// // Copyright (c) 2000-2013 // Joerg Walter, Mathias Koch, Athanasios Iliopoulos // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // The authors gratefully acknowledge the support of // GeNeSys mbH & Co. KG in producing this work. // #ifndef _BOOST_UBLAS_BANDED_ #define _BOOST_UBLAS_BANDED_ #include <boost/numeric/ublas/matrix.hpp> #include <boost/numeric/ublas/detail/temporary.hpp> // Iterators based on ideas of Jeremy Siek namespace boost { namespace numeric { namespace ublas { namespace hidden { /** \brief A helper for band_matrix indexing. * * The indexing happens as per the netlib description: http://www.netlib.org/lapack/lug/node124.html. * In the case of a row_major matrix a different approach is followed; */ template <class LayoutType> class banded_indexing { }; /** \brief A helper for indexing column major banded matrices. * */ template <> class banded_indexing<column_major_tag> { public: template <class T> BOOST_UBLAS_INLINE static T size(T /*size1*/, T size2) { return size2; } // template <class T> // BOOST_UBLAS_INLINE static bool valid_index(T size1, T /*size2*/, T lower, T upper, T i, T j) { // return (upper+i >= j) && i <= std::min(size1 - 1, j + lower); // upper + i is used by get_index. Maybe find a way to consolidate the operations to increase performance // } template <class T> BOOST_UBLAS_INLINE static T get_index(T /*size1*/, T size2, T lower, T upper, T i, T j) { return column_major::element (upper + i - j, lower + 1 + upper, j, size2); } }; /** \brief A helper for indexing row major banded matrices. * */ template <> class banded_indexing<row_major_tag> { public: template <class T> BOOST_UBLAS_INLINE static T size(T size1, T /*size2*/) { return size1; } // template <class T> // BOOST_UBLAS_INLINE static bool valid_index(T /*size1*/, T size2, T lower, T upper, T i, T j) { // return (lower+j >= i) && j <= std::min(size2 - 1, i + upper); // lower + j is used by get_index. Maybe find a way to consolidate the operations to increase performance // } template <class T> BOOST_UBLAS_INLINE static T get_index(T size1, T /*size2*/, T lower, T upper, T i, T j) { return row_major::element (i, size1, lower + j - i, lower + 1 + upper); } }; } /** \brief A banded matrix of values of type \c T. * * For a \f$(mxn)\f$-dimensional banded matrix with \f$l\f$ lower and \f$u\f$ upper diagonals and * \f$0 \leq i < m\f$ and \f$0 \leq j < n\f$, if \f$i>j+l\f$ or \f$i<j-u\f$ then \f$b_{i,j}=0\f$. * The default storage for banded matrices is packed. Orientation and storage can also be specified. * Default is \c row_major and and unbounded_array. It is \b not required by the storage to initialize * elements of the matrix. * * \tparam T the type of object stored in the matrix (like double, float, complex, etc...) * \tparam L the storage organization. It can be either \c row_major or \c column_major. Default is \c row_major * \tparam A the type of Storage array. Default is \c unbounded_array */ template<class T, class L, class A> class banded_matrix: public matrix_container<banded_matrix<T, L, A> > { typedef T *pointer; typedef L layout_type; typedef banded_matrix<T, L, A> self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_container<self_type>::operator (); #endif typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef T value_type; typedef const T &const_reference; typedef T &reference; typedef A array_type; typedef const matrix_reference<const self_type> const_closure_type; typedef matrix_reference<self_type> closure_type; typedef vector<T, A> vector_temporary_type; typedef matrix<T, L, A> matrix_temporary_type; // general sub-matrix typedef packed_tag storage_category; typedef typename L::orientation_category orientation_category; private: public: // Construction and destruction BOOST_UBLAS_INLINE banded_matrix (): matrix_container<self_type> (), size1_ (0), size2_ (0), lower_ (0), upper_ (0), data_ (0) {} BOOST_UBLAS_INLINE banded_matrix (size_type size1, size_type size2, size_type lower = 0, size_type upper = 0): matrix_container<self_type> (), size1_ (size1), size2_ (size2), lower_ (lower), upper_ (upper), #if defined(BOOST_UBLAS_OWN_BANDED) || (BOOST_UBLAS_LEGACY_BANDED) data_ ((std::max) (size1, size2) * (lower + 1 + upper)) #else data_ ( hidden::banded_indexing<orientation_category>::size(size1, size2) * (lower + 1 + upper)) // This is the netlib layout as described here: http://www.netlib.org/lapack/lug/node124.html #endif { } BOOST_UBLAS_INLINE banded_matrix (size_type size1, size_type size2, size_type lower, size_type upper, const array_type &data): matrix_container<self_type> (), size1_ (size1), size2_ (size2), lower_ (lower), upper_ (upper), data_ (data) {} BOOST_UBLAS_INLINE banded_matrix (const banded_matrix &m): matrix_container<self_type> (), size1_ (m.size1_), size2_ (m.size2_), lower_ (m.lower_), upper_ (m.upper_), data_ (m.data_) {} template<class AE> BOOST_UBLAS_INLINE banded_matrix (const matrix_expression<AE> &ae, size_type lower = 0, size_type upper = 0): matrix_container<self_type> (), size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), lower_ (lower), upper_ (upper), #if defined(BOOST_UBLAS_OWN_BANDED) || (BOOST_UBLAS_LEGACY_BANDED) data_ ((std::max) (size1_, size2_) * (lower_ + 1 + upper_)) #else data_ ( hidden::banded_indexing<orientation_category>::size(size1_, size2_) * (lower_ + 1 + upper_)) // This is the netlib layout as described here: http://www.netlib.org/lapack/lug/node124.html #endif { matrix_assign<scalar_assign> (*this, ae); } // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return size1_; } BOOST_UBLAS_INLINE size_type size2 () const { return size2_; } BOOST_UBLAS_INLINE size_type lower () const { return lower_; } BOOST_UBLAS_INLINE size_type upper () const { return upper_; } // Storage accessors BOOST_UBLAS_INLINE const array_type &data () const { return data_; } BOOST_UBLAS_INLINE array_type &data () { return data_; } #if !defined (BOOST_UBLAS_OWN_BANDED)||(BOOST_UBLAS_LEGACY_BANDED) BOOST_UBLAS_INLINE bool is_element_in_band(size_type i, size_type j) const{ //return (upper_+i >= j) && i <= std::min(size1() - 1, j + lower_); // We don't need to check if i is outside because it is checked anyway in the accessors. return (upper_+i >= j) && i <= ( j + lower_); // Essentially this band has "infinite" positive dimensions } #endif // Resizing BOOST_UBLAS_INLINE void resize (size_type size1, size_type size2, size_type lower = 0, size_type upper = 0, bool preserve = true) { if (preserve) { self_type temporary (size1, size2, lower, upper); detail::matrix_resize_preserve<layout_type> (*this, temporary); } else { data ().resize ((std::max) (size1, size2) * (lower + 1 + upper)); size1_ = size1; size2_ = size2; lower_ = lower; upper_ = upper; } } BOOST_UBLAS_INLINE void resize_packed_preserve (size_type size1, size_type size2, size_type lower = 0, size_type upper = 0) { size1_ = size1; size2_ = size2; lower_ = lower; upper_ = upper; data ().resize ((std::max) (size1, size2) * (lower + 1 + upper), value_type ()); } // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { BOOST_UBLAS_CHECK (i < size1_, bad_index ()); BOOST_UBLAS_CHECK (j < size2_, bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED const size_type k = (std::max) (i, j); const size_type l = lower_ + j - i; if (k < (std::max) (size1_, size2_) && // TODO: probably use BOOST_UBLAS_CHECK here instead of if l < lower_ + 1 + upper_) return data () [layout_type::element (k, (std::max) (size1_, size2_), l, lower_ + 1 + upper_)]; #elif BOOST_UBLAS_LEGACY_BANDED // Prior to version: TODO: add version this is actually incorporated in const size_type k = j; const size_type l = upper_ + i - j; if (k < size2_ && l < lower_ + 1 + upper_) return data () [layout_type::element (k, size2_, l, lower_ + 1 + upper_)]; #else // New default // This is the netlib layout as described here: http://www.netlib.org/lapack/lug/node124.html if ( is_element_in_band( i, j) ) { return data () [hidden::banded_indexing<orientation_category>::get_index(size1_, size2_, lower_, upper_, i, j)]; } #endif return zero_; } BOOST_UBLAS_INLINE reference at_element (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size1_, bad_index ()); BOOST_UBLAS_CHECK (j < size2_, bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED const size_type k = (std::max) (i, j); const size_type l = lower_ + j - i; // TODO: Don't we need an if or BOOST_UBLAS_CHECK HERE? return data () [layout_type::element (k, (std::max) (size1_, size2_), l, lower_ + 1 + upper_)]; #elif BOOST_UBLAS_LEGACY_BANDED // Prior to version: TODO: add version this is actually incorporated in const size_type k = j; const size_type l = upper_ + i - j; if (! (k < size2_ && l < lower_ + 1 + upper_) ) { bad_index ().raise (); // NEVER reached } return data () [layout_type::element (k, size2_, l, lower_ + 1 + upper_)]; #else // This is the netlib layout as described here: http://www.netlib.org/lapack/lug/node124.html BOOST_UBLAS_CHECK(is_element_in_band( i, j) , bad_index()); return data () [hidden::banded_indexing<orientation_category>::get_index(size1_, size2_, lower_, upper_, i, j)]; #endif } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size1_, bad_index ()); BOOST_UBLAS_CHECK (j < size2_, bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED const size_type k = (std::max) (i, j); const size_type l = lower_ + j - i; if (! (k < (std::max) (size1_, size2_) && // TODO: probably use BOOST_UBLAS_CHECK here instead of if l < lower_ + 1 + upper_) ) { bad_index ().raise (); // NEVER reached } return data () [layout_type::element (k, (std::max) (size1_, size2_), l, lower_ + 1 + upper_)]; #elif BOOST_UBLAS_LEGACY_BANDED // Prior to version: TODO: add version this is actually incorporated in const size_type k = j; const size_type l = upper_ + i - j; if (! (k < size2_ && l < lower_ + 1 + upper_) ) { bad_index ().raise (); // NEVER reached } return data () [layout_type::element (k, size2_, l, lower_ + 1 + upper_)]; #else // This is the netlib layout as described here: http://www.netlib.org/lapack/lug/node124.html BOOST_UBLAS_CHECK( is_element_in_band( i, j) , bad_index()); return data () [hidden::banded_indexing<orientation_category>::get_index(size1_, size2_, lower_, upper_, i, j)]; #endif } // Element assignment BOOST_UBLAS_INLINE reference insert_element (size_type i, size_type j, const_reference t) { return (operator () (i, j) = t); } BOOST_UBLAS_INLINE void erase_element (size_type i, size_type j) { operator () (i, j) = value_type/*zero*/(); } // Zeroing BOOST_UBLAS_INLINE void clear () { std::fill (data ().begin (), data ().end (), value_type/*zero*/()); } // Assignment BOOST_UBLAS_INLINE banded_matrix &operator = (const banded_matrix &m) { size1_ = m.size1_; size2_ = m.size2_; lower_ = m.lower_; upper_ = m.upper_; data () = m.data (); return *this; } BOOST_UBLAS_INLINE banded_matrix &assign_temporary (banded_matrix &m) { swap (m); return *this; } template<class AE> BOOST_UBLAS_INLINE banded_matrix &operator = (const matrix_expression<AE> &ae) { self_type temporary (ae, lower_, upper_); return assign_temporary (temporary); } template<class AE> BOOST_UBLAS_INLINE banded_matrix &assign (const matrix_expression<AE> &ae) { matrix_assign<scalar_assign> (*this, ae); return *this; } template<class AE> BOOST_UBLAS_INLINE banded_matrix& operator += (const matrix_expression<AE> &ae) { self_type temporary (*this + ae, lower_, upper_); return assign_temporary (temporary); } template<class AE> BOOST_UBLAS_INLINE banded_matrix &plus_assign (const matrix_expression<AE> &ae) { matrix_assign<scalar_plus_assign> (*this, ae); return *this; } template<class AE> BOOST_UBLAS_INLINE banded_matrix& operator -= (const matrix_expression<AE> &ae) { self_type temporary (*this - ae, lower_, upper_); return assign_temporary (temporary); } template<class AE> BOOST_UBLAS_INLINE banded_matrix &minus_assign (const matrix_expression<AE> &ae) { matrix_assign<scalar_minus_assign> (*this, ae); return *this; } template<class AT> BOOST_UBLAS_INLINE banded_matrix& operator *= (const AT &at) { matrix_assign_scalar<scalar_multiplies_assign> (*this, at); return *this; } template<class AT> BOOST_UBLAS_INLINE banded_matrix& operator /= (const AT &at) { matrix_assign_scalar<scalar_divides_assign> (*this, at); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (banded_matrix &m) { if (this != &m) { std::swap (size1_, m.size1_); std::swap (size2_, m.size2_); std::swap (lower_, m.lower_); std::swap (upper_, m.upper_); data ().swap (m.data ()); } } BOOST_UBLAS_INLINE friend void swap (banded_matrix &m1, banded_matrix &m2) { m1.swap (m2); } // Iterator types #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1<self_type, packed_random_access_iterator_tag> iterator1; typedef indexed_iterator2<self_type, packed_random_access_iterator_tag> iterator2; typedef indexed_const_iterator1<self_type, packed_random_access_iterator_tag> const_iterator1; typedef indexed_const_iterator2<self_type, packed_random_access_iterator_tag> const_iterator2; #else class const_iterator1; class iterator1; class const_iterator2; class iterator2; #endif typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1; typedef reverse_iterator_base1<iterator1> reverse_iterator1; typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2; typedef reverse_iterator_base2<iterator2> reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int rank, size_type i, size_type j) const { if (rank == 1) { size_type lower_i = (std::max) (difference_type (j - upper_), difference_type (0)); i = (std::max) (i, lower_i); size_type upper_i = (std::min) (j + 1 + lower_, size1_); i = (std::min) (i, upper_i); } return const_iterator1 (*this, i, j); } BOOST_UBLAS_INLINE iterator1 find1 (int rank, size_type i, size_type j) { if (rank == 1) { size_type lower_i = (std::max) (difference_type (j - upper_), difference_type (0)); i = (std::max) (i, lower_i); size_type upper_i = (std::min) (j + 1 + lower_, size1_); i = (std::min) (i, upper_i); } return iterator1 (*this, i, j); } BOOST_UBLAS_INLINE const_iterator2 find2 (int rank, size_type i, size_type j) const { if (rank == 1) { size_type lower_j = (std::max) (difference_type (i - lower_), difference_type (0)); j = (std::max) (j, lower_j); size_type upper_j = (std::min) (i + 1 + upper_, size2_); j = (std::min) (j, upper_j); } return const_iterator2 (*this, i, j); } BOOST_UBLAS_INLINE iterator2 find2 (int rank, size_type i, size_type j) { if (rank == 1) { size_type lower_j = (std::max) (difference_type (i - lower_), difference_type (0)); j = (std::max) (j, lower_j); size_type upper_j = (std::min) (i + 1 + upper_, size2_); j = (std::min) (j, upper_j); } return iterator2 (*this, i, j); } // Iterators simply are indices. #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference<banded_matrix>, public random_access_iterator_base<packed_random_access_iterator_tag, const_iterator1, value_type> { public: typedef typename banded_matrix::value_type value_type; typedef typename banded_matrix::difference_type difference_type; typedef typename banded_matrix::const_reference reference; typedef const typename banded_matrix::pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference<self_type> (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m, size_type it1, size_type it2): container_const_reference<self_type> (m), it1_ (it1), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference<self_type> (it ()), it1_ (it.it1_), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { return (*this) () (it1_, it2_); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { return (*this) ().find2 (1, it1_, 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { return (*this) ().find2 (1, it1_, (*this) ().size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference<self_type>::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ < it.it1_; } private: size_type it1_; size_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator1 cbegin1 () const { return begin1 (); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return find1 (0, size1_, 0); } BOOST_UBLAS_INLINE const_iterator1 cend1 () const { return end1 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator1: public container_reference<banded_matrix>, public random_access_iterator_base<packed_random_access_iterator_tag, iterator1, value_type> { public: typedef typename banded_matrix::value_type value_type; typedef typename banded_matrix::difference_type difference_type; typedef typename banded_matrix::reference reference; typedef typename banded_matrix::pointer pointer; typedef iterator2 dual_iterator_type; typedef reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator1 (): container_reference<self_type> (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE iterator1 (self_type &m, size_type it1, size_type it2): container_reference<self_type> (m), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { return (*this) ().at_element (it1_, it2_); } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 begin () const { return (*this) ().find2 (1, it1_, 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 end () const { return (*this) ().find2 (1, it1_, (*this) ().size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rbegin () const { return reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rend () const { return reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE iterator1 &operator = (const iterator1 &it) { container_reference<self_type>::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ < it.it1_; } private: size_type it1_; size_type it2_; friend class const_iterator1; }; #endif BOOST_UBLAS_INLINE iterator1 begin1 () { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE iterator1 end1 () { return find1 (0, size1_, 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator2: public container_const_reference<banded_matrix>, public random_access_iterator_base<packed_random_access_iterator_tag, const_iterator2, value_type> { public: typedef typename banded_matrix::value_type value_type; typedef typename banded_matrix::difference_type difference_type; typedef typename banded_matrix::const_reference reference; typedef const typename banded_matrix::pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference<self_type> (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &m, size_type it1, size_type it2): container_const_reference<self_type> (m), it1_ (it1), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator2 (const iterator2 &it): container_const_reference<self_type> (it ()), it1_ (it.it1_), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { return (*this) () (it1_, it2_); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { return (*this) ().find1 (1, 0, it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { return (*this) ().find1 (1, (*this) ().size1 (), it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cend () const { return end(); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference<self_type>::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ < it.it2_; } private: size_type it1_; size_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 cbegin2 () const { return begin2 (); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size2_); } BOOST_UBLAS_INLINE const_iterator2 cend2 () const { return end2 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator2: public container_reference<banded_matrix>, public random_access_iterator_base<packed_random_access_iterator_tag, iterator2, value_type> { public: typedef typename banded_matrix::value_type value_type; typedef typename banded_matrix::difference_type difference_type; typedef typename banded_matrix::reference reference; typedef typename banded_matrix::pointer pointer; typedef iterator1 dual_iterator_type; typedef reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator2 (): container_reference<self_type> (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE iterator2 (self_type &m, size_type it1, size_type it2): container_reference<self_type> (m), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { return (*this) ().at_element (it1_, it2_); } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 begin () const { return (*this) ().find1 (1, 0, it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 end () const { return (*this) ().find1 (1, (*this) ().size1 (), it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rbegin () const { return reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rend () const { return reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE iterator2 &operator = (const iterator2 &it) { container_reference<self_type>::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ < it.it2_; } private: size_type it1_; size_type it2_; friend class const_iterator2; }; #endif BOOST_UBLAS_INLINE iterator2 begin2 () { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE iterator2 end2 () { return find2 (0, 0, size2_); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crbegin1 () const { return rbegin1 (); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crend1 () const { return rend1 (); } BOOST_UBLAS_INLINE reverse_iterator1 rbegin1 () { return reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rend1 () { return reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crbegin2 () const { return rbegin2 (); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crend2 () const { return rend2 (); } BOOST_UBLAS_INLINE reverse_iterator2 rbegin2 () { return reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rend2 () { return reverse_iterator2 (begin2 ()); } private: size_type size1_; size_type size2_; size_type lower_; size_type upper_; array_type data_; typedef const value_type const_value_type; static const_value_type zero_; }; template<class T, class L, class A> typename banded_matrix<T, L, A>::const_value_type banded_matrix<T, L, A>::zero_ = value_type/*zero*/(); /** \brief A diagonal matrix of values of type \c T, which is a specialization of a banded matrix * * For a \f$(m\times m)\f$-dimensional diagonal matrix, \f$0 \leq i < m\f$ and \f$0 \leq j < m\f$, * if \f$i\neq j\f$ then \f$b_{i,j}=0\f$. The default storage for diagonal matrices is packed. * Orientation and storage can also be specified. Default is \c row major \c unbounded_array. * * As a specialization of a banded matrix, the constructor of the diagonal matrix creates * a banded matrix with 0 upper and lower diagonals around the main diagonal and the matrix is * obviously a square matrix. Operations are optimized based on these 2 assumptions. It is * \b not required by the storage to initialize elements of the matrix. * * \tparam T the type of object stored in the matrix (like double, float, complex, etc...) * \tparam L the storage organization. It can be either \c row_major or \c column_major. Default is \c row_major * \tparam A the type of Storage array. Default is \c unbounded_array */ template<class T, class L, class A> class diagonal_matrix: public banded_matrix<T, L, A> { public: typedef typename A::size_type size_type; typedef banded_matrix<T, L, A> matrix_type; typedef A array_type; // Construction and destruction BOOST_UBLAS_INLINE diagonal_matrix (): matrix_type () {} BOOST_UBLAS_INLINE diagonal_matrix (size_type size): matrix_type (size, size) {} BOOST_UBLAS_INLINE diagonal_matrix (size_type size, const array_type& data): matrix_type (size, size, 0, 0, data) {} BOOST_UBLAS_INLINE diagonal_matrix (size_type size1, size_type size2): matrix_type (size1, size2) {} template<class AE> BOOST_UBLAS_INLINE diagonal_matrix (const matrix_expression<AE> &ae): matrix_type (ae) {} BOOST_UBLAS_INLINE ~diagonal_matrix () {} // Assignment BOOST_UBLAS_INLINE diagonal_matrix &operator = (const diagonal_matrix &m) { matrix_type::operator = (m); return *this; } template<class AE> BOOST_UBLAS_INLINE diagonal_matrix &operator = (const matrix_expression<AE> &ae) { matrix_type::operator = (ae); return *this; } }; /** \brief A banded matrix adaptator: convert a any matrix into a banded matrix expression * * For a \f$(m\times n)\f$-dimensional matrix, the \c banded_adaptor will provide a banded matrix * with \f$l\f$ lower and \f$u\f$ upper diagonals and \f$0 \leq i < m\f$ and \f$0 \leq j < n\f$, * if \f$i>j+l\f$ or \f$i<j-u\f$ then \f$b_{i,j}=0\f$. * * Storage and location are based on those of the underlying matrix. This is important because * a \c banded_adaptor does not copy the matrix data to a new place. Therefore, modifying values * in a \c banded_adaptor matrix will also modify the underlying matrix too. * * \tparam M the type of matrix used to generate a banded matrix */ template<class M> class banded_adaptor: public matrix_expression<banded_adaptor<M> > { typedef banded_adaptor<M> self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_expression<self_type>::operator (); #endif typedef const M const_matrix_type; typedef M matrix_type; typedef typename M::size_type size_type; typedef typename M::difference_type difference_type; typedef typename M::value_type value_type; typedef typename M::const_reference const_reference; typedef typename boost::mpl::if_<boost::is_const<M>, typename M::const_reference, typename M::reference>::type reference; typedef typename boost::mpl::if_<boost::is_const<M>, typename M::const_closure_type, typename M::closure_type>::type matrix_closure_type; typedef const self_type const_closure_type; typedef self_type closure_type; // Replaced by _temporary_traits to avoid type requirements on M //typedef typename M::vector_temporary_type vector_temporary_type; //typedef typename M::matrix_temporary_type matrix_temporary_type; typedef typename storage_restrict_traits<typename M::storage_category, packed_proxy_tag>::storage_category storage_category; typedef typename M::orientation_category orientation_category; // Construction and destruction BOOST_UBLAS_INLINE banded_adaptor (matrix_type &data, size_type lower = 0, size_type upper = 0): matrix_expression<self_type> (), data_ (data), lower_ (lower), upper_ (upper) {} BOOST_UBLAS_INLINE banded_adaptor (const banded_adaptor &m): matrix_expression<self_type> (), data_ (m.data_), lower_ (m.lower_), upper_ (m.upper_) {} // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return data_.size1 (); } BOOST_UBLAS_INLINE size_type size2 () const { return data_.size2 (); } BOOST_UBLAS_INLINE size_type lower () const { return lower_; } BOOST_UBLAS_INLINE size_type upper () const { return upper_; } // Storage accessors BOOST_UBLAS_INLINE const matrix_closure_type &data () const { return data_; } BOOST_UBLAS_INLINE matrix_closure_type &data () { return data_; } #if !defined (BOOST_UBLAS_OWN_BANDED)||(BOOST_UBLAS_LEGACY_BANDED) BOOST_UBLAS_INLINE bool is_element_in_band(size_type i, size_type j) const{ //return (upper_+i >= j) && i <= std::min(size1() - 1, j + lower_); // We don't need to check if i is outside because it is checked anyway in the accessors. return (upper_+i >= j) && i <= ( j + lower_); // Essentially this band has "infinite" positive dimensions } #endif // Element access #ifndef BOOST_UBLAS_PROXY_CONST_MEMBER BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { BOOST_UBLAS_CHECK (i < size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < size2 (), bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED size_type k = (std::max) (i, j); size_type l = lower_ + j - i; if (k < (std::max) (size1 (), size2 ()) && l < lower_ + 1 + upper_) return data () (i, j); #elif BOOST_UBLAS_LEGACY_BANDED size_type k = j; size_type l = upper_ + i - j; if (k < size2 () && l < lower_ + 1 + upper_) return data () (i, j); #else if (is_element_in_band( i, j)) return data () (i, j); #endif return zero_; } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < size2 (), bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED size_type k = (std::max) (i, j); size_type l = lower_ + j - i; if (k < (std::max) (size1 (), size2 ()) && l < lower_ + 1 + upper_) return data () (i, j); #elif BOOST_UBLAS_LEGACY_BANDED size_type k = j; size_type l = upper_ + i - j; if (k < size2 () && l < lower_ + 1 + upper_) return data () (i, j); #else if (is_element_in_band( i, j)) return data () (i, j); #endif #ifndef BOOST_UBLAS_REFERENCE_CONST_MEMBER bad_index ().raise (); #endif return const_cast<reference>(zero_); } #else BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) const { BOOST_UBLAS_CHECK (i < size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < size2 (), bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED size_type k = (std::max) (i, j); size_type l = lower_ + j - i; if (k < (std::max) (size1 (), size2 ()) && l < lower_ + 1 + upper_) return data () (i, j); #elif BOOST_UBLAS_LEGACY_BANDED size_type k = j; size_type l = upper_ + i - j; if (k < size2 () && l < lower_ + 1 + upper_) return data () (i, j); #else if (is_element_in_band( i, j)) return data () (i, j); #endif #ifndef BOOST_UBLAS_REFERENCE_CONST_MEMBER bad_index ().raise (); #endif return const_cast<reference>(zero_); } #endif // Assignment BOOST_UBLAS_INLINE banded_adaptor &operator = (const banded_adaptor &m) { matrix_assign<scalar_assign> (*this, m); return *this; } BOOST_UBLAS_INLINE banded_adaptor &assign_temporary (banded_adaptor &m) { *this = m; return *this; } template<class AE> BOOST_UBLAS_INLINE banded_adaptor &operator = (const matrix_expression<AE> &ae) { matrix_assign<scalar_assign> (*this, matrix<value_type> (ae)); return *this; } template<class AE> BOOST_UBLAS_INLINE banded_adaptor &assign (const matrix_expression<AE> &ae) { matrix_assign<scalar_assign> (*this, ae); return *this; } template<class AE> BOOST_UBLAS_INLINE banded_adaptor& operator += (const matrix_expression<AE> &ae) { matrix_assign<scalar_assign> (*this, matrix<value_type> (*this + ae)); return *this; } template<class AE> BOOST_UBLAS_INLINE banded_adaptor &plus_assign (const matrix_expression<AE> &ae) { matrix_assign<scalar_plus_assign> (*this, ae); return *this; } template<class AE> BOOST_UBLAS_INLINE banded_adaptor& operator -= (const matrix_expression<AE> &ae) { matrix_assign<scalar_assign> (*this, matrix<value_type> (*this - ae)); return *this; } template<class AE> BOOST_UBLAS_INLINE banded_adaptor &minus_assign (const matrix_expression<AE> &ae) { matrix_assign<scalar_minus_assign> (*this, ae); return *this; } template<class AT> BOOST_UBLAS_INLINE banded_adaptor& operator *= (const AT &at) { matrix_assign_scalar<scalar_multiplies_assign> (*this, at); return *this; } template<class AT> BOOST_UBLAS_INLINE banded_adaptor& operator /= (const AT &at) { matrix_assign_scalar<scalar_divides_assign> (*this, at); return *this; } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const banded_adaptor &ba) const { return (*this).data ().same_closure (ba.data ()); } // Swapping BOOST_UBLAS_INLINE void swap (banded_adaptor &m) { if (this != &m) { BOOST_UBLAS_CHECK (lower_ == m.lower_, bad_size ()); BOOST_UBLAS_CHECK (upper_ == m.upper_, bad_size ()); matrix_swap<scalar_swap> (*this, m); } } BOOST_UBLAS_INLINE friend void swap (banded_adaptor &m1, banded_adaptor &m2) { m1.swap (m2); } // Iterator types private: // Use the matrix iterator typedef typename M::const_iterator1 const_subiterator1_type; typedef typename boost::mpl::if_<boost::is_const<M>, typename M::const_iterator1, typename M::iterator1>::type subiterator1_type; typedef typename M::const_iterator2 const_subiterator2_type; typedef typename boost::mpl::if_<boost::is_const<M>, typename M::const_iterator2, typename M::iterator2>::type subiterator2_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1<self_type, packed_random_access_iterator_tag> iterator1; typedef indexed_iterator2<self_type, packed_random_access_iterator_tag> iterator2; typedef indexed_const_iterator1<self_type, packed_random_access_iterator_tag> const_iterator1; typedef indexed_const_iterator2<self_type, packed_random_access_iterator_tag> const_iterator2; #else class const_iterator1; class iterator1; class const_iterator2; class iterator2; #endif typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1; typedef reverse_iterator_base1<iterator1> reverse_iterator1; typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2; typedef reverse_iterator_base2<iterator2> reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int rank, size_type i, size_type j) const { if (rank == 1) { size_type lower_i = (std::max) (difference_type (j - upper_), difference_type (0)); i = (std::max) (i, lower_i); size_type upper_i = (std::min) (j + 1 + lower_, size1 ()); i = (std::min) (i, upper_i); } return const_iterator1 (*this, data ().find1 (rank, i, j)); } BOOST_UBLAS_INLINE iterator1 find1 (int rank, size_type i, size_type j) { if (rank == 1) { size_type lower_i = (std::max) (difference_type (j - upper_), difference_type (0)); i = (std::max) (i, lower_i); size_type upper_i = (std::min) (j + 1 + lower_, size1 ()); i = (std::min) (i, upper_i); } return iterator1 (*this, data ().find1 (rank, i, j)); } BOOST_UBLAS_INLINE const_iterator2 find2 (int rank, size_type i, size_type j) const { if (rank == 1) { size_type lower_j = (std::max) (difference_type (i - lower_), difference_type (0)); j = (std::max) (j, lower_j); size_type upper_j = (std::min) (i + 1 + upper_, size2 ()); j = (std::min) (j, upper_j); } return const_iterator2 (*this, data ().find2 (rank, i, j)); } BOOST_UBLAS_INLINE iterator2 find2 (int rank, size_type i, size_type j) { if (rank == 1) { size_type lower_j = (std::max) (difference_type (i - lower_), difference_type (0)); j = (std::max) (j, lower_j); size_type upper_j = (std::min) (i + 1 + upper_, size2 ()); j = (std::min) (j, upper_j); } return iterator2 (*this, data ().find2 (rank, i, j)); } // Iterators simply are indices. #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference<banded_adaptor>, public random_access_iterator_base<typename iterator_restrict_traits< typename const_subiterator1_type::iterator_category, packed_random_access_iterator_tag>::iterator_category, const_iterator1, value_type> { public: typedef typename const_subiterator1_type::value_type value_type; typedef typename const_subiterator1_type::difference_type difference_type; typedef typename const_subiterator1_type::reference reference; typedef typename const_subiterator1_type::pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference<self_type> (), it1_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m, const const_subiterator1_type &it1): container_const_reference<self_type> (m), it1_ (it1) {} BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference<self_type> (it ()), it1_ (it.it1_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { size_type i = index1 (); size_type j = index2 (); BOOST_UBLAS_CHECK (i < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < (*this) ().size2 (), bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED size_type k = (std::max) (i, j); size_type l = (*this) ().lower () + j - i; if (k < (std::max) ((*this) ().size1 (), (*this) ().size2 ()) && l < (*this) ().lower () + 1 + (*this) ().upper ()) return *it1_; #else size_type k = j; size_type l = (*this) ().upper () + i - j; if (k < (*this) ().size2 () && l < (*this) ().lower () + 1 + (*this) ().upper ()) return *it1_; #endif return (*this) () (i, j); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { return (*this) ().find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { return (*this) ().find2 (1, index1 (), (*this) ().size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_.index1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it1_.index2 (); } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference<self_type>::assign (&it ()); it1_ = it.it1_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ < it.it1_; } private: const_subiterator1_type it1_; }; #endif BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator1 cbegin1 () const { return begin1 (); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return find1 (0, size1 (), 0); } BOOST_UBLAS_INLINE const_iterator1 cend1 () const { return end1 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator1: public container_reference<banded_adaptor>, public random_access_iterator_base<typename iterator_restrict_traits< typename subiterator1_type::iterator_category, packed_random_access_iterator_tag>::iterator_category, iterator1, value_type> { public: typedef typename subiterator1_type::value_type value_type; typedef typename subiterator1_type::difference_type difference_type; typedef typename subiterator1_type::reference reference; typedef typename subiterator1_type::pointer pointer; typedef iterator2 dual_iterator_type; typedef reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator1 (): container_reference<self_type> (), it1_ () {} BOOST_UBLAS_INLINE iterator1 (self_type &m, const subiterator1_type &it1): container_reference<self_type> (m), it1_ (it1) {} // Arithmetic BOOST_UBLAS_INLINE iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { size_type i = index1 (); size_type j = index2 (); BOOST_UBLAS_CHECK (i < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < (*this) ().size2 (), bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED size_type k = (std::max) (i, j); size_type l = (*this) ().lower () + j - i; if (k < (std::max) ((*this) ().size1 (), (*this) ().size2 ()) && l < (*this) ().lower () + 1 + (*this) ().upper ()) return *it1_; #else size_type k = j; size_type l = (*this) ().upper () + i - j; if (k < (*this) ().size2 () && l < (*this) ().lower () + 1 + (*this) ().upper ()) return *it1_; #endif return (*this) () (i, j); } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 begin () const { return (*this) ().find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 end () const { return (*this) ().find2 (1, index1 (), (*this) ().size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rbegin () const { return reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rend () const { return reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_.index1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it1_.index2 (); } // Assignment BOOST_UBLAS_INLINE iterator1 &operator = (const iterator1 &it) { container_reference<self_type>::assign (&it ()); it1_ = it.it1_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ < it.it1_; } private: subiterator1_type it1_; friend class const_iterator1; }; #endif BOOST_UBLAS_INLINE iterator1 begin1 () { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE iterator1 end1 () { return find1 (0, size1 (), 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator2: public container_const_reference<banded_adaptor>, public random_access_iterator_base<packed_random_access_iterator_tag, const_iterator2, value_type> { public: typedef typename iterator_restrict_traits<typename const_subiterator2_type::iterator_category, packed_random_access_iterator_tag>::iterator_category iterator_category; typedef typename const_subiterator2_type::value_type value_type; typedef typename const_subiterator2_type::difference_type difference_type; typedef typename const_subiterator2_type::reference reference; typedef typename const_subiterator2_type::pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference<self_type> (), it2_ () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &m, const const_subiterator2_type &it2): container_const_reference<self_type> (m), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator2 (const iterator2 &it): container_const_reference<self_type> (it ()), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { size_type i = index1 (); size_type j = index2 (); BOOST_UBLAS_CHECK (i < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < (*this) ().size2 (), bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED size_type k = (std::max) (i, j); size_type l = (*this) ().lower () + j - i; if (k < (std::max) ((*this) ().size1 (), (*this) ().size2 ()) && l < (*this) ().lower () + 1 + (*this) ().upper ()) return *it2_; #else size_type k = j; size_type l = (*this) ().upper () + i - j; if (k < (*this) ().size2 () && l < (*this) ().lower () + 1 + (*this) ().upper ()) return *it2_; #endif return (*this) () (i, j); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { return (*this) ().find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { return (*this) ().find1 (1, (*this) ().size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it2_.index1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it2_.index2 (); } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference<self_type>::assign (&it ()); it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ < it.it2_; } private: const_subiterator2_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 cbegin2 () const { return begin2 (); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size2 ()); } BOOST_UBLAS_INLINE const_iterator2 cend2 () const { return end2 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator2: public container_reference<banded_adaptor>, public random_access_iterator_base<typename iterator_restrict_traits< typename subiterator2_type::iterator_category, packed_random_access_iterator_tag>::iterator_category, iterator2, value_type> { public: typedef typename subiterator2_type::value_type value_type; typedef typename subiterator2_type::difference_type difference_type; typedef typename subiterator2_type::reference reference; typedef typename subiterator2_type::pointer pointer; typedef iterator1 dual_iterator_type; typedef reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator2 (): container_reference<self_type> (), it2_ () {} BOOST_UBLAS_INLINE iterator2 (self_type &m, const subiterator2_type &it2): container_reference<self_type> (m), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { size_type i = index1 (); size_type j = index2 (); BOOST_UBLAS_CHECK (i < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < (*this) ().size2 (), bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED size_type k = (std::max) (i, j); size_type l = (*this) ().lower () + j - i; if (k < (std::max) ((*this) ().size1 (), (*this) ().size2 ()) && l < (*this) ().lower () + 1 + (*this) ().upper ()) return *it2_; #else size_type k = j; size_type l = (*this) ().upper () + i - j; if (k < (*this) ().size2 () && l < (*this) ().lower () + 1 + (*this) ().upper ()) return *it2_; #endif return (*this) () (i, j); } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 begin () const { return (*this) ().find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 end () const { return (*this) ().find1 (1, (*this) ().size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rbegin () const { return reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rend () const { return reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it2_.index1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it2_.index2 (); } // Assignment BOOST_UBLAS_INLINE iterator2 &operator = (const iterator2 &it) { container_reference<self_type>::assign (&it ()); it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ < it.it2_; } private: subiterator2_type it2_; friend class const_iterator2; }; #endif BOOST_UBLAS_INLINE iterator2 begin2 () { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE iterator2 end2 () { return find2 (0, 0, size2 ()); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crbegin1 () const { return rbegin1 (); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crend1 () const { return rend1 (); } BOOST_UBLAS_INLINE reverse_iterator1 rbegin1 () { return reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rend1 () { return reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crbegin2 () const { return rbegin2 (); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crend2 () const { return rend2 (); } BOOST_UBLAS_INLINE reverse_iterator2 rbegin2 () { return reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rend2 () { return reverse_iterator2 (begin2 ()); } private: matrix_closure_type data_; size_type lower_; size_type upper_; typedef const value_type const_value_type; static const_value_type zero_; }; // Specialization for temporary_traits template <class M> struct vector_temporary_traits< banded_adaptor<M> > : vector_temporary_traits< M > {} ; template <class M> struct vector_temporary_traits< const banded_adaptor<M> > : vector_temporary_traits< M > {} ; template <class M> struct matrix_temporary_traits< banded_adaptor<M> > : matrix_temporary_traits< M > {} ; template <class M> struct matrix_temporary_traits< const banded_adaptor<M> > : matrix_temporary_traits< M > {} ; template<class M> typename banded_adaptor<M>::const_value_type banded_adaptor<M>::zero_ = value_type/*zero*/(); /** \brief A diagonal matrix adaptator: convert a any matrix into a diagonal matrix expression * * For a \f$(m\times m)\f$-dimensional matrix, the \c diagonal_adaptor will provide a diagonal matrix * with \f$0 \leq i < m\f$ and \f$0 \leq j < m\f$, if \f$i\neq j\f$ then \f$b_{i,j}=0\f$. * * Storage and location are based on those of the underlying matrix. This is important because * a \c diagonal_adaptor does not copy the matrix data to a new place. Therefore, modifying values * in a \c diagonal_adaptor matrix will also modify the underlying matrix too. * * \tparam M the type of matrix used to generate the diagonal matrix */ template<class M> class diagonal_adaptor: public banded_adaptor<M> { public: typedef M matrix_type; typedef banded_adaptor<M> adaptor_type; // Construction and destruction BOOST_UBLAS_INLINE diagonal_adaptor (): adaptor_type () {} BOOST_UBLAS_INLINE diagonal_adaptor (matrix_type &data): adaptor_type (data) {} BOOST_UBLAS_INLINE ~diagonal_adaptor () {} // Assignment BOOST_UBLAS_INLINE diagonal_adaptor &operator = (const diagonal_adaptor &m) { adaptor_type::operator = (m); return *this; } template<class AE> BOOST_UBLAS_INLINE diagonal_adaptor &operator = (const matrix_expression<AE> &ae) { adaptor_type::operator = (ae); return *this; } }; }}} #endif