1
0
mirror of https://github.com/PurpleI2P/Boost-for-Android-Prebuilt synced 2025-01-24 05:25:26 +00:00

361 lines
9.9 KiB
C++
Raw Normal View History

/* boost random/poisson_distribution.hpp header file
*
* Copyright Jens Maurer 2002
* Copyright Steven Watanabe 2010
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org for most recent version including documentation.
*
* $Id$
*
*/
#ifndef BOOST_RANDOM_POISSON_DISTRIBUTION_HPP
#define BOOST_RANDOM_POISSON_DISTRIBUTION_HPP
#include <boost/config/no_tr1/cmath.hpp>
#include <cstdlib>
#include <iosfwd>
#include <boost/assert.hpp>
#include <boost/limits.hpp>
#include <boost/random/uniform_01.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/disable_warnings.hpp>
namespace boost {
namespace random {
namespace detail {
template<class RealType>
struct poisson_table {
static RealType value[10];
};
template<class RealType>
RealType poisson_table<RealType>::value[10] = {
0.0,
0.0,
0.69314718055994529,
1.7917594692280550,
3.1780538303479458,
4.7874917427820458,
6.5792512120101012,
8.5251613610654147,
10.604602902745251,
12.801827480081469
};
}
/**
* An instantiation of the class template @c poisson_distribution is a
* model of \random_distribution. The poisson distribution has
* \f$p(i) = \frac{e^{-\lambda}\lambda^i}{i!}\f$
*
* This implementation is based on the PTRD algorithm described
*
* @blockquote
* "The transformed rejection method for generating Poisson random variables",
* Wolfgang Hormann, Insurance: Mathematics and Economics
* Volume 12, Issue 1, February 1993, Pages 39-45
* @endblockquote
*/
template<class IntType = int, class RealType = double>
class poisson_distribution {
public:
typedef IntType result_type;
typedef RealType input_type;
class param_type {
public:
typedef poisson_distribution distribution_type;
/**
* Construct a param_type object with the parameter "mean"
*
* Requires: mean > 0
*/
explicit param_type(RealType mean_arg = RealType(1))
: _mean(mean_arg)
{
BOOST_ASSERT(_mean > 0);
}
/* Returns the "mean" parameter of the distribution. */
RealType mean() const { return _mean; }
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
/** Writes the parameters of the distribution to a @c std::ostream. */
template<class CharT, class Traits>
friend std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& os,
const param_type& parm)
{
os << parm._mean;
return os;
}
/** Reads the parameters of the distribution from a @c std::istream. */
template<class CharT, class Traits>
friend std::basic_istream<CharT, Traits>&
operator>>(std::basic_istream<CharT, Traits>& is, param_type& parm)
{
is >> parm._mean;
return is;
}
#endif
/** Returns true if the parameters have the same values. */
friend bool operator==(const param_type& lhs, const param_type& rhs)
{
return lhs._mean == rhs._mean;
}
/** Returns true if the parameters have different values. */
friend bool operator!=(const param_type& lhs, const param_type& rhs)
{
return !(lhs == rhs);
}
private:
RealType _mean;
};
/**
* Constructs a @c poisson_distribution with the parameter @c mean.
*
* Requires: mean > 0
*/
explicit poisson_distribution(RealType mean_arg = RealType(1))
: _mean(mean_arg)
{
BOOST_ASSERT(_mean > 0);
init();
}
/**
* Construct an @c poisson_distribution object from the
* parameters.
*/
explicit poisson_distribution(const param_type& parm)
: _mean(parm.mean())
{
init();
}
/**
* Returns a random variate distributed according to the
* poisson distribution.
*/
template<class URNG>
IntType operator()(URNG& urng) const
{
if(use_inversion()) {
return invert(urng);
} else {
return generate(urng);
}
}
/**
* Returns a random variate distributed according to the
* poisson distribution with parameters specified by param.
*/
template<class URNG>
IntType operator()(URNG& urng, const param_type& parm) const
{
return poisson_distribution(parm)(urng);
}
/** Returns the "mean" parameter of the distribution. */
RealType mean() const { return _mean; }
/** Returns the smallest value that the distribution can produce. */
IntType min BOOST_PREVENT_MACRO_SUBSTITUTION() const { return 0; }
/** Returns the largest value that the distribution can produce. */
IntType max BOOST_PREVENT_MACRO_SUBSTITUTION() const
{ return (std::numeric_limits<IntType>::max)(); }
/** Returns the parameters of the distribution. */
param_type param() const { return param_type(_mean); }
/** Sets parameters of the distribution. */
void param(const param_type& parm)
{
_mean = parm.mean();
init();
}
/**
* Effects: Subsequent uses of the distribution do not depend
* on values produced by any engine prior to invoking reset.
*/
void reset() { }
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
/** Writes the parameters of the distribution to a @c std::ostream. */
template<class CharT, class Traits>
friend std::basic_ostream<CharT,Traits>&
operator<<(std::basic_ostream<CharT,Traits>& os,
const poisson_distribution& pd)
{
os << pd.param();
return os;
}
/** Reads the parameters of the distribution from a @c std::istream. */
template<class CharT, class Traits>
friend std::basic_istream<CharT,Traits>&
operator>>(std::basic_istream<CharT,Traits>& is, poisson_distribution& pd)
{
pd.read(is);
return is;
}
#endif
/** Returns true if the two distributions will produce the same
sequence of values, given equal generators. */
friend bool operator==(const poisson_distribution& lhs,
const poisson_distribution& rhs)
{
return lhs._mean == rhs._mean;
}
/** Returns true if the two distributions could produce different
sequences of values, given equal generators. */
friend bool operator!=(const poisson_distribution& lhs,
const poisson_distribution& rhs)
{
return !(lhs == rhs);
}
private:
/// @cond show_private
template<class CharT, class Traits>
void read(std::basic_istream<CharT, Traits>& is) {
param_type parm;
if(is >> parm) {
param(parm);
}
}
bool use_inversion() const
{
return _mean < 10;
}
static RealType log_factorial(IntType k)
{
BOOST_ASSERT(k >= 0);
BOOST_ASSERT(k < 10);
return detail::poisson_table<RealType>::value[k];
}
void init()
{
using std::sqrt;
using std::exp;
if(use_inversion()) {
_u._exp_mean = exp(-_mean);
} else {
_u._ptrd.smu = sqrt(_mean);
_u._ptrd.b = 0.931 + 2.53 * _u._ptrd.smu;
_u._ptrd.a = -0.059 + 0.02483 * _u._ptrd.b;
_u._ptrd.inv_alpha = 1.1239 + 1.1328 / (_u._ptrd.b - 3.4);
_u._ptrd.v_r = 0.9277 - 3.6224 / (_u._ptrd.b - 2);
}
}
template<class URNG>
IntType generate(URNG& urng) const
{
using std::floor;
using std::abs;
using std::log;
while(true) {
RealType u;
RealType v = uniform_01<RealType>()(urng);
if(v <= 0.86 * _u._ptrd.v_r) {
u = v / _u._ptrd.v_r - 0.43;
return static_cast<IntType>(floor(
(2*_u._ptrd.a/(0.5-abs(u)) + _u._ptrd.b)*u + _mean + 0.445));
}
if(v >= _u._ptrd.v_r) {
u = uniform_01<RealType>()(urng) - 0.5;
} else {
u = v/_u._ptrd.v_r - 0.93;
u = ((u < 0)? -0.5 : 0.5) - u;
v = uniform_01<RealType>()(urng) * _u._ptrd.v_r;
}
RealType us = 0.5 - abs(u);
if(us < 0.013 && v > us) {
continue;
}
RealType k = floor((2*_u._ptrd.a/us + _u._ptrd.b)*u+_mean+0.445);
v = v*_u._ptrd.inv_alpha/(_u._ptrd.a/(us*us) + _u._ptrd.b);
RealType log_sqrt_2pi = 0.91893853320467267;
if(k >= 10) {
if(log(v*_u._ptrd.smu) <= (k + 0.5)*log(_mean/k)
- _mean
- log_sqrt_2pi
+ k
- (1/12. - (1/360. - 1/(1260.*k*k))/(k*k))/k) {
return static_cast<IntType>(k);
}
} else if(k >= 0) {
if(log(v) <= k*log(_mean)
- _mean
- log_factorial(static_cast<IntType>(k))) {
return static_cast<IntType>(k);
}
}
}
}
template<class URNG>
IntType invert(URNG& urng) const
{
RealType p = _u._exp_mean;
IntType x = 0;
RealType u = uniform_01<RealType>()(urng);
while(u > p) {
u = u - p;
++x;
p = _mean * p / x;
}
return x;
}
RealType _mean;
union {
// for ptrd
struct {
RealType v_r;
RealType a;
RealType b;
RealType smu;
RealType inv_alpha;
} _ptrd;
// for inversion
RealType _exp_mean;
} _u;
/// @endcond
};
} // namespace random
using random::poisson_distribution;
} // namespace boost
#include <boost/random/detail/enable_warnings.hpp>
#endif // BOOST_RANDOM_POISSON_DISTRIBUTION_HPP