Prebuilt Boost for Android
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

381 lines
13 KiB

/**
*
* Copyright (c) 2010 Matthias Walter (xammy@xammy.homelinux.net)
*
* Authors: Matthias Walter
*
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
*/
#ifndef BOOST_GRAPH_BIPARTITE_HPP
#define BOOST_GRAPH_BIPARTITE_HPP
#include <utility>
#include <vector>
#include <exception>
#include <boost/graph/properties.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/graph/one_bit_color_map.hpp>
#include <boost/bind.hpp>
namespace boost {
namespace detail {
/**
* The bipartite_visitor_error is thrown if an edge cannot be colored.
* The witnesses are the edges incident vertices.
*/
template <typename Vertex>
struct BOOST_SYMBOL_VISIBLE bipartite_visitor_error: std::exception
{
std::pair <Vertex, Vertex> witnesses;
bipartite_visitor_error (Vertex a, Vertex b) :
witnesses (a, b)
{
}
const char* what () const throw ()
{
return "Graph is not bipartite.";
}
};
/**
* Functor which colors edges to be non-monochromatic.
*/
template <typename PartitionMap>
struct bipartition_colorize
{
typedef on_tree_edge event_filter;
bipartition_colorize (PartitionMap partition_map) :
partition_map_ (partition_map)
{
}
template <typename Edge, typename Graph>
void operator() (Edge e, const Graph& g)
{
typedef typename graph_traits <Graph>::vertex_descriptor vertex_descriptor_t;
typedef color_traits <typename property_traits <PartitionMap>::value_type> color_traits;
vertex_descriptor_t source_vertex = source (e, g);
vertex_descriptor_t target_vertex = target (e, g);
if (get (partition_map_, source_vertex) == color_traits::white ())
put (partition_map_, target_vertex, color_traits::black ());
else
put (partition_map_, target_vertex, color_traits::white ());
}
private:
PartitionMap partition_map_;
};
/**
* Creates a bipartition_colorize functor which colors edges
* to be non-monochromatic.
*
* @param partition_map Color map for the bipartition
* @return The functor.
*/
template <typename PartitionMap>
inline bipartition_colorize <PartitionMap> colorize_bipartition (PartitionMap partition_map)
{
return bipartition_colorize <PartitionMap> (partition_map);
}
/**
* Functor which tests an edge to be monochromatic.
*/
template <typename PartitionMap>
struct bipartition_check
{
typedef on_back_edge event_filter;
bipartition_check (PartitionMap partition_map) :
partition_map_ (partition_map)
{
}
template <typename Edge, typename Graph>
void operator() (Edge e, const Graph& g)
{
typedef typename graph_traits <Graph>::vertex_descriptor vertex_descriptor_t;
vertex_descriptor_t source_vertex = source (e, g);
vertex_descriptor_t target_vertex = target (e, g);
if (get (partition_map_, source_vertex) == get (partition_map_, target_vertex))
throw bipartite_visitor_error <vertex_descriptor_t> (source_vertex, target_vertex);
}
private:
PartitionMap partition_map_;
};
/**
* Creates a bipartition_check functor which raises an error if a
* monochromatic edge is found.
*
* @param partition_map The map for a bipartition.
* @return The functor.
*/
template <typename PartitionMap>
inline bipartition_check <PartitionMap> check_bipartition (PartitionMap partition_map)
{
return bipartition_check <PartitionMap> (partition_map);
}
/**
* Find the beginning of a common suffix of two sequences
*
* @param sequence1 Pair of bidirectional iterators defining the first sequence.
* @param sequence2 Pair of bidirectional iterators defining the second sequence.
* @return Pair of iterators pointing to the beginning of the common suffix.
*/
template <typename BiDirectionalIterator1, typename BiDirectionalIterator2>
inline std::pair <BiDirectionalIterator1, BiDirectionalIterator2> reverse_mismatch (std::pair <
BiDirectionalIterator1, BiDirectionalIterator1> sequence1, std::pair <BiDirectionalIterator2,
BiDirectionalIterator2> sequence2)
{
if (sequence1.first == sequence1.second || sequence2.first == sequence2.second)
return std::make_pair (sequence1.first, sequence2.first);
BiDirectionalIterator1 iter1 = sequence1.second;
BiDirectionalIterator2 iter2 = sequence2.second;
while (true)
{
--iter1;
--iter2;
if (*iter1 != *iter2)
{
++iter1;
++iter2;
break;
}
if (iter1 == sequence1.first)
break;
if (iter2 == sequence2.first)
break;
}
return std::make_pair (iter1, iter2);
}
}
/**
* Checks a given graph for bipartiteness and fills the given color map with
* white and black according to the bipartition. If the graph is not
* bipartite, the contents of the color map are undefined. Runs in linear
* time in the size of the graph, if access to the property maps is in
* constant time.
*
* @param graph The given graph.
* @param index_map An index map associating vertices with an index.
* @param partition_map A color map to fill with the bipartition.
* @return true if and only if the given graph is bipartite.
*/
template <typename Graph, typename IndexMap, typename PartitionMap>
bool is_bipartite (const Graph& graph, const IndexMap index_map, PartitionMap partition_map)
{
/// General types and variables
typedef typename property_traits <PartitionMap>::value_type partition_color_t;
typedef typename graph_traits <Graph>::vertex_descriptor vertex_descriptor_t;
/// Declare dfs visitor
// detail::empty_recorder recorder;
// typedef detail::bipartite_visitor <PartitionMap, detail::empty_recorder> dfs_visitor_t;
// dfs_visitor_t dfs_visitor (partition_map, recorder);
/// Call dfs
try
{
depth_first_search (graph, vertex_index_map (index_map).visitor (make_dfs_visitor (std::make_pair (
detail::colorize_bipartition (partition_map), std::make_pair (detail::check_bipartition (partition_map),
put_property (partition_map, color_traits <partition_color_t>::white (), on_start_vertex ()))))));
}
catch (const detail::bipartite_visitor_error <vertex_descriptor_t>&)
{
return false;
}
return true;
}
/**
* Checks a given graph for bipartiteness.
*
* @param graph The given graph.
* @param index_map An index map associating vertices with an index.
* @return true if and only if the given graph is bipartite.
*/
template <typename Graph, typename IndexMap>
bool is_bipartite (const Graph& graph, const IndexMap index_map)
{
typedef one_bit_color_map <IndexMap> partition_map_t;
partition_map_t partition_map (num_vertices (graph), index_map);
return is_bipartite (graph, index_map, partition_map);
}
/**
* Checks a given graph for bipartiteness. The graph must
* have an internal vertex_index property. Runs in linear time in the
* size of the graph, if access to the property maps is in constant time.
*
* @param graph The given graph.
* @return true if and only if the given graph is bipartite.
*/
template <typename Graph>
bool is_bipartite (const Graph& graph)
{
return is_bipartite (graph, get (vertex_index, graph));
}
/**
* Checks a given graph for bipartiteness and fills a given color map with
* white and black according to the bipartition. If the graph is not
* bipartite, a sequence of vertices, producing an odd-cycle, is written to
* the output iterator. The final iterator value is returned. Runs in linear
* time in the size of the graph, if access to the property maps is in
* constant time.
*
* @param graph The given graph.
* @param index_map An index map associating vertices with an index.
* @param partition_map A color map to fill with the bipartition.
* @param result An iterator to write the odd-cycle vertices to.
* @return The final iterator value after writing.
*/
template <typename Graph, typename IndexMap, typename PartitionMap, typename OutputIterator>
OutputIterator find_odd_cycle (const Graph& graph, const IndexMap index_map, PartitionMap partition_map,
OutputIterator result)
{
/// General types and variables
typedef typename property_traits <PartitionMap>::value_type partition_color_t;
typedef typename graph_traits <Graph>::vertex_descriptor vertex_descriptor_t;
typedef typename graph_traits <Graph>::vertex_iterator vertex_iterator_t;
vertex_iterator_t vertex_iter, vertex_end;
/// Declare predecessor map
typedef std::vector <vertex_descriptor_t> predecessors_t;
typedef iterator_property_map <typename predecessors_t::iterator, IndexMap, vertex_descriptor_t,
vertex_descriptor_t&> predecessor_map_t;
predecessors_t predecessors (num_vertices (graph), graph_traits <Graph>::null_vertex ());
predecessor_map_t predecessor_map (predecessors.begin (), index_map);
/// Initialize predecessor map
for (boost::tie (vertex_iter, vertex_end) = vertices (graph); vertex_iter != vertex_end; ++vertex_iter)
{
put (predecessor_map, *vertex_iter, *vertex_iter);
}
/// Call dfs
try
{
depth_first_search (graph, vertex_index_map (index_map).visitor (make_dfs_visitor (std::make_pair (
detail::colorize_bipartition (partition_map), std::make_pair (detail::check_bipartition (partition_map),
std::make_pair (put_property (partition_map, color_traits <partition_color_t>::white (),
on_start_vertex ()), record_predecessors (predecessor_map, on_tree_edge ())))))));
}
catch (const detail::bipartite_visitor_error <vertex_descriptor_t>& error)
{
typedef std::vector <vertex_descriptor_t> path_t;
path_t path1, path2;
vertex_descriptor_t next, current;
/// First path
next = error.witnesses.first;
do
{
current = next;
path1.push_back (current);
next = predecessor_map[current];
}
while (current != next);
/// Second path
next = error.witnesses.second;
do
{
current = next;
path2.push_back (current);
next = predecessor_map[current];
}
while (current != next);
/// Find beginning of common suffix
std::pair <typename path_t::iterator, typename path_t::iterator> mismatch = detail::reverse_mismatch (
std::make_pair (path1.begin (), path1.end ()), std::make_pair (path2.begin (), path2.end ()));
/// Copy the odd-length cycle
result = std::copy (path1.begin (), mismatch.first + 1, result);
return std::reverse_copy (path2.begin (), mismatch.second, result);
}
return result;
}
/**
* Checks a given graph for bipartiteness. If the graph is not bipartite, a
* sequence of vertices, producing an odd-cycle, is written to the output
* iterator. The final iterator value is returned. Runs in linear time in the
* size of the graph, if access to the property maps is in constant time.
*
* @param graph The given graph.
* @param index_map An index map associating vertices with an index.
* @param result An iterator to write the odd-cycle vertices to.
* @return The final iterator value after writing.
*/
template <typename Graph, typename IndexMap, typename OutputIterator>
OutputIterator find_odd_cycle (const Graph& graph, const IndexMap index_map, OutputIterator result)
{
typedef one_bit_color_map <IndexMap> partition_map_t;
partition_map_t partition_map (num_vertices (graph), index_map);
return find_odd_cycle (graph, index_map, partition_map, result);
}
/**
* Checks a given graph for bipartiteness. If the graph is not bipartite, a
* sequence of vertices, producing an odd-cycle, is written to the output
* iterator. The final iterator value is returned. The graph must have an
* internal vertex_index property. Runs in linear time in the size of the
* graph, if access to the property maps is in constant time.
*
* @param graph The given graph.
* @param result An iterator to write the odd-cycle vertices to.
* @return The final iterator value after writing.
*/
template <typename Graph, typename OutputIterator>
OutputIterator find_odd_cycle (const Graph& graph, OutputIterator result)
{
return find_odd_cycle (graph, get (vertex_index, graph), result);
}
}
#endif /// BOOST_GRAPH_BIPARTITE_HPP