You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
435 lines
13 KiB
435 lines
13 KiB
5 years ago
|
/* boost random/binomial_distribution.hpp header file
|
||
|
*
|
||
|
* Copyright Steven Watanabe 2010
|
||
|
* Distributed under the Boost Software License, Version 1.0. (See
|
||
|
* accompanying file LICENSE_1_0.txt or copy at
|
||
|
* http://www.boost.org/LICENSE_1_0.txt)
|
||
|
*
|
||
|
* See http://www.boost.org for most recent version including documentation.
|
||
|
*
|
||
|
* $Id$
|
||
|
*/
|
||
|
|
||
|
#ifndef BOOST_RANDOM_BINOMIAL_DISTRIBUTION_HPP_INCLUDED
|
||
|
#define BOOST_RANDOM_BINOMIAL_DISTRIBUTION_HPP_INCLUDED
|
||
|
|
||
|
#include <boost/config/no_tr1/cmath.hpp>
|
||
|
#include <cstdlib>
|
||
|
#include <iosfwd>
|
||
|
|
||
|
#include <boost/random/detail/config.hpp>
|
||
|
#include <boost/random/uniform_01.hpp>
|
||
|
|
||
|
#include <boost/random/detail/disable_warnings.hpp>
|
||
|
|
||
|
namespace boost {
|
||
|
namespace random {
|
||
|
|
||
|
namespace detail {
|
||
|
|
||
|
template<class RealType>
|
||
|
struct binomial_table {
|
||
|
static const RealType table[10];
|
||
|
};
|
||
|
|
||
|
template<class RealType>
|
||
|
const RealType binomial_table<RealType>::table[10] = {
|
||
|
0.08106146679532726,
|
||
|
0.04134069595540929,
|
||
|
0.02767792568499834,
|
||
|
0.02079067210376509,
|
||
|
0.01664469118982119,
|
||
|
0.01387612882307075,
|
||
|
0.01189670994589177,
|
||
|
0.01041126526197209,
|
||
|
0.009255462182712733,
|
||
|
0.008330563433362871
|
||
|
};
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* The binomial distribution is an integer valued distribution with
|
||
|
* two parameters, @c t and @c p. The values of the distribution
|
||
|
* are within the range [0,t].
|
||
|
*
|
||
|
* The distribution function is
|
||
|
* \f$\displaystyle P(k) = {t \choose k}p^k(1-p)^{t-k}\f$.
|
||
|
*
|
||
|
* The algorithm used is the BTRD algorithm described in
|
||
|
*
|
||
|
* @blockquote
|
||
|
* "The generation of binomial random variates", Wolfgang Hormann,
|
||
|
* Journal of Statistical Computation and Simulation, Volume 46,
|
||
|
* Issue 1 & 2 April 1993 , pages 101 - 110
|
||
|
* @endblockquote
|
||
|
*/
|
||
|
template<class IntType = int, class RealType = double>
|
||
|
class binomial_distribution {
|
||
|
public:
|
||
|
typedef IntType result_type;
|
||
|
typedef RealType input_type;
|
||
|
|
||
|
class param_type {
|
||
|
public:
|
||
|
typedef binomial_distribution distribution_type;
|
||
|
/**
|
||
|
* Construct a param_type object. @c t and @c p
|
||
|
* are the parameters of the distribution.
|
||
|
*
|
||
|
* Requires: t >=0 && 0 <= p <= 1
|
||
|
*/
|
||
|
explicit param_type(IntType t_arg = 1, RealType p_arg = RealType (0.5))
|
||
|
: _t(t_arg), _p(p_arg)
|
||
|
{}
|
||
|
/** Returns the @c t parameter of the distribution. */
|
||
|
IntType t() const { return _t; }
|
||
|
/** Returns the @c p parameter of the distribution. */
|
||
|
RealType p() const { return _p; }
|
||
|
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
|
||
|
/** Writes the parameters of the distribution to a @c std::ostream. */
|
||
|
template<class CharT, class Traits>
|
||
|
friend std::basic_ostream<CharT,Traits>&
|
||
|
operator<<(std::basic_ostream<CharT,Traits>& os,
|
||
|
const param_type& parm)
|
||
|
{
|
||
|
os << parm._p << " " << parm._t;
|
||
|
return os;
|
||
|
}
|
||
|
|
||
|
/** Reads the parameters of the distribution from a @c std::istream. */
|
||
|
template<class CharT, class Traits>
|
||
|
friend std::basic_istream<CharT,Traits>&
|
||
|
operator>>(std::basic_istream<CharT,Traits>& is, param_type& parm)
|
||
|
{
|
||
|
is >> parm._p >> std::ws >> parm._t;
|
||
|
return is;
|
||
|
}
|
||
|
#endif
|
||
|
/** Returns true if the parameters have the same values. */
|
||
|
friend bool operator==(const param_type& lhs, const param_type& rhs)
|
||
|
{
|
||
|
return lhs._t == rhs._t && lhs._p == rhs._p;
|
||
|
}
|
||
|
/** Returns true if the parameters have different values. */
|
||
|
friend bool operator!=(const param_type& lhs, const param_type& rhs)
|
||
|
{
|
||
|
return !(lhs == rhs);
|
||
|
}
|
||
|
private:
|
||
|
IntType _t;
|
||
|
RealType _p;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Construct a @c binomial_distribution object. @c t and @c p
|
||
|
* are the parameters of the distribution.
|
||
|
*
|
||
|
* Requires: t >=0 && 0 <= p <= 1
|
||
|
*/
|
||
|
explicit binomial_distribution(IntType t_arg = 1,
|
||
|
RealType p_arg = RealType(0.5))
|
||
|
: _t(t_arg), _p(p_arg)
|
||
|
{
|
||
|
init();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Construct an @c binomial_distribution object from the
|
||
|
* parameters.
|
||
|
*/
|
||
|
explicit binomial_distribution(const param_type& parm)
|
||
|
: _t(parm.t()), _p(parm.p())
|
||
|
{
|
||
|
init();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a random variate distributed according to the
|
||
|
* binomial distribution.
|
||
|
*/
|
||
|
template<class URNG>
|
||
|
IntType operator()(URNG& urng) const
|
||
|
{
|
||
|
if(use_inversion()) {
|
||
|
if(0.5 < _p) {
|
||
|
return _t - invert(_t, 1-_p, urng);
|
||
|
} else {
|
||
|
return invert(_t, _p, urng);
|
||
|
}
|
||
|
} else if(0.5 < _p) {
|
||
|
return _t - generate(urng);
|
||
|
} else {
|
||
|
return generate(urng);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a random variate distributed according to the
|
||
|
* binomial distribution with parameters specified by @c param.
|
||
|
*/
|
||
|
template<class URNG>
|
||
|
IntType operator()(URNG& urng, const param_type& parm) const
|
||
|
{
|
||
|
return binomial_distribution(parm)(urng);
|
||
|
}
|
||
|
|
||
|
/** Returns the @c t parameter of the distribution. */
|
||
|
IntType t() const { return _t; }
|
||
|
/** Returns the @c p parameter of the distribution. */
|
||
|
RealType p() const { return _p; }
|
||
|
|
||
|
/** Returns the smallest value that the distribution can produce. */
|
||
|
IntType min BOOST_PREVENT_MACRO_SUBSTITUTION() const { return 0; }
|
||
|
/** Returns the largest value that the distribution can produce. */
|
||
|
IntType max BOOST_PREVENT_MACRO_SUBSTITUTION() const { return _t; }
|
||
|
|
||
|
/** Returns the parameters of the distribution. */
|
||
|
param_type param() const { return param_type(_t, _p); }
|
||
|
/** Sets parameters of the distribution. */
|
||
|
void param(const param_type& parm)
|
||
|
{
|
||
|
_t = parm.t();
|
||
|
_p = parm.p();
|
||
|
init();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Effects: Subsequent uses of the distribution do not depend
|
||
|
* on values produced by any engine prior to invoking reset.
|
||
|
*/
|
||
|
void reset() { }
|
||
|
|
||
|
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
|
||
|
/** Writes the parameters of the distribution to a @c std::ostream. */
|
||
|
template<class CharT, class Traits>
|
||
|
friend std::basic_ostream<CharT,Traits>&
|
||
|
operator<<(std::basic_ostream<CharT,Traits>& os,
|
||
|
const binomial_distribution& bd)
|
||
|
{
|
||
|
os << bd.param();
|
||
|
return os;
|
||
|
}
|
||
|
|
||
|
/** Reads the parameters of the distribution from a @c std::istream. */
|
||
|
template<class CharT, class Traits>
|
||
|
friend std::basic_istream<CharT,Traits>&
|
||
|
operator>>(std::basic_istream<CharT,Traits>& is, binomial_distribution& bd)
|
||
|
{
|
||
|
bd.read(is);
|
||
|
return is;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/** Returns true if the two distributions will produce the same
|
||
|
sequence of values, given equal generators. */
|
||
|
friend bool operator==(const binomial_distribution& lhs,
|
||
|
const binomial_distribution& rhs)
|
||
|
{
|
||
|
return lhs._t == rhs._t && lhs._p == rhs._p;
|
||
|
}
|
||
|
/** Returns true if the two distributions could produce different
|
||
|
sequences of values, given equal generators. */
|
||
|
friend bool operator!=(const binomial_distribution& lhs,
|
||
|
const binomial_distribution& rhs)
|
||
|
{
|
||
|
return !(lhs == rhs);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
|
||
|
/// @cond show_private
|
||
|
|
||
|
template<class CharT, class Traits>
|
||
|
void read(std::basic_istream<CharT, Traits>& is) {
|
||
|
param_type parm;
|
||
|
if(is >> parm) {
|
||
|
param(parm);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool use_inversion() const
|
||
|
{
|
||
|
// BTRD is safe when np >= 10
|
||
|
return m < 11;
|
||
|
}
|
||
|
|
||
|
// computes the correction factor for the Stirling approximation
|
||
|
// for log(k!)
|
||
|
static RealType fc(IntType k)
|
||
|
{
|
||
|
if(k < 10) return detail::binomial_table<RealType>::table[k];
|
||
|
else {
|
||
|
RealType ikp1 = RealType(1) / (k + 1);
|
||
|
return (RealType(1)/12
|
||
|
- (RealType(1)/360
|
||
|
- (RealType(1)/1260)*(ikp1*ikp1))*(ikp1*ikp1))*ikp1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void init()
|
||
|
{
|
||
|
using std::sqrt;
|
||
|
using std::pow;
|
||
|
|
||
|
RealType p = (0.5 < _p)? (1 - _p) : _p;
|
||
|
IntType t = _t;
|
||
|
|
||
|
m = static_cast<IntType>((t+1)*p);
|
||
|
|
||
|
if(use_inversion()) {
|
||
|
_u.q_n = pow((1 - p), static_cast<RealType>(t));
|
||
|
} else {
|
||
|
_u.btrd.r = p/(1-p);
|
||
|
_u.btrd.nr = (t+1)*_u.btrd.r;
|
||
|
_u.btrd.npq = t*p*(1-p);
|
||
|
RealType sqrt_npq = sqrt(_u.btrd.npq);
|
||
|
_u.btrd.b = 1.15 + 2.53 * sqrt_npq;
|
||
|
_u.btrd.a = -0.0873 + 0.0248*_u.btrd.b + 0.01*p;
|
||
|
_u.btrd.c = t*p + 0.5;
|
||
|
_u.btrd.alpha = (2.83 + 5.1/_u.btrd.b) * sqrt_npq;
|
||
|
_u.btrd.v_r = 0.92 - 4.2/_u.btrd.b;
|
||
|
_u.btrd.u_rv_r = 0.86*_u.btrd.v_r;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<class URNG>
|
||
|
result_type generate(URNG& urng) const
|
||
|
{
|
||
|
using std::floor;
|
||
|
using std::abs;
|
||
|
using std::log;
|
||
|
|
||
|
while(true) {
|
||
|
RealType u;
|
||
|
RealType v = uniform_01<RealType>()(urng);
|
||
|
if(v <= _u.btrd.u_rv_r) {
|
||
|
u = v/_u.btrd.v_r - 0.43;
|
||
|
return static_cast<IntType>(floor(
|
||
|
(2*_u.btrd.a/(0.5 - abs(u)) + _u.btrd.b)*u + _u.btrd.c));
|
||
|
}
|
||
|
|
||
|
if(v >= _u.btrd.v_r) {
|
||
|
u = uniform_01<RealType>()(urng) - 0.5;
|
||
|
} else {
|
||
|
u = v/_u.btrd.v_r - 0.93;
|
||
|
u = ((u < 0)? -0.5 : 0.5) - u;
|
||
|
v = uniform_01<RealType>()(urng) * _u.btrd.v_r;
|
||
|
}
|
||
|
|
||
|
RealType us = 0.5 - abs(u);
|
||
|
IntType k = static_cast<IntType>(floor((2*_u.btrd.a/us + _u.btrd.b)*u + _u.btrd.c));
|
||
|
if(k < 0 || k > _t) continue;
|
||
|
v = v*_u.btrd.alpha/(_u.btrd.a/(us*us) + _u.btrd.b);
|
||
|
RealType km = abs(k - m);
|
||
|
if(km <= 15) {
|
||
|
RealType f = 1;
|
||
|
if(m < k) {
|
||
|
IntType i = m;
|
||
|
do {
|
||
|
++i;
|
||
|
f = f*(_u.btrd.nr/i - _u.btrd.r);
|
||
|
} while(i != k);
|
||
|
} else if(m > k) {
|
||
|
IntType i = k;
|
||
|
do {
|
||
|
++i;
|
||
|
v = v*(_u.btrd.nr/i - _u.btrd.r);
|
||
|
} while(i != m);
|
||
|
}
|
||
|
if(v <= f) return k;
|
||
|
else continue;
|
||
|
} else {
|
||
|
// final acceptance/rejection
|
||
|
v = log(v);
|
||
|
RealType rho =
|
||
|
(km/_u.btrd.npq)*(((km/3. + 0.625)*km + 1./6)/_u.btrd.npq + 0.5);
|
||
|
RealType t = -km*km/(2*_u.btrd.npq);
|
||
|
if(v < t - rho) return k;
|
||
|
if(v > t + rho) continue;
|
||
|
|
||
|
IntType nm = _t - m + 1;
|
||
|
RealType h = (m + 0.5)*log((m + 1)/(_u.btrd.r*nm))
|
||
|
+ fc(m) + fc(_t - m);
|
||
|
|
||
|
IntType nk = _t - k + 1;
|
||
|
if(v <= h + (_t+1)*log(static_cast<RealType>(nm)/nk)
|
||
|
+ (k + 0.5)*log(nk*_u.btrd.r/(k+1))
|
||
|
- fc(k)
|
||
|
- fc(_t - k))
|
||
|
{
|
||
|
return k;
|
||
|
} else {
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<class URNG>
|
||
|
IntType invert(IntType t, RealType p, URNG& urng) const
|
||
|
{
|
||
|
RealType q = 1 - p;
|
||
|
RealType s = p / q;
|
||
|
RealType a = (t + 1) * s;
|
||
|
RealType r = _u.q_n;
|
||
|
RealType u = uniform_01<RealType>()(urng);
|
||
|
IntType x = 0;
|
||
|
while(u > r) {
|
||
|
u = u - r;
|
||
|
++x;
|
||
|
RealType r1 = ((a/x) - s) * r;
|
||
|
// If r gets too small then the round-off error
|
||
|
// becomes a problem. At this point, p(i) is
|
||
|
// decreasing exponentially, so if we just call
|
||
|
// it 0, it's close enough. Note that the
|
||
|
// minimum value of q_n is about 1e-7, so we
|
||
|
// may need to be a little careful to make sure that
|
||
|
// we don't terminate the first time through the loop
|
||
|
// for float. (Hence the test that r is decreasing)
|
||
|
if(r1 < std::numeric_limits<RealType>::epsilon() && r1 < r) {
|
||
|
break;
|
||
|
}
|
||
|
r = r1;
|
||
|
}
|
||
|
return x;
|
||
|
}
|
||
|
|
||
|
// parameters
|
||
|
IntType _t;
|
||
|
RealType _p;
|
||
|
|
||
|
// common data
|
||
|
IntType m;
|
||
|
|
||
|
union {
|
||
|
// for btrd
|
||
|
struct {
|
||
|
RealType r;
|
||
|
RealType nr;
|
||
|
RealType npq;
|
||
|
RealType b;
|
||
|
RealType a;
|
||
|
RealType c;
|
||
|
RealType alpha;
|
||
|
RealType v_r;
|
||
|
RealType u_rv_r;
|
||
|
} btrd;
|
||
|
// for inversion
|
||
|
RealType q_n;
|
||
|
} _u;
|
||
|
|
||
|
/// @endcond
|
||
|
};
|
||
|
|
||
|
}
|
||
|
|
||
|
// backwards compatibility
|
||
|
using random::binomial_distribution;
|
||
|
|
||
|
}
|
||
|
|
||
|
#include <boost/random/detail/enable_warnings.hpp>
|
||
|
|
||
|
#endif
|