mirror of
https://github.com/PurpleI2P/Boost-for-Android-Prebuilt
synced 2025-01-24 05:25:26 +00:00
361 lines
12 KiB
C++
361 lines
12 KiB
C++
|
/* boost random/nierderreiter_base2.hpp header file
|
||
|
*
|
||
|
* Copyright Justinas Vygintas Daugmaudis 2010-2018
|
||
|
* Distributed under the Boost Software License, Version 1.0. (See
|
||
|
* accompanying file LICENSE_1_0.txt or copy at
|
||
|
* http://www.boost.org/LICENSE_1_0.txt)
|
||
|
*/
|
||
|
|
||
|
#ifndef BOOST_RANDOM_NIEDERREITER_BASE2_HPP
|
||
|
#define BOOST_RANDOM_NIEDERREITER_BASE2_HPP
|
||
|
|
||
|
#include <boost/random/detail/niederreiter_base2_table.hpp>
|
||
|
#include <boost/random/detail/gray_coded_qrng.hpp>
|
||
|
|
||
|
#include <boost/dynamic_bitset.hpp>
|
||
|
|
||
|
namespace boost {
|
||
|
namespace random {
|
||
|
|
||
|
/** @cond */
|
||
|
namespace qrng_detail {
|
||
|
namespace nb2 {
|
||
|
|
||
|
// Return the base 2 logarithm for a given bitset v
|
||
|
template <typename DynamicBitset>
|
||
|
inline typename DynamicBitset::size_type
|
||
|
bitset_log2(const DynamicBitset& v)
|
||
|
{
|
||
|
if (v.none())
|
||
|
boost::throw_exception( std::invalid_argument("bitset_log2") );
|
||
|
|
||
|
typename DynamicBitset::size_type hibit = v.size() - 1;
|
||
|
while (!v.test(hibit))
|
||
|
--hibit;
|
||
|
return hibit;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Multiply polynomials over Z_2.
|
||
|
template <typename PolynomialT, typename DynamicBitset>
|
||
|
inline void modulo2_multiply(PolynomialT P, DynamicBitset& v, DynamicBitset& pt)
|
||
|
{
|
||
|
pt.reset(); // pt == 0
|
||
|
for (; P; P >>= 1, v <<= 1)
|
||
|
if (P & 1) pt ^= v;
|
||
|
pt.swap(v);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Calculate the values of the constants V(J,R) as
|
||
|
// described in BFN section 3.3.
|
||
|
//
|
||
|
// pb = polynomial defined in section 2.3 of BFN.
|
||
|
template <typename DynamicBitset>
|
||
|
inline void calculate_v(const DynamicBitset& pb,
|
||
|
typename DynamicBitset::size_type kj,
|
||
|
typename DynamicBitset::size_type pb_degree,
|
||
|
DynamicBitset& v)
|
||
|
{
|
||
|
typedef typename DynamicBitset::size_type size_type;
|
||
|
|
||
|
// Now choose values of V in accordance with
|
||
|
// the conditions in section 3.3.
|
||
|
size_type r = 0;
|
||
|
for ( ; r != kj; ++r)
|
||
|
v.reset(r);
|
||
|
|
||
|
// Quoting from BFN: "Our program currently sets each K_q
|
||
|
// equal to eq. This has the effect of setting all unrestricted
|
||
|
// values of v to 1."
|
||
|
for ( ; r < pb_degree; ++r)
|
||
|
v.set(r);
|
||
|
|
||
|
// Calculate the remaining V's using the recursion of section 2.3,
|
||
|
// remembering that the B's have the opposite sign.
|
||
|
for ( ; r != v.size(); ++r)
|
||
|
{
|
||
|
bool term = false;
|
||
|
for (typename DynamicBitset::size_type k = 0; k < pb_degree; ++k)
|
||
|
{
|
||
|
term ^= pb.test(k) & v[r + k - pb_degree];
|
||
|
}
|
||
|
v[r] = term;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace nb2
|
||
|
|
||
|
template<typename UIntType, unsigned w, typename Nb2Table>
|
||
|
struct niederreiter_base2_lattice
|
||
|
{
|
||
|
typedef UIntType value_type;
|
||
|
|
||
|
BOOST_STATIC_ASSERT(w > 0u);
|
||
|
BOOST_STATIC_CONSTANT(unsigned, bit_count = w);
|
||
|
|
||
|
private:
|
||
|
typedef std::vector<value_type> container_type;
|
||
|
|
||
|
public:
|
||
|
explicit niederreiter_base2_lattice(std::size_t dimension)
|
||
|
{
|
||
|
resize(dimension);
|
||
|
}
|
||
|
|
||
|
void resize(std::size_t dimension)
|
||
|
{
|
||
|
typedef boost::dynamic_bitset<> bitset_type;
|
||
|
|
||
|
dimension_assert("Niederreiter base 2", dimension, Nb2Table::max_dimension);
|
||
|
|
||
|
// Initialize the bit array
|
||
|
container_type cj(bit_count * dimension);
|
||
|
|
||
|
// Reserve temporary space for lattice computation
|
||
|
bitset_type v, pb, tmp;
|
||
|
|
||
|
// Compute Niedderreiter base 2 lattice
|
||
|
for (std::size_t dim = 0; dim != dimension; ++dim)
|
||
|
{
|
||
|
const typename Nb2Table::value_type poly = Nb2Table::polynomial(dim);
|
||
|
if (poly > std::numeric_limits<value_type>::max()) {
|
||
|
boost::throw_exception( std::range_error("niederreiter_base2: polynomial value outside the given value type range") );
|
||
|
}
|
||
|
|
||
|
const unsigned degree = multiprecision::msb(poly); // integer log2(poly)
|
||
|
const unsigned space_required = degree * ((bit_count / degree) + 1); // ~ degree + bit_count
|
||
|
|
||
|
v.resize(degree + bit_count - 1);
|
||
|
|
||
|
// For each dimension, we need to calculate powers of an
|
||
|
// appropriate irreducible polynomial, see Niederreiter
|
||
|
// page 65, just below equation (19).
|
||
|
// Copy the appropriate irreducible polynomial into PX,
|
||
|
// and its degree into E. Set polynomial B = PX ** 0 = 1.
|
||
|
// M is the degree of B. Subsequently B will hold higher
|
||
|
// powers of PX.
|
||
|
pb.resize(space_required); tmp.resize(space_required);
|
||
|
|
||
|
typename bitset_type::size_type kj, pb_degree = 0;
|
||
|
pb.reset(); // pb == 0
|
||
|
pb.set(pb_degree); // set the proper bit for the pb_degree
|
||
|
|
||
|
value_type j = high_bit_mask_t<bit_count - 1>::high_bit;
|
||
|
do
|
||
|
{
|
||
|
// Now choose a value of Kj as defined in section 3.3.
|
||
|
// We must have 0 <= Kj < E*J = M.
|
||
|
// The limit condition on Kj does not seem to be very relevant
|
||
|
// in this program.
|
||
|
kj = pb_degree;
|
||
|
|
||
|
// Now multiply B by PX so B becomes PX**J.
|
||
|
// In section 2.3, the values of Bi are defined with a minus sign :
|
||
|
// don't forget this if you use them later!
|
||
|
nb2::modulo2_multiply(poly, pb, tmp);
|
||
|
pb_degree += degree;
|
||
|
if (pb_degree >= pb.size()) {
|
||
|
// Note that it is quite possible for kj to become bigger than
|
||
|
// the new computed value of pb_degree.
|
||
|
pb_degree = nb2::bitset_log2(pb);
|
||
|
}
|
||
|
|
||
|
// If U = 0, we need to set B to the next power of PX
|
||
|
// and recalculate V.
|
||
|
nb2::calculate_v(pb, kj, pb_degree, v);
|
||
|
|
||
|
// Niederreiter (page 56, after equation (7), defines two
|
||
|
// variables Q and U. We do not need Q explicitly, but we
|
||
|
// do need U.
|
||
|
|
||
|
// Advance Niederreiter's state variables.
|
||
|
for (unsigned u = 0; j && u != degree; ++u, j >>= 1)
|
||
|
{
|
||
|
// Now C is obtained from V. Niederreiter
|
||
|
// obtains A from V (page 65, near the bottom), and then gets
|
||
|
// C from A (page 56, equation (7)). However this can be done
|
||
|
// in one step. Here CI(J,R) corresponds to
|
||
|
// Niederreiter's C(I,J,R), whose values we pack into array
|
||
|
// CJ so that CJ(I,R) holds all the values of C(I,J,R) for J from 1 to NBITS.
|
||
|
for (unsigned r = 0; r != bit_count; ++r) {
|
||
|
value_type& num = cj[dimension * r + dim];
|
||
|
// set the jth bit in num
|
||
|
num = (num & ~j) | (-v[r + u] & j);
|
||
|
}
|
||
|
}
|
||
|
} while (j != 0);
|
||
|
}
|
||
|
|
||
|
bits.swap(cj);
|
||
|
}
|
||
|
|
||
|
typename container_type::const_iterator iter_at(std::size_t n) const
|
||
|
{
|
||
|
BOOST_ASSERT(!(n > bits.size()));
|
||
|
return bits.begin() + n;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
container_type bits;
|
||
|
};
|
||
|
|
||
|
} // namespace qrng_detail
|
||
|
|
||
|
typedef detail::qrng_tables::niederreiter_base2 default_niederreiter_base2_table;
|
||
|
|
||
|
/** @endcond */
|
||
|
|
||
|
//!Instantiations of class template niederreiter_base2_engine model a \quasi_random_number_generator.
|
||
|
//!The niederreiter_base2_engine uses the algorithm described in
|
||
|
//! \blockquote
|
||
|
//!Bratley, Fox, Niederreiter, ACM Trans. Model. Comp. Sim. 2, 195 (1992).
|
||
|
//! \endblockquote
|
||
|
//!
|
||
|
//!\attention niederreiter_base2_engine skips trivial zeroes at the start of the sequence. For example,
|
||
|
//!the beginning of the 2-dimensional Niederreiter base 2 sequence in @c uniform_01 distribution will look
|
||
|
//!like this:
|
||
|
//!\code{.cpp}
|
||
|
//!0.5, 0.5,
|
||
|
//!0.75, 0.25,
|
||
|
//!0.25, 0.75,
|
||
|
//!0.375, 0.375,
|
||
|
//!0.875, 0.875,
|
||
|
//!...
|
||
|
//!\endcode
|
||
|
//!
|
||
|
//!In the following documentation @c X denotes the concrete class of the template
|
||
|
//!niederreiter_base2_engine returning objects of type @c UIntType, u and v are the values of @c X.
|
||
|
//!
|
||
|
//!Some member functions may throw exceptions of type std::range_error. This
|
||
|
//!happens when the quasi-random domain is exhausted and the generator cannot produce
|
||
|
//!any more values. The length of the low discrepancy sequence is given by
|
||
|
//! \f$L=Dimension \times (2^{w} - 1)\f$.
|
||
|
template<typename UIntType, unsigned w, typename Nb2Table = default_niederreiter_base2_table>
|
||
|
class niederreiter_base2_engine
|
||
|
: public qrng_detail::gray_coded_qrng<
|
||
|
qrng_detail::niederreiter_base2_lattice<UIntType, w, Nb2Table>
|
||
|
>
|
||
|
{
|
||
|
typedef qrng_detail::niederreiter_base2_lattice<UIntType, w, Nb2Table> lattice_t;
|
||
|
typedef qrng_detail::gray_coded_qrng<lattice_t> base_t;
|
||
|
|
||
|
public:
|
||
|
//!Effects: Constructs the default `s`-dimensional Niederreiter base 2 quasi-random number generator.
|
||
|
//!
|
||
|
//!Throws: bad_alloc, invalid_argument, range_error.
|
||
|
explicit niederreiter_base2_engine(std::size_t s)
|
||
|
: base_t(s) // initialize lattice here
|
||
|
{}
|
||
|
|
||
|
#ifdef BOOST_RANDOM_DOXYGEN
|
||
|
//=========================Doxygen needs this!==============================
|
||
|
typedef UIntType result_type;
|
||
|
|
||
|
//!Returns: Tight lower bound on the set of values returned by operator().
|
||
|
//!
|
||
|
//!Throws: nothing.
|
||
|
static BOOST_CONSTEXPR result_type min BOOST_PREVENT_MACRO_SUBSTITUTION ()
|
||
|
{ return (base_t::min)(); }
|
||
|
|
||
|
//!Returns: Tight upper bound on the set of values returned by operator().
|
||
|
//!
|
||
|
//!Throws: nothing.
|
||
|
static BOOST_CONSTEXPR result_type max BOOST_PREVENT_MACRO_SUBSTITUTION ()
|
||
|
{ return (base_t::max)(); }
|
||
|
|
||
|
//!Returns: The dimension of of the quasi-random domain.
|
||
|
//!
|
||
|
//!Throws: nothing.
|
||
|
std::size_t dimension() const { return base_t::dimension(); }
|
||
|
|
||
|
//!Effects: Resets the quasi-random number generator state to
|
||
|
//!the one given by the default construction. Equivalent to u.seed(0).
|
||
|
//!
|
||
|
//!\brief Throws: nothing.
|
||
|
void seed()
|
||
|
{
|
||
|
base_t::seed();
|
||
|
}
|
||
|
|
||
|
//!Effects: Effectively sets the quasi-random number generator state to the `init`-th
|
||
|
//!vector in the `s`-dimensional quasi-random domain, where `s` == X::dimension().
|
||
|
//!\code
|
||
|
//!X u, v;
|
||
|
//!for(int i = 0; i < N; ++i)
|
||
|
//! for( std::size_t j = 0; j < u.dimension(); ++j )
|
||
|
//! u();
|
||
|
//!v.seed(N);
|
||
|
//!assert(u() == v());
|
||
|
//!\endcode
|
||
|
//!
|
||
|
//!\brief Throws: range_error.
|
||
|
void seed(UIntType init)
|
||
|
{
|
||
|
base_t::seed(init);
|
||
|
}
|
||
|
|
||
|
//!Returns: Returns a successive element of an `s`-dimensional
|
||
|
//!(s = X::dimension()) vector at each invocation. When all elements are
|
||
|
//!exhausted, X::operator() begins anew with the starting element of a
|
||
|
//!subsequent `s`-dimensional vector.
|
||
|
//!
|
||
|
//!Throws: range_error.
|
||
|
result_type operator()()
|
||
|
{
|
||
|
return base_t::operator()();
|
||
|
}
|
||
|
|
||
|
//!Effects: Advances *this state as if `z` consecutive
|
||
|
//!X::operator() invocations were executed.
|
||
|
//!\code
|
||
|
//!X u = v;
|
||
|
//!for(int i = 0; i < N; ++i)
|
||
|
//! u();
|
||
|
//!v.discard(N);
|
||
|
//!assert(u() == v());
|
||
|
//!\endcode
|
||
|
//!
|
||
|
//!Throws: range_error.
|
||
|
void discard(boost::uintmax_t z)
|
||
|
{
|
||
|
base_t::discard(z);
|
||
|
}
|
||
|
|
||
|
//!Returns true if the two generators will produce identical sequences of outputs.
|
||
|
BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(niederreiter_base2_engine, x, y)
|
||
|
{ return static_cast<const base_t&>(x) == y; }
|
||
|
|
||
|
//!Returns true if the two generators will produce different sequences of outputs.
|
||
|
BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(niederreiter_base2_engine)
|
||
|
|
||
|
//!Writes the textual representation of the generator to a @c std::ostream.
|
||
|
BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, niederreiter_base2_engine, s)
|
||
|
{ return os << static_cast<const base_t&>(s); }
|
||
|
|
||
|
//!Reads the textual representation of the generator from a @c std::istream.
|
||
|
BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, niederreiter_base2_engine, s)
|
||
|
{ return is >> static_cast<base_t&>(s); }
|
||
|
|
||
|
#endif // BOOST_RANDOM_DOXYGEN
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @attention This specialization of \niederreiter_base2_engine supports up to 4720 dimensions.
|
||
|
*
|
||
|
* Binary irreducible polynomials (primes in the ring `GF(2)[X]`, evaluated at `X=2`) were generated
|
||
|
* while condition `max(prime)` < 2<sup>16</sup> was satisfied.
|
||
|
*
|
||
|
* There are exactly 4720 such primes, which yields a Niederreiter base 2 table for 4720 dimensions.
|
||
|
*
|
||
|
* However, it is possible to provide your own table to \niederreiter_base2_engine should the default one be insufficient.
|
||
|
*/
|
||
|
typedef niederreiter_base2_engine<boost::uint_least64_t, 64u, default_niederreiter_base2_table> niederreiter_base2;
|
||
|
|
||
|
} // namespace random
|
||
|
|
||
|
} // namespace boost
|
||
|
|
||
|
#endif // BOOST_RANDOM_NIEDERREITER_BASE2_HPP
|