graph<BidirectionalGraph,GRef>& g, Tag tag,
const Value& value)
{
set_property(g.m_g, tag, value);
}
template<typename BidirectionalGraph, typename GRef, typename Tag>
inline
typename boost::mpl::if_<
boost::is_const<typename boost::remove_reference<GRef>::type>,
const typename graph_property<BidirectionalGraph, Tag>::type&,
typename graph_property<BidirectionalGraph, Tag>::type& >::type
get_property(const reverse_graph<BidirectionalGraph,GRef>& g, Tag tag)
{
return get_property(g.m_g, tag);
}
} // namespace boost
#endif