1
0
mirror of https://github.com/PurpleI2P/Boost-for-Android-Prebuilt synced 2025-01-09 22:37:56 +00:00
Boost-for-Android-Prebuilt/boost-1_72_0/include/boost/thread/synchronized_value.hpp

1069 lines
30 KiB
C++
Raw Normal View History

// (C) Copyright 2010 Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk
// (C) Copyright 2012 Vicente J. Botet Escriba
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_THREAD_SYNCHRONIZED_VALUE_HPP
#define BOOST_THREAD_SYNCHRONIZED_VALUE_HPP
#include <boost/thread/detail/config.hpp>
#include <boost/thread/detail/move.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/lock_types.hpp>
#include <boost/thread/lock_guard.hpp>
#include <boost/thread/lock_algorithms.hpp>
#include <boost/thread/lock_factories.hpp>
#include <boost/thread/strict_lock.hpp>
#include <boost/core/swap.hpp>
#include <boost/utility/declval.hpp>
//#include <boost/type_traits.hpp>
//#include <boost/thread/detail/is_nothrow_default_constructible.hpp>
//#if ! defined BOOST_NO_CXX11_HDR_TYPE_TRAITS
//#include <type_traits>
//#endif
#if ! defined(BOOST_THREAD_NO_SYNCHRONIZE)
#include <tuple> // todo change to <boost/tuple.hpp> once Boost.Tuple or Boost.Fusion provides Move semantics on C++98 compilers.
#include <functional>
#endif
#include <boost/utility/result_of.hpp>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
/**
* strict lock providing a const pointer access to the synchronized value type.
*
* @param T the value type.
* @param Lockable the mutex type protecting the value type.
*/
template <typename T, typename Lockable = mutex>
class const_strict_lock_ptr
{
public:
typedef T value_type;
typedef Lockable mutex_type;
protected:
// this should be a strict_lock, but unique_lock is needed to be able to return it.
boost::unique_lock<mutex_type> lk_;
T const& value_;
public:
BOOST_THREAD_MOVABLE_ONLY( const_strict_lock_ptr )
/**
* @param value constant reference of the value to protect.
* @param mtx reference to the mutex used to protect the value.
* @effects locks the mutex @c mtx, stores a reference to it and to the value type @c value.
*/
const_strict_lock_ptr(T const& val, Lockable & mtx) :
lk_(mtx), value_(val)
{
}
const_strict_lock_ptr(T const& val, Lockable & mtx, adopt_lock_t tag) BOOST_NOEXCEPT :
lk_(mtx, tag), value_(val)
{
}
/**
* Move constructor.
* @effects takes ownership of the mutex owned by @c other, stores a reference to the mutex and the value type of @c other.
*/
const_strict_lock_ptr(BOOST_THREAD_RV_REF(const_strict_lock_ptr) other) BOOST_NOEXCEPT
: lk_(boost::move(BOOST_THREAD_RV(other).lk_)),value_(BOOST_THREAD_RV(other).value_)
{
}
~const_strict_lock_ptr()
{
}
/**
* @return a constant pointer to the protected value
*/
const T* operator->() const
{
return &value_;
}
/**
* @return a constant reference to the protected value
*/
const T& operator*() const
{
return value_;
}
};
/**
* strict lock providing a pointer access to the synchronized value type.
*
* @param T the value type.
* @param Lockable the mutex type protecting the value type.
*/
template <typename T, typename Lockable = mutex>
class strict_lock_ptr : public const_strict_lock_ptr<T,Lockable>
{
typedef const_strict_lock_ptr<T,Lockable> base_type;
public:
BOOST_THREAD_MOVABLE_ONLY( strict_lock_ptr )
/**
* @param value reference of the value to protect.
* @param mtx reference to the mutex used to protect the value.
* @effects locks the mutex @c mtx, stores a reference to it and to the value type @c value.
*/
strict_lock_ptr(T & val, Lockable & mtx) :
base_type(val, mtx)
{
}
strict_lock_ptr(T & val, Lockable & mtx, adopt_lock_t tag) :
base_type(val, mtx, tag)
{
}
/**
* Move constructor.
* @effects takes ownership of the mutex owned by @c other, stores a reference to the mutex and the value type of @c other.
*/
strict_lock_ptr(BOOST_THREAD_RV_REF(strict_lock_ptr) other)
: base_type(boost::move(static_cast<base_type&>(other)))
{
}
~strict_lock_ptr()
{
}
/**
* @return a pointer to the protected value
*/
T* operator->()
{
return const_cast<T*>(&this->value_);
}
/**
* @return a reference to the protected value
*/
T& operator*()
{
return const_cast<T&>(this->value_);
}
};
template <typename SV>
struct synchronized_value_strict_lock_ptr
{
typedef strict_lock_ptr<typename SV::value_type, typename SV::mutex_type> type;
};
template <typename SV>
struct synchronized_value_strict_lock_ptr<const SV>
{
typedef const_strict_lock_ptr<typename SV::value_type, typename SV::mutex_type> type;
};
/**
* unique_lock providing a const pointer access to the synchronized value type.
*
* An object of type const_unique_lock_ptr is a unique_lock that provides a const pointer access to the synchronized value type.
* As unique_lock controls the ownership of a lockable object within a scope.
* Ownership of the lockable object may be acquired at construction or after construction,
* and may be transferred, after acquisition, to another const_unique_lock_ptr object.
* Objects of type const_unique_lock_ptr are not copyable but are movable.
* The behavior of a program is undefined if the mutex and the value type
* pointed do not exist for the entire remaining lifetime of the const_unique_lock_ptr object.
* The supplied Mutex type shall meet the BasicLockable requirements.
*
* @note const_unique_lock_ptr<T, Lockable> meets the Lockable requirements.
* If Lockable meets the TimedLockable requirements, const_unique_lock_ptr<T,Lockable>
* also meets the TimedLockable requirements.
*
* @param T the value type.
* @param Lockable the mutex type protecting the value type.
*/
template <typename T, typename Lockable = mutex>
class const_unique_lock_ptr : public unique_lock<Lockable>
{
typedef unique_lock<Lockable> base_type;
public:
typedef T value_type;
typedef Lockable mutex_type;
protected:
T const& value_;
public:
BOOST_THREAD_MOVABLE_ONLY(const_unique_lock_ptr)
/**
* @param value reference of the value to protect.
* @param mtx reference to the mutex used to protect the value.
*
* @requires If mutex_type is not a recursive mutex the calling thread does not own the mutex.
*
* @effects locks the mutex @c mtx, stores a reference to it and to the value type @c value.
*/
const_unique_lock_ptr(T const& val, Lockable & mtx)
: base_type(mtx), value_(val)
{
}
/**
* @param value reference of the value to protect.
* @param mtx reference to the mutex used to protect the value.
* @param tag of type adopt_lock_t used to differentiate the constructor.
* @requires The calling thread own the mutex.
* @effects stores a reference to it and to the value type @c value taking ownership.
*/
const_unique_lock_ptr(T const& val, Lockable & mtx, adopt_lock_t) BOOST_NOEXCEPT
: base_type(mtx, adopt_lock), value_(val)
{
}
/**
* @param value reference of the value to protect.
* @param mtx reference to the mutex used to protect the value.
* @param tag of type defer_lock_t used to differentiate the constructor.
* @effects stores a reference to it and to the value type @c value c.
*/
const_unique_lock_ptr(T const& val, Lockable & mtx, defer_lock_t) BOOST_NOEXCEPT
: base_type(mtx, defer_lock), value_(val)
{
}
/**
* @param value reference of the value to protect.
* @param mtx reference to the mutex used to protect the value.
* @param tag of type try_to_lock_t used to differentiate the constructor.
* @requires If mutex_type is not a recursive mutex the calling thread does not own the mutex.
* @effects try to lock the mutex @c mtx, stores a reference to it and to the value type @c value.
*/
const_unique_lock_ptr(T const& val, Lockable & mtx, try_to_lock_t) BOOST_NOEXCEPT
: base_type(mtx, try_to_lock), value_(val)
{
}
/**
* Move constructor.
* @effects takes ownership of the mutex owned by @c other, stores a reference to the mutex and the value type of @c other.
*/
const_unique_lock_ptr(BOOST_THREAD_RV_REF(const_unique_lock_ptr) other) BOOST_NOEXCEPT
: base_type(boost::move(static_cast<base_type&>(other))), value_(BOOST_THREAD_RV(other).value_)
{
}
/**
* @effects If owns calls unlock() on the owned mutex.
*/
~const_unique_lock_ptr()
{
}
/**
* @return a constant pointer to the protected value
*/
const T* operator->() const
{
BOOST_ASSERT (this->owns_lock());
return &value_;
}
/**
* @return a constant reference to the protected value
*/
const T& operator*() const
{
BOOST_ASSERT (this->owns_lock());
return value_;
}
};
/**
* unique lock providing a pointer access to the synchronized value type.
*
* @param T the value type.
* @param Lockable the mutex type protecting the value type.
*/
template <typename T, typename Lockable = mutex>
class unique_lock_ptr : public const_unique_lock_ptr<T, Lockable>
{
typedef const_unique_lock_ptr<T, Lockable> base_type;
public:
typedef T value_type;
typedef Lockable mutex_type;
BOOST_THREAD_MOVABLE_ONLY(unique_lock_ptr)
/**
* @param value reference of the value to protect.
* @param mtx reference to the mutex used to protect the value.
* @effects locks the mutex @c mtx, stores a reference to it and to the value type @c value.
*/
unique_lock_ptr(T & val, Lockable & mtx)
: base_type(val, mtx)
{
}
/**
* @param value reference of the value to protect.
* @param mtx reference to the mutex used to protect the value.
* @param tag of type adopt_lock_t used to differentiate the constructor.
* @effects stores a reference to it and to the value type @c value taking ownership.
*/
unique_lock_ptr(T & value, Lockable & mtx, adopt_lock_t) BOOST_NOEXCEPT
: base_type(value, mtx, adopt_lock)
{
}
/**
* @param value reference of the value to protect.
* @param mtx reference to the mutex used to protect the value.
* @param tag of type defer_lock_t used to differentiate the constructor.
* @effects stores a reference to it and to the value type @c value c.
*/
unique_lock_ptr(T & value, Lockable & mtx, defer_lock_t) BOOST_NOEXCEPT
: base_type(value, mtx, defer_lock)
{
}
/**
* @param value reference of the value to protect.
* @param mtx reference to the mutex used to protect the value.
* @param tag of type try_to_lock_t used to differentiate the constructor.
* @effects try to lock the mutex @c mtx, stores a reference to it and to the value type @c value.
*/
unique_lock_ptr(T & value, Lockable & mtx, try_to_lock_t) BOOST_NOEXCEPT
: base_type(value, mtx, try_to_lock)
{
}
/**
* Move constructor.
* @effects takes ownership of the mutex owned by @c other, stores a reference to the mutex and the value type of @c other.
*/
unique_lock_ptr(BOOST_THREAD_RV_REF(unique_lock_ptr) other) BOOST_NOEXCEPT
: base_type(boost::move(static_cast<base_type&>(other)))
{
}
~unique_lock_ptr()
{
}
/**
* @return a pointer to the protected value
*/
T* operator->()
{
BOOST_ASSERT (this->owns_lock());
return const_cast<T*>(&this->value_);
}
/**
* @return a reference to the protected value
*/
T& operator*()
{
BOOST_ASSERT (this->owns_lock());
return const_cast<T&>(this->value_);
}
};
template <typename SV>
struct synchronized_value_unique_lock_ptr
{
typedef unique_lock_ptr<typename SV::value_type, typename SV::mutex_type> type;
};
template <typename SV>
struct synchronized_value_unique_lock_ptr<const SV>
{
typedef const_unique_lock_ptr<typename SV::value_type, typename SV::mutex_type> type;
};
/**
* cloaks a value type and the mutex used to protect it together.
* @param T the value type.
* @param Lockable the mutex type protecting the value type.
*/
template <typename T, typename Lockable = mutex>
class synchronized_value
{
#if ! defined(BOOST_THREAD_NO_MAKE_UNIQUE_LOCKS)
#if ! defined BOOST_NO_CXX11_VARIADIC_TEMPLATES
template <typename ...SV>
friend std::tuple<typename synchronized_value_strict_lock_ptr<SV>::type ...> synchronize(SV& ...sv);
#else
template <typename SV1, typename SV2>
friend std::tuple<
typename synchronized_value_strict_lock_ptr<SV1>::type,
typename synchronized_value_strict_lock_ptr<SV2>::type
>
synchronize(SV1& sv1, SV2& sv2);
template <typename SV1, typename SV2, typename SV3>
friend std::tuple<
typename synchronized_value_strict_lock_ptr<SV1>::type,
typename synchronized_value_strict_lock_ptr<SV2>::type,
typename synchronized_value_strict_lock_ptr<SV3>::type
>
synchronize(SV1& sv1, SV2& sv2, SV3& sv3);
#endif
#endif
public:
typedef T value_type;
typedef Lockable mutex_type;
private:
T value_;
mutable mutex_type mtx_;
public:
// construction/destruction
/**
* Default constructor.
*
* @Requires: T is DefaultConstructible
*/
synchronized_value()
//BOOST_NOEXCEPT_IF(is_nothrow_default_constructible<T>::value)
: value_()
{
}
/**
* Constructor from copy constructible value.
*
* Requires: T is CopyConstructible
*/
synchronized_value(T const& other)
//BOOST_NOEXCEPT_IF(is_nothrow_copy_constructible<T>::value)
: value_(other)
{
}
/**
* Move Constructor.
*
* Requires: T is CopyMovable
*/
synchronized_value(BOOST_THREAD_RV_REF(T) other)
//BOOST_NOEXCEPT_IF(is_nothrow_move_constructible<T>::value)
: value_(boost::move(other))
{
}
/**
* Constructor from value type.
*
* Requires: T is DefaultConstructible and Assignable
* Effects: Assigns the value on a scope protected by the mutex of the rhs. The mutex is not copied.
*/
synchronized_value(synchronized_value const& rhs)
{
strict_lock<mutex_type> lk(rhs.mtx_);
value_ = rhs.value_;
}
/**
* Move Constructor from movable value type
*
*/
synchronized_value(BOOST_THREAD_RV_REF(synchronized_value) other)
{
strict_lock<mutex_type> lk(BOOST_THREAD_RV(other).mtx_);
value_= boost::move(BOOST_THREAD_RV(other).value_);
}
// mutation
/**
* Assignment operator.
*
* Effects: Copies the underlying value on a scope protected by the two mutexes.
* The mutex is not copied. The locks are acquired using lock, so deadlock is avoided.
* For example, there is no problem if one thread assigns a = b and the other assigns b = a.
*
* Return: *this
*/
synchronized_value& operator=(synchronized_value const& rhs)
{
if(&rhs != this)
{
// auto _ = make_unique_locks(mtx_, rhs.mtx_);
unique_lock<mutex_type> lk1(mtx_, defer_lock);
unique_lock<mutex_type> lk2(rhs.mtx_, defer_lock);
lock(lk1,lk2);
value_ = rhs.value_;
}
return *this;
}
/**
* Assignment operator from a T const&.
* Effects: The operator copies the value on a scope protected by the mutex.
* Return: *this
*/
synchronized_value& operator=(value_type const& val)
{
{
strict_lock<mutex_type> lk(mtx_);
value_ = val;
}
return *this;
}
//observers
/**
* Explicit conversion to value type.
*
* Requires: T is CopyConstructible
* Return: A copy of the protected value obtained on a scope protected by the mutex.
*
*/
T get() const
{
strict_lock<mutex_type> lk(mtx_);
return value_;
}
/**
* Explicit conversion to value type.
*
* Requires: T is CopyConstructible
* Return: A copy of the protected value obtained on a scope protected by the mutex.
*
*/
#if ! defined(BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS)
explicit operator T() const
{
return get();
}
#endif
/**
* value type getter.
*
* Return: A constant reference to the protected value.
*
* Note: Not thread safe
*
*/
T const& value() const
{
return value_;
}
/**
* mutex getter.
*
* Return: A constant reference to the protecting mutex.
*
* Note: Not thread safe
*
*/
mutex_type const& mutex() const
{
return mtx_;
}
/**
* Swap
*
* Effects: Swaps the data. Again, locks are acquired using lock(). The mutexes are not swapped.
* A swap method accepts a T& and swaps the data inside a critical section.
* This is by far the preferred method of changing the guarded datum wholesale because it keeps the lock only
* for a short time, thus lowering the pressure on the mutex.
*/
void swap(synchronized_value & rhs)
{
if (this == &rhs) {
return;
}
// auto _ = make_unique_locks(mtx_, rhs.mtx_);
unique_lock<mutex_type> lk1(mtx_, defer_lock);
unique_lock<mutex_type> lk2(rhs.mtx_, defer_lock);
lock(lk1,lk2);
boost::swap(value_, rhs.value_);
}
/**
* Swap with the underlying value type
*
* Effects: Swaps the data on a scope protected by the mutex.
*/
void swap(value_type & rhs)
{
strict_lock<mutex_type> lk(mtx_);
boost::swap(value_, rhs);
}
/**
* Essentially calling a method obj->foo(x, y, z) calls the method foo(x, y, z) inside a critical section as
* long-lived as the call itself.
*/
strict_lock_ptr<T,Lockable> operator->()
{
return BOOST_THREAD_MAKE_RV_REF((strict_lock_ptr<T,Lockable>(value_, mtx_)));
}
/**
* If the synchronized_value object involved is const-qualified, then you'll only be able to call const methods
* through operator->. So, for example, vec->push_back("xyz") won't work if vec were const-qualified.
* The locking mechanism capitalizes on the assumption that const methods don't modify their underlying data.
*/
const_strict_lock_ptr<T,Lockable> operator->() const
{
return BOOST_THREAD_MAKE_RV_REF((const_strict_lock_ptr<T,Lockable>(value_, mtx_)));
}
/**
* Call function on a locked block.
*
* @requires fct(value_) is well formed.
*
* Example
* void fun(synchronized_value<vector<int>> & v) {
* v ( [](vector<int>> & vec)
* {
* vec.push_back(42);
* assert(vec.back() == 42);
* } );
* }
*/
template <typename F>
inline
typename boost::result_of<F(value_type&)>::type
operator()(BOOST_THREAD_RV_REF(F) fct)
{
strict_lock<mutex_type> lk(mtx_);
return fct(value_);
}
template <typename F>
inline
typename boost::result_of<F(value_type const&)>::type
operator()(BOOST_THREAD_RV_REF(F) fct) const
{
strict_lock<mutex_type> lk(mtx_);
return fct(value_);
}
#if defined BOOST_NO_CXX11_RVALUE_REFERENCES
template <typename F>
inline
typename boost::result_of<F(value_type&)>::type
operator()(F const & fct)
{
strict_lock<mutex_type> lk(mtx_);
return fct(value_);
}
template <typename F>
inline
typename boost::result_of<F(value_type const&)>::type
operator()(F const & fct) const
{
strict_lock<mutex_type> lk(mtx_);
return fct(value_);
}
template <typename R>
inline
R operator()(R(*fct)(value_type&))
{
strict_lock<mutex_type> lk(mtx_);
return fct(value_);
}
template <typename R>
inline
R operator()(R(*fct)(value_type const&)) const
{
strict_lock<mutex_type> lk(mtx_);
return fct(value_);
}
#endif
/**
* The synchronize() factory make easier to lock on a scope.
* As discussed, operator-> can only lock over the duration of a call, so it is insufficient for complex operations.
* With synchronize() you get to lock the object in a scoped and to directly access the object inside that scope.
*
* Example
* void fun(synchronized_value<vector<int>> & v) {
* auto&& vec=v.synchronize();
* vec.push_back(42);
* assert(vec.back() == 42);
* }
*/
strict_lock_ptr<T,Lockable> synchronize()
{
return BOOST_THREAD_MAKE_RV_REF((strict_lock_ptr<T,Lockable>(value_, mtx_)));
}
const_strict_lock_ptr<T,Lockable> synchronize() const
{
return BOOST_THREAD_MAKE_RV_REF((const_strict_lock_ptr<T,Lockable>(value_, mtx_)));
}
unique_lock_ptr<T,Lockable> unique_synchronize()
{
return BOOST_THREAD_MAKE_RV_REF((unique_lock_ptr<T,Lockable>(value_, mtx_)));
}
const_unique_lock_ptr<T,Lockable> unique_synchronize() const
{
return BOOST_THREAD_MAKE_RV_REF((const_unique_lock_ptr<T,Lockable>(value_, mtx_)));
}
unique_lock_ptr<T,Lockable> unique_synchronize(defer_lock_t tag)
{
return BOOST_THREAD_MAKE_RV_REF((unique_lock_ptr<T,Lockable>(value_, mtx_, tag)));
}
const_unique_lock_ptr<T,Lockable> unique_synchronize(defer_lock_t tag) const
{
return BOOST_THREAD_MAKE_RV_REF((const_unique_lock_ptr<T,Lockable>(value_, mtx_, tag)));
}
unique_lock_ptr<T,Lockable> defer_synchronize() BOOST_NOEXCEPT
{
return BOOST_THREAD_MAKE_RV_REF((unique_lock_ptr<T,Lockable>(value_, mtx_, defer_lock)));
}
const_unique_lock_ptr<T,Lockable> defer_synchronize() const BOOST_NOEXCEPT
{
return BOOST_THREAD_MAKE_RV_REF((const_unique_lock_ptr<T,Lockable>(value_, mtx_, defer_lock)));
}
unique_lock_ptr<T,Lockable> try_to_synchronize() BOOST_NOEXCEPT
{
return BOOST_THREAD_MAKE_RV_REF((unique_lock_ptr<T,Lockable>(value_, mtx_, try_to_lock)));
}
const_unique_lock_ptr<T,Lockable> try_to_synchronize() const BOOST_NOEXCEPT
{
return BOOST_THREAD_MAKE_RV_REF((const_unique_lock_ptr<T,Lockable>(value_, mtx_, try_to_lock)));
}
unique_lock_ptr<T,Lockable> adopt_synchronize() BOOST_NOEXCEPT
{
return BOOST_THREAD_MAKE_RV_REF((unique_lock_ptr<T,Lockable>(value_, mtx_, adopt_lock)));
}
const_unique_lock_ptr<T,Lockable> adopt_synchronize() const BOOST_NOEXCEPT
{
return BOOST_THREAD_MAKE_RV_REF((const_unique_lock_ptr<T,Lockable>(value_, mtx_, adopt_lock)));
}
#if ! defined __IBMCPP__
private:
#endif
class deref_value
{
private:
friend class synchronized_value;
boost::unique_lock<mutex_type> lk_;
T& value_;
explicit deref_value(synchronized_value& outer):
lk_(outer.mtx_),value_(outer.value_)
{}
public:
BOOST_THREAD_MOVABLE_ONLY(deref_value)
deref_value(BOOST_THREAD_RV_REF(deref_value) other):
lk_(boost::move(BOOST_THREAD_RV(other).lk_)),value_(BOOST_THREAD_RV(other).value_)
{}
operator T&()
{
return value_;
}
deref_value& operator=(T const& newVal)
{
value_=newVal;
return *this;
}
};
class const_deref_value
{
private:
friend class synchronized_value;
boost::unique_lock<mutex_type> lk_;
const T& value_;
explicit const_deref_value(synchronized_value const& outer):
lk_(outer.mtx_), value_(outer.value_)
{}
public:
BOOST_THREAD_MOVABLE_ONLY(const_deref_value)
const_deref_value(BOOST_THREAD_RV_REF(const_deref_value) other):
lk_(boost::move(BOOST_THREAD_RV(other).lk_)), value_(BOOST_THREAD_RV(other).value_)
{}
operator const T&()
{
return value_;
}
};
public:
deref_value operator*()
{
return BOOST_THREAD_MAKE_RV_REF(deref_value(*this));
}
const_deref_value operator*() const
{
return BOOST_THREAD_MAKE_RV_REF(const_deref_value(*this));
}
// io functions
/**
* @requires T is OutputStreamable
* @effects saves the value type on the output stream @c os.
*/
template <typename OStream>
void save(OStream& os) const
{
strict_lock<mutex_type> lk(mtx_);
os << value_;
}
/**
* @requires T is InputStreamable
* @effects loads the value type from the input stream @c is.
*/
template <typename IStream>
void load(IStream& is)
{
strict_lock<mutex_type> lk(mtx_);
is >> value_;
}
// relational operators
/**
* @requires T is EqualityComparable
*
*/
bool operator==(synchronized_value const& rhs) const
{
unique_lock<mutex_type> lk1(mtx_, defer_lock);
unique_lock<mutex_type> lk2(rhs.mtx_, defer_lock);
lock(lk1,lk2);
return value_ == rhs.value_;
}
/**
* @requires T is LessThanComparable
*
*/
bool operator<(synchronized_value const& rhs) const
{
unique_lock<mutex_type> lk1(mtx_, defer_lock);
unique_lock<mutex_type> lk2(rhs.mtx_, defer_lock);
lock(lk1,lk2);
return value_ < rhs.value_;
}
/**
* @requires T is GreaterThanComparable
*
*/
bool operator>(synchronized_value const& rhs) const
{
unique_lock<mutex_type> lk1(mtx_, defer_lock);
unique_lock<mutex_type> lk2(rhs.mtx_, defer_lock);
lock(lk1,lk2);
return value_ > rhs.value_;
}
bool operator<=(synchronized_value const& rhs) const
{
unique_lock<mutex_type> lk1(mtx_, defer_lock);
unique_lock<mutex_type> lk2(rhs.mtx_, defer_lock);
lock(lk1,lk2);
return value_ <= rhs.value_;
}
bool operator>=(synchronized_value const& rhs) const
{
unique_lock<mutex_type> lk1(mtx_, defer_lock);
unique_lock<mutex_type> lk2(rhs.mtx_, defer_lock);
lock(lk1,lk2);
return value_ >= rhs.value_;
}
bool operator==(value_type const& rhs) const
{
unique_lock<mutex_type> lk1(mtx_);
return value_ == rhs;
}
bool operator!=(value_type const& rhs) const
{
unique_lock<mutex_type> lk1(mtx_);
return value_ != rhs;
}
bool operator<(value_type const& rhs) const
{
unique_lock<mutex_type> lk1(mtx_);
return value_ < rhs;
}
bool operator<=(value_type const& rhs) const
{
unique_lock<mutex_type> lk1(mtx_);
return value_ <= rhs;
}
bool operator>(value_type const& rhs) const
{
unique_lock<mutex_type> lk1(mtx_);
return value_ > rhs;
}
bool operator>=(value_type const& rhs) const
{
unique_lock<mutex_type> lk1(mtx_);
return value_ >= rhs;
}
};
// Specialized algorithms
/**
*
*/
template <typename T, typename L>
inline void swap(synchronized_value<T,L> & lhs, synchronized_value<T,L> & rhs)
{
lhs.swap(rhs);
}
template <typename T, typename L>
inline void swap(synchronized_value<T,L> & lhs, T & rhs)
{
lhs.swap(rhs);
}
template <typename T, typename L>
inline void swap(T & lhs, synchronized_value<T,L> & rhs)
{
rhs.swap(lhs);
}
//Hash support
// template <class T> struct hash;
// template <typename T, typename L>
// struct hash<synchronized_value<T,L> >;
// Comparison with T
template <typename T, typename L>
bool operator!=(synchronized_value<T,L> const&lhs, synchronized_value<T,L> const& rhs)
{
return ! (lhs==rhs);
}
template <typename T, typename L>
bool operator==(T const& lhs, synchronized_value<T,L> const&rhs)
{
return rhs==lhs;
}
template <typename T, typename L>
bool operator!=(T const& lhs, synchronized_value<T,L> const&rhs)
{
return rhs!=lhs;
}
template <typename T, typename L>
bool operator<(T const& lhs, synchronized_value<T,L> const&rhs)
{
return rhs>lhs;
}
template <typename T, typename L>
bool operator<=(T const& lhs, synchronized_value<T,L> const&rhs)
{
return rhs>=lhs;
}
template <typename T, typename L>
bool operator>(T const& lhs, synchronized_value<T,L> const&rhs)
{
return rhs<lhs;
}
template <typename T, typename L>
bool operator>=(T const& lhs, synchronized_value<T,L> const&rhs)
{
return rhs<=lhs;
}
/**
*
*/
template <typename OStream, typename T, typename L>
inline OStream& operator<<(OStream& os, synchronized_value<T,L> const& rhs)
{
rhs.save(os);
return os;
}
template <typename IStream, typename T, typename L>
inline IStream& operator>>(IStream& is, synchronized_value<T,L>& rhs)
{
rhs.load(is);
return is;
}
#if ! defined(BOOST_THREAD_NO_SYNCHRONIZE)
#if ! defined BOOST_NO_CXX11_VARIADIC_TEMPLATES
template <typename ...SV>
std::tuple<typename synchronized_value_strict_lock_ptr<SV>::type ...> synchronize(SV& ...sv)
{
boost::lock(sv.mtx_ ...);
typedef std::tuple<typename synchronized_value_strict_lock_ptr<SV>::type ...> t_type;
return t_type(typename synchronized_value_strict_lock_ptr<SV>::type(sv.value_, sv.mtx_, adopt_lock) ...);
}
#else
template <typename SV1, typename SV2>
std::tuple<
typename synchronized_value_strict_lock_ptr<SV1>::type,
typename synchronized_value_strict_lock_ptr<SV2>::type
>
synchronize(SV1& sv1, SV2& sv2)
{
boost::lock(sv1.mtx_, sv2.mtx_);
typedef std::tuple<
typename synchronized_value_strict_lock_ptr<SV1>::type,
typename synchronized_value_strict_lock_ptr<SV2>::type
> t_type;
return t_type(
typename synchronized_value_strict_lock_ptr<SV1>::type(sv1.value_, sv1.mtx_, adopt_lock),
typename synchronized_value_strict_lock_ptr<SV2>::type(sv2.value_, sv2.mtx_, adopt_lock)
);
}
template <typename SV1, typename SV2, typename SV3>
std::tuple<
typename synchronized_value_strict_lock_ptr<SV1>::type,
typename synchronized_value_strict_lock_ptr<SV2>::type,
typename synchronized_value_strict_lock_ptr<SV3>::type
>
synchronize(SV1& sv1, SV2& sv2, SV3& sv3)
{
boost::lock(sv1.mtx_, sv2.mtx_);
typedef std::tuple<
typename synchronized_value_strict_lock_ptr<SV1>::type,
typename synchronized_value_strict_lock_ptr<SV2>::type,
typename synchronized_value_strict_lock_ptr<SV3>::type
> t_type;
return t_type(
typename synchronized_value_strict_lock_ptr<SV1>::type(sv1.value_, sv1.mtx_, adopt_lock),
typename synchronized_value_strict_lock_ptr<SV2>::type(sv2.value_, sv2.mtx_, adopt_lock),
typename synchronized_value_strict_lock_ptr<SV3>::type(sv3.value_, sv3.mtx_, adopt_lock)
);
}
#endif
#endif
}
#include <boost/config/abi_suffix.hpp>
#endif // header