mirror of
https://github.com/PurpleI2P/Boost-for-Android-Prebuilt
synced 2025-01-10 14:57:52 +00:00
207 lines
6.6 KiB
C++
207 lines
6.6 KiB
C++
|
// Copyright Jim Bosch 2010-2012.
|
||
|
// Copyright Stefan Seefeld 2016.
|
||
|
// Distributed under the Boost Software License, Version 1.0.
|
||
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
||
|
// http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#ifndef boost_python_numpy_ufunc_hpp_
|
||
|
#define boost_python_numpy_ufunc_hpp_
|
||
|
|
||
|
/**
|
||
|
* @brief Utilities to create ufunc-like broadcasting functions out of C++ functors.
|
||
|
*/
|
||
|
|
||
|
#include <boost/python.hpp>
|
||
|
#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
|
||
|
#include <boost/python/numpy/dtype.hpp>
|
||
|
#include <boost/python/numpy/ndarray.hpp>
|
||
|
#include <boost/python/numpy/config.hpp>
|
||
|
|
||
|
namespace boost { namespace python { namespace numpy {
|
||
|
|
||
|
/**
|
||
|
* @brief A boost.python "object manager" (subclass of object) for PyArray_MultiIter.
|
||
|
*
|
||
|
* multi_iter is a Python object, but a very low-level one. It should generally only be used
|
||
|
* in loops of the form:
|
||
|
* @code
|
||
|
* while (iter.not_done()) {
|
||
|
* ...
|
||
|
* iter.next();
|
||
|
* }
|
||
|
* @endcode
|
||
|
*
|
||
|
* @todo I can't tell if this type is exposed in Python anywhere; if it is, we should use that name.
|
||
|
* It's more dangerous than most object managers, however - maybe it actually belongs in
|
||
|
* a detail namespace?
|
||
|
*/
|
||
|
class BOOST_NUMPY_DECL multi_iter : public object
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(multi_iter, object);
|
||
|
|
||
|
/// @brief Increment the iterator.
|
||
|
void next();
|
||
|
|
||
|
/// @brief Check if the iterator is at its end.
|
||
|
bool not_done() const;
|
||
|
|
||
|
/// @brief Return a pointer to the element of the nth broadcasted array.
|
||
|
char * get_data(int n) const;
|
||
|
|
||
|
/// @brief Return the number of dimensions of the broadcasted array expression.
|
||
|
int get_nd() const;
|
||
|
|
||
|
/// @brief Return the shape of the broadcasted array expression as an array of integers.
|
||
|
Py_intptr_t const * get_shape() const;
|
||
|
|
||
|
/// @brief Return the shape of the broadcasted array expression in the nth dimension.
|
||
|
Py_intptr_t shape(int n) const;
|
||
|
|
||
|
};
|
||
|
|
||
|
/// @brief Construct a multi_iter over a single sequence or scalar object.
|
||
|
BOOST_NUMPY_DECL multi_iter make_multi_iter(object const & a1);
|
||
|
|
||
|
/// @brief Construct a multi_iter by broadcasting two objects.
|
||
|
BOOST_NUMPY_DECL multi_iter make_multi_iter(object const & a1, object const & a2);
|
||
|
|
||
|
/// @brief Construct a multi_iter by broadcasting three objects.
|
||
|
BOOST_NUMPY_DECL multi_iter make_multi_iter(object const & a1, object const & a2, object const & a3);
|
||
|
|
||
|
/**
|
||
|
* @brief Helps wrap a C++ functor taking a single scalar argument as a broadcasting ufunc-like
|
||
|
* Python object.
|
||
|
*
|
||
|
* Typical usage looks like this:
|
||
|
* @code
|
||
|
* struct TimesPI
|
||
|
* {
|
||
|
* typedef double argument_type;
|
||
|
* typedef double result_type;
|
||
|
* double operator()(double input) const { return input * M_PI; }
|
||
|
* };
|
||
|
*
|
||
|
* BOOST_PYTHON_MODULE(example)
|
||
|
* {
|
||
|
* class_< TimesPI >("TimesPI")
|
||
|
* .def("__call__", unary_ufunc<TimesPI>::make());
|
||
|
* }
|
||
|
* @endcode
|
||
|
*
|
||
|
*/
|
||
|
template <typename TUnaryFunctor,
|
||
|
typename TArgument=typename TUnaryFunctor::argument_type,
|
||
|
typename TResult=typename TUnaryFunctor::result_type>
|
||
|
struct unary_ufunc
|
||
|
{
|
||
|
|
||
|
/**
|
||
|
* @brief A C++ function with object arguments that broadcasts its arguments before
|
||
|
* passing them to the underlying C++ functor.
|
||
|
*/
|
||
|
static object call(TUnaryFunctor & self, object const & input, object const & output)
|
||
|
{
|
||
|
dtype in_dtype = dtype::get_builtin<TArgument>();
|
||
|
dtype out_dtype = dtype::get_builtin<TResult>();
|
||
|
ndarray in_array = from_object(input, in_dtype, ndarray::ALIGNED);
|
||
|
ndarray out_array = ! output.is_none() ?
|
||
|
from_object(output, out_dtype, ndarray::ALIGNED | ndarray::WRITEABLE)
|
||
|
: zeros(in_array.get_nd(), in_array.get_shape(), out_dtype);
|
||
|
multi_iter iter = make_multi_iter(in_array, out_array);
|
||
|
while (iter.not_done())
|
||
|
{
|
||
|
TArgument * argument = reinterpret_cast<TArgument*>(iter.get_data(0));
|
||
|
TResult * result = reinterpret_cast<TResult*>(iter.get_data(1));
|
||
|
*result = self(*argument);
|
||
|
iter.next();
|
||
|
}
|
||
|
return out_array.scalarize();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Construct a boost.python function object from call() with reasonable keyword names.
|
||
|
*
|
||
|
* Users will often want to specify their own keyword names with the same signature, but this
|
||
|
* is a convenient shortcut.
|
||
|
*/
|
||
|
static object make()
|
||
|
{
|
||
|
return make_function(call, default_call_policies(), (arg("input"), arg("output")=object()));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* @brief Helps wrap a C++ functor taking a pair of scalar arguments as a broadcasting ufunc-like
|
||
|
* Python object.
|
||
|
*
|
||
|
* Typical usage looks like this:
|
||
|
* @code
|
||
|
* struct CosSum
|
||
|
* {
|
||
|
* typedef double first_argument_type;
|
||
|
* typedef double second_argument_type;
|
||
|
* typedef double result_type;
|
||
|
* double operator()(double input1, double input2) const { return std::cos(input1 + input2); }
|
||
|
* };
|
||
|
*
|
||
|
* BOOST_PYTHON_MODULE(example)
|
||
|
* {
|
||
|
* class_< CosSum >("CosSum")
|
||
|
* .def("__call__", binary_ufunc<CosSum>::make());
|
||
|
* }
|
||
|
* @endcode
|
||
|
*
|
||
|
*/
|
||
|
template <typename TBinaryFunctor,
|
||
|
typename TArgument1=typename TBinaryFunctor::first_argument_type,
|
||
|
typename TArgument2=typename TBinaryFunctor::second_argument_type,
|
||
|
typename TResult=typename TBinaryFunctor::result_type>
|
||
|
struct binary_ufunc
|
||
|
{
|
||
|
|
||
|
static object
|
||
|
call(TBinaryFunctor & self, object const & input1, object const & input2,
|
||
|
object const & output)
|
||
|
{
|
||
|
dtype in1_dtype = dtype::get_builtin<TArgument1>();
|
||
|
dtype in2_dtype = dtype::get_builtin<TArgument2>();
|
||
|
dtype out_dtype = dtype::get_builtin<TResult>();
|
||
|
ndarray in1_array = from_object(input1, in1_dtype, ndarray::ALIGNED);
|
||
|
ndarray in2_array = from_object(input2, in2_dtype, ndarray::ALIGNED);
|
||
|
multi_iter iter = make_multi_iter(in1_array, in2_array);
|
||
|
ndarray out_array = !output.is_none()
|
||
|
? from_object(output, out_dtype, ndarray::ALIGNED | ndarray::WRITEABLE)
|
||
|
: zeros(iter.get_nd(), iter.get_shape(), out_dtype);
|
||
|
iter = make_multi_iter(in1_array, in2_array, out_array);
|
||
|
while (iter.not_done())
|
||
|
{
|
||
|
TArgument1 * argument1 = reinterpret_cast<TArgument1*>(iter.get_data(0));
|
||
|
TArgument2 * argument2 = reinterpret_cast<TArgument2*>(iter.get_data(1));
|
||
|
TResult * result = reinterpret_cast<TResult*>(iter.get_data(2));
|
||
|
*result = self(*argument1, *argument2);
|
||
|
iter.next();
|
||
|
}
|
||
|
return out_array.scalarize();
|
||
|
}
|
||
|
|
||
|
static object make()
|
||
|
{
|
||
|
return make_function(call, default_call_policies(),
|
||
|
(arg("input1"), arg("input2"), arg("output")=object()));
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
} // namespace boost::python::numpy
|
||
|
|
||
|
namespace converter
|
||
|
{
|
||
|
|
||
|
NUMPY_OBJECT_MANAGER_TRAITS(numpy::multi_iter);
|
||
|
|
||
|
}}} // namespace boost::python::converter
|
||
|
|
||
|
#endif
|