1
0
mirror of https://github.com/PurpleI2P/Boost-for-Android-Prebuilt synced 2025-01-09 14:28:24 +00:00
Boost-for-Android-Prebuilt/boost-1_72_0/include/boost/compute/command_queue.hpp

2009 lines
61 KiB
C++
Raw Normal View History

//---------------------------------------------------------------------------//
// Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_COMMAND_QUEUE_HPP
#define BOOST_COMPUTE_COMMAND_QUEUE_HPP
#include <cstddef>
#include <algorithm>
#include <boost/assert.hpp>
#include <boost/compute/config.hpp>
#include <boost/compute/event.hpp>
#include <boost/compute/buffer.hpp>
#include <boost/compute/device.hpp>
#include <boost/compute/kernel.hpp>
#include <boost/compute/context.hpp>
#include <boost/compute/exception.hpp>
#include <boost/compute/image/image1d.hpp>
#include <boost/compute/image/image2d.hpp>
#include <boost/compute/image/image3d.hpp>
#include <boost/compute/image/image_object.hpp>
#include <boost/compute/utility/wait_list.hpp>
#include <boost/compute/detail/get_object_info.hpp>
#include <boost/compute/detail/assert_cl_success.hpp>
#include <boost/compute/detail/diagnostic.hpp>
#include <boost/compute/utility/extents.hpp>
namespace boost {
namespace compute {
namespace detail {
inline void BOOST_COMPUTE_CL_CALLBACK
nullary_native_kernel_trampoline(void *user_func_ptr)
{
void (*user_func)();
std::memcpy(&user_func, user_func_ptr, sizeof(user_func));
user_func();
}
} // end detail namespace
/// \class command_queue
/// \brief A command queue.
///
/// Command queues provide the interface for interacting with compute
/// devices. The command_queue class provides methods to copy data to
/// and from a compute device as well as execute compute kernels.
///
/// Command queues are created for a compute device within a compute
/// context.
///
/// For example, to create a context and command queue for the default device
/// on the system (this is the normal set up code used by almost all OpenCL
/// programs):
/// \code
/// #include <boost/compute/core.hpp>
///
/// // get the default compute device
/// boost::compute::device device = boost::compute::system::default_device();
///
/// // set up a compute context and command queue
/// boost::compute::context context(device);
/// boost::compute::command_queue queue(context, device);
/// \endcode
///
/// The default command queue for the system can be obtained with the
/// system::default_queue() method.
///
/// \see buffer, context, kernel
class command_queue
{
public:
enum properties {
enable_profiling = CL_QUEUE_PROFILING_ENABLE,
enable_out_of_order_execution = CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE
#ifdef BOOST_COMPUTE_CL_VERSION_2_0
,
on_device = CL_QUEUE_ON_DEVICE,
on_device_default = CL_QUEUE_ON_DEVICE_DEFAULT
#endif
};
enum map_flags {
map_read = CL_MAP_READ,
map_write = CL_MAP_WRITE
#ifdef BOOST_COMPUTE_CL_VERSION_1_2
,
map_write_invalidate_region = CL_MAP_WRITE_INVALIDATE_REGION
#endif
};
#ifdef BOOST_COMPUTE_CL_VERSION_1_2
enum mem_migration_flags {
migrate_to_host = CL_MIGRATE_MEM_OBJECT_HOST,
migrate_content_undefined = CL_MIGRATE_MEM_OBJECT_CONTENT_UNDEFINED
};
#endif // BOOST_COMPUTE_CL_VERSION_1_2
/// Creates a null command queue.
command_queue()
: m_queue(0)
{
}
explicit command_queue(cl_command_queue queue, bool retain = true)
: m_queue(queue)
{
if(m_queue && retain){
clRetainCommandQueue(m_queue);
}
}
/// Creates a command queue in \p context for \p device with
/// \p properties.
///
/// \see_opencl_ref{clCreateCommandQueue}
command_queue(const context &context,
const device &device,
cl_command_queue_properties properties = 0)
{
BOOST_ASSERT(device.id() != 0);
cl_int error = 0;
#ifdef BOOST_COMPUTE_CL_VERSION_2_0
if (device.check_version(2, 0)){
std::vector<cl_queue_properties> queue_properties;
if(properties){
queue_properties.push_back(CL_QUEUE_PROPERTIES);
queue_properties.push_back(cl_queue_properties(properties));
queue_properties.push_back(cl_queue_properties(0));
}
const cl_queue_properties *queue_properties_ptr =
queue_properties.empty() ? 0 : &queue_properties[0];
m_queue = clCreateCommandQueueWithProperties(
context, device.id(), queue_properties_ptr, &error
);
} else
#endif
{
// Suppress deprecated declarations warning
BOOST_COMPUTE_DISABLE_DEPRECATED_DECLARATIONS();
m_queue = clCreateCommandQueue(
context, device.id(), properties, &error
);
BOOST_COMPUTE_ENABLE_DEPRECATED_DECLARATIONS();
}
if(!m_queue){
BOOST_THROW_EXCEPTION(opencl_error(error));
}
}
/// Creates a new command queue object as a copy of \p other.
command_queue(const command_queue &other)
: m_queue(other.m_queue)
{
if(m_queue){
clRetainCommandQueue(m_queue);
}
}
/// Copies the command queue object from \p other to \c *this.
command_queue& operator=(const command_queue &other)
{
if(this != &other){
if(m_queue){
clReleaseCommandQueue(m_queue);
}
m_queue = other.m_queue;
if(m_queue){
clRetainCommandQueue(m_queue);
}
}
return *this;
}
#ifndef BOOST_COMPUTE_NO_RVALUE_REFERENCES
/// Move-constructs a new command queue object from \p other.
command_queue(command_queue&& other) BOOST_NOEXCEPT
: m_queue(other.m_queue)
{
other.m_queue = 0;
}
/// Move-assigns the command queue from \p other to \c *this.
command_queue& operator=(command_queue&& other) BOOST_NOEXCEPT
{
if(m_queue){
clReleaseCommandQueue(m_queue);
}
m_queue = other.m_queue;
other.m_queue = 0;
return *this;
}
#endif // BOOST_COMPUTE_NO_RVALUE_REFERENCES
/// Destroys the command queue.
///
/// \see_opencl_ref{clReleaseCommandQueue}
~command_queue()
{
if(m_queue){
BOOST_COMPUTE_ASSERT_CL_SUCCESS(
clReleaseCommandQueue(m_queue)
);
}
}
/// Returns the underlying OpenCL command queue.
cl_command_queue& get() const
{
return const_cast<cl_command_queue &>(m_queue);
}
/// Returns the device that the command queue issues commands to.
device get_device() const
{
return device(get_info<cl_device_id>(CL_QUEUE_DEVICE));
}
/// Returns the context for the command queue.
context get_context() const
{
return context(get_info<cl_context>(CL_QUEUE_CONTEXT));
}
/// Returns information about the command queue.
///
/// \see_opencl_ref{clGetCommandQueueInfo}
template<class T>
T get_info(cl_command_queue_info info) const
{
return detail::get_object_info<T>(clGetCommandQueueInfo, m_queue, info);
}
/// \overload
template<int Enum>
typename detail::get_object_info_type<command_queue, Enum>::type
get_info() const;
/// Returns the properties for the command queue.
cl_command_queue_properties get_properties() const
{
return get_info<cl_command_queue_properties>(CL_QUEUE_PROPERTIES);
}
#if defined(BOOST_COMPUTE_CL_VERSION_2_1) || defined(BOOST_COMPUTE_DOXYGEN_INVOKED)
/// Returns the current default device command queue for the underlying device.
///
/// \opencl_version_warning{2,1}
command_queue get_default_device_queue() const
{
return command_queue(get_info<cl_command_queue>(CL_QUEUE_DEVICE_DEFAULT));
}
/// Replaces the default device command queue for the underlying device
/// with this command queue. Command queue must have been created
/// with CL_QUEUE_ON_DEVICE flag.
///
/// \see_opencl21_ref{clSetDefaultDeviceCommandQueue}
///
/// \opencl_version_warning{2,1}
void set_as_default_device_queue() const
{
cl_int ret = clSetDefaultDeviceCommandQueue(
this->get_context().get(),
this->get_device().get(),
m_queue
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
}
#endif // BOOST_COMPUTE_CL_VERSION_2_1
/// Enqueues a command to read data from \p buffer to host memory.
///
/// \see_opencl_ref{clEnqueueReadBuffer}
///
/// \see copy()
event enqueue_read_buffer(const buffer &buffer,
size_t offset,
size_t size,
void *host_ptr,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(size <= buffer.size());
BOOST_ASSERT(buffer.get_context() == this->get_context());
BOOST_ASSERT(host_ptr != 0);
event event_;
cl_int ret = clEnqueueReadBuffer(
m_queue,
buffer.get(),
CL_TRUE,
offset,
size,
host_ptr,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// Enqueues a command to read data from \p buffer to host memory. The
/// copy will be performed asynchronously.
///
/// \see_opencl_ref{clEnqueueReadBuffer}
///
/// \see copy_async()
event enqueue_read_buffer_async(const buffer &buffer,
size_t offset,
size_t size,
void *host_ptr,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(size <= buffer.size());
BOOST_ASSERT(buffer.get_context() == this->get_context());
BOOST_ASSERT(host_ptr != 0);
event event_;
cl_int ret = clEnqueueReadBuffer(
m_queue,
buffer.get(),
CL_FALSE,
offset,
size,
host_ptr,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
#if defined(BOOST_COMPUTE_CL_VERSION_1_1) || defined(BOOST_COMPUTE_DOXYGEN_INVOKED)
/// Enqueues a command to read a rectangular region from \p buffer to
/// host memory.
///
/// \see_opencl_ref{clEnqueueReadBufferRect}
///
/// \opencl_version_warning{1,1}
event enqueue_read_buffer_rect(const buffer &buffer,
const size_t buffer_origin[3],
const size_t host_origin[3],
const size_t region[3],
size_t buffer_row_pitch,
size_t buffer_slice_pitch,
size_t host_row_pitch,
size_t host_slice_pitch,
void *host_ptr,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(buffer.get_context() == this->get_context());
BOOST_ASSERT(host_ptr != 0);
event event_;
cl_int ret = clEnqueueReadBufferRect(
m_queue,
buffer.get(),
CL_TRUE,
buffer_origin,
host_origin,
region,
buffer_row_pitch,
buffer_slice_pitch,
host_row_pitch,
host_slice_pitch,
host_ptr,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// Enqueues a command to read a rectangular region from \p buffer to
/// host memory. The copy will be performed asynchronously.
///
/// \see_opencl_ref{clEnqueueReadBufferRect}
///
/// \opencl_version_warning{1,1}
event enqueue_read_buffer_rect_async(const buffer &buffer,
const size_t buffer_origin[3],
const size_t host_origin[3],
const size_t region[3],
size_t buffer_row_pitch,
size_t buffer_slice_pitch,
size_t host_row_pitch,
size_t host_slice_pitch,
void *host_ptr,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(buffer.get_context() == this->get_context());
BOOST_ASSERT(host_ptr != 0);
event event_;
cl_int ret = clEnqueueReadBufferRect(
m_queue,
buffer.get(),
CL_FALSE,
buffer_origin,
host_origin,
region,
buffer_row_pitch,
buffer_slice_pitch,
host_row_pitch,
host_slice_pitch,
host_ptr,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
#endif // BOOST_COMPUTE_CL_VERSION_1_1
/// Enqueues a command to write data from host memory to \p buffer.
///
/// \see_opencl_ref{clEnqueueWriteBuffer}
///
/// \see copy()
event enqueue_write_buffer(const buffer &buffer,
size_t offset,
size_t size,
const void *host_ptr,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(size <= buffer.size());
BOOST_ASSERT(buffer.get_context() == this->get_context());
BOOST_ASSERT(host_ptr != 0);
event event_;
cl_int ret = clEnqueueWriteBuffer(
m_queue,
buffer.get(),
CL_TRUE,
offset,
size,
host_ptr,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// Enqueues a command to write data from host memory to \p buffer.
/// The copy is performed asynchronously.
///
/// \see_opencl_ref{clEnqueueWriteBuffer}
///
/// \see copy_async()
event enqueue_write_buffer_async(const buffer &buffer,
size_t offset,
size_t size,
const void *host_ptr,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(size <= buffer.size());
BOOST_ASSERT(buffer.get_context() == this->get_context());
BOOST_ASSERT(host_ptr != 0);
event event_;
cl_int ret = clEnqueueWriteBuffer(
m_queue,
buffer.get(),
CL_FALSE,
offset,
size,
host_ptr,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
#if defined(BOOST_COMPUTE_CL_VERSION_1_1) || defined(BOOST_COMPUTE_DOXYGEN_INVOKED)
/// Enqueues a command to write a rectangular region from host memory
/// to \p buffer.
///
/// \see_opencl_ref{clEnqueueWriteBufferRect}
///
/// \opencl_version_warning{1,1}
event enqueue_write_buffer_rect(const buffer &buffer,
const size_t buffer_origin[3],
const size_t host_origin[3],
const size_t region[3],
size_t buffer_row_pitch,
size_t buffer_slice_pitch,
size_t host_row_pitch,
size_t host_slice_pitch,
void *host_ptr,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(buffer.get_context() == this->get_context());
BOOST_ASSERT(host_ptr != 0);
event event_;
cl_int ret = clEnqueueWriteBufferRect(
m_queue,
buffer.get(),
CL_TRUE,
buffer_origin,
host_origin,
region,
buffer_row_pitch,
buffer_slice_pitch,
host_row_pitch,
host_slice_pitch,
host_ptr,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// Enqueues a command to write a rectangular region from host memory
/// to \p buffer. The copy is performed asynchronously.
///
/// \see_opencl_ref{clEnqueueWriteBufferRect}
///
/// \opencl_version_warning{1,1}
event enqueue_write_buffer_rect_async(const buffer &buffer,
const size_t buffer_origin[3],
const size_t host_origin[3],
const size_t region[3],
size_t buffer_row_pitch,
size_t buffer_slice_pitch,
size_t host_row_pitch,
size_t host_slice_pitch,
void *host_ptr,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(buffer.get_context() == this->get_context());
BOOST_ASSERT(host_ptr != 0);
event event_;
cl_int ret = clEnqueueWriteBufferRect(
m_queue,
buffer.get(),
CL_FALSE,
buffer_origin,
host_origin,
region,
buffer_row_pitch,
buffer_slice_pitch,
host_row_pitch,
host_slice_pitch,
host_ptr,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
#endif // BOOST_COMPUTE_CL_VERSION_1_1
/// Enqueues a command to copy data from \p src_buffer to
/// \p dst_buffer.
///
/// \see_opencl_ref{clEnqueueCopyBuffer}
///
/// \see copy()
event enqueue_copy_buffer(const buffer &src_buffer,
const buffer &dst_buffer,
size_t src_offset,
size_t dst_offset,
size_t size,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(src_offset + size <= src_buffer.size());
BOOST_ASSERT(dst_offset + size <= dst_buffer.size());
BOOST_ASSERT(src_buffer.get_context() == this->get_context());
BOOST_ASSERT(dst_buffer.get_context() == this->get_context());
event event_;
cl_int ret = clEnqueueCopyBuffer(
m_queue,
src_buffer.get(),
dst_buffer.get(),
src_offset,
dst_offset,
size,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
#if defined(BOOST_COMPUTE_CL_VERSION_1_1) || defined(BOOST_COMPUTE_DOXYGEN_INVOKED)
/// Enqueues a command to copy a rectangular region from
/// \p src_buffer to \p dst_buffer.
///
/// \see_opencl_ref{clEnqueueCopyBufferRect}
///
/// \opencl_version_warning{1,1}
event enqueue_copy_buffer_rect(const buffer &src_buffer,
const buffer &dst_buffer,
const size_t src_origin[3],
const size_t dst_origin[3],
const size_t region[3],
size_t buffer_row_pitch,
size_t buffer_slice_pitch,
size_t host_row_pitch,
size_t host_slice_pitch,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(src_buffer.get_context() == this->get_context());
BOOST_ASSERT(dst_buffer.get_context() == this->get_context());
event event_;
cl_int ret = clEnqueueCopyBufferRect(
m_queue,
src_buffer.get(),
dst_buffer.get(),
src_origin,
dst_origin,
region,
buffer_row_pitch,
buffer_slice_pitch,
host_row_pitch,
host_slice_pitch,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
#endif // BOOST_COMPUTE_CL_VERSION_1_1
#if defined(BOOST_COMPUTE_CL_VERSION_1_2) || defined(BOOST_COMPUTE_DOXYGEN_INVOKED)
/// Enqueues a command to fill \p buffer with \p pattern.
///
/// \see_opencl_ref{clEnqueueFillBuffer}
///
/// \opencl_version_warning{1,2}
///
/// \see fill()
event enqueue_fill_buffer(const buffer &buffer,
const void *pattern,
size_t pattern_size,
size_t offset,
size_t size,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(offset + size <= buffer.size());
BOOST_ASSERT(buffer.get_context() == this->get_context());
event event_;
cl_int ret = clEnqueueFillBuffer(
m_queue,
buffer.get(),
pattern,
pattern_size,
offset,
size,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
#endif // BOOST_COMPUTE_CL_VERSION_1_2
/// Enqueues a command to map \p buffer into the host address space.
/// Event associated with map operation is returned through
/// \p map_buffer_event parameter.
///
/// \see_opencl_ref{clEnqueueMapBuffer}
void* enqueue_map_buffer(const buffer &buffer,
cl_map_flags flags,
size_t offset,
size_t size,
event &map_buffer_event,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(offset + size <= buffer.size());
BOOST_ASSERT(buffer.get_context() == this->get_context());
cl_int ret = 0;
void *pointer = clEnqueueMapBuffer(
m_queue,
buffer.get(),
CL_TRUE,
flags,
offset,
size,
events.size(),
events.get_event_ptr(),
&map_buffer_event.get(),
&ret
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return pointer;
}
/// \overload
void* enqueue_map_buffer(const buffer &buffer,
cl_map_flags flags,
size_t offset,
size_t size,
const wait_list &events = wait_list())
{
event event_;
return enqueue_map_buffer(buffer, flags, offset, size, event_, events);
}
/// Enqueues a command to map \p buffer into the host address space.
/// Map operation is performed asynchronously. The pointer to the mapped
/// region cannot be used until the map operation has completed.
///
/// Event associated with map operation is returned through
/// \p map_buffer_event parameter.
///
/// \see_opencl_ref{clEnqueueMapBuffer}
void* enqueue_map_buffer_async(const buffer &buffer,
cl_map_flags flags,
size_t offset,
size_t size,
event &map_buffer_event,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(offset + size <= buffer.size());
BOOST_ASSERT(buffer.get_context() == this->get_context());
cl_int ret = 0;
void *pointer = clEnqueueMapBuffer(
m_queue,
buffer.get(),
CL_FALSE,
flags,
offset,
size,
events.size(),
events.get_event_ptr(),
&map_buffer_event.get(),
&ret
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return pointer;
}
/// Enqueues a command to unmap \p buffer from the host memory space.
///
/// \see_opencl_ref{clEnqueueUnmapMemObject}
event enqueue_unmap_buffer(const buffer &buffer,
void *mapped_ptr,
const wait_list &events = wait_list())
{
BOOST_ASSERT(buffer.get_context() == this->get_context());
return enqueue_unmap_mem_object(buffer.get(), mapped_ptr, events);
}
/// Enqueues a command to unmap \p mem from the host memory space.
///
/// \see_opencl_ref{clEnqueueUnmapMemObject}
event enqueue_unmap_mem_object(cl_mem mem,
void *mapped_ptr,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
event event_;
cl_int ret = clEnqueueUnmapMemObject(
m_queue,
mem,
mapped_ptr,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// Enqueues a command to read data from \p image to host memory.
///
/// \see_opencl_ref{clEnqueueReadImage}
event enqueue_read_image(const image_object& image,
const size_t *origin,
const size_t *region,
size_t row_pitch,
size_t slice_pitch,
void *host_ptr,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
event event_;
cl_int ret = clEnqueueReadImage(
m_queue,
image.get(),
CL_TRUE,
origin,
region,
row_pitch,
slice_pitch,
host_ptr,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// \overload
template<size_t N>
event enqueue_read_image(const image_object& image,
const extents<N> origin,
const extents<N> region,
void *host_ptr,
size_t row_pitch = 0,
size_t slice_pitch = 0,
const wait_list &events = wait_list())
{
BOOST_ASSERT(image.get_context() == this->get_context());
size_t origin3[3] = { 0, 0, 0 };
size_t region3[3] = { 1, 1, 1 };
std::copy(origin.data(), origin.data() + N, origin3);
std::copy(region.data(), region.data() + N, region3);
return enqueue_read_image(
image, origin3, region3, row_pitch, slice_pitch, host_ptr, events
);
}
/// Enqueues a command to write data from host memory to \p image.
///
/// \see_opencl_ref{clEnqueueWriteImage}
event enqueue_write_image(image_object& image,
const size_t *origin,
const size_t *region,
const void *host_ptr,
size_t input_row_pitch = 0,
size_t input_slice_pitch = 0,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
event event_;
cl_int ret = clEnqueueWriteImage(
m_queue,
image.get(),
CL_TRUE,
origin,
region,
input_row_pitch,
input_slice_pitch,
host_ptr,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// \overload
template<size_t N>
event enqueue_write_image(image_object& image,
const extents<N> origin,
const extents<N> region,
const void *host_ptr,
const size_t input_row_pitch = 0,
const size_t input_slice_pitch = 0,
const wait_list &events = wait_list())
{
BOOST_ASSERT(image.get_context() == this->get_context());
size_t origin3[3] = { 0, 0, 0 };
size_t region3[3] = { 1, 1, 1 };
std::copy(origin.data(), origin.data() + N, origin3);
std::copy(region.data(), region.data() + N, region3);
return enqueue_write_image(
image, origin3, region3, host_ptr, input_row_pitch, input_slice_pitch, events
);
}
/// Enqueues a command to map \p image into the host address space.
///
/// Event associated with map operation is returned through
/// \p map_image_event parameter.
///
/// \see_opencl_ref{clEnqueueMapImage}
void* enqueue_map_image(const image_object &image,
cl_map_flags flags,
const size_t *origin,
const size_t *region,
size_t &output_row_pitch,
size_t &output_slice_pitch,
event &map_image_event,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(image.get_context() == this->get_context());
cl_int ret = 0;
void *pointer = clEnqueueMapImage(
m_queue,
image.get(),
CL_TRUE,
flags,
origin,
region,
&output_row_pitch,
&output_slice_pitch,
events.size(),
events.get_event_ptr(),
&map_image_event.get(),
&ret
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return pointer;
}
/// \overload
void* enqueue_map_image(const image_object &image,
cl_map_flags flags,
const size_t *origin,
const size_t *region,
size_t &output_row_pitch,
size_t &output_slice_pitch,
const wait_list &events = wait_list())
{
event event_;
return enqueue_map_image(
image, flags, origin, region,
output_row_pitch, output_slice_pitch, event_, events
);
}
/// \overload
template<size_t N>
void* enqueue_map_image(image_object& image,
cl_map_flags flags,
const extents<N> origin,
const extents<N> region,
size_t &output_row_pitch,
size_t &output_slice_pitch,
event &map_image_event,
const wait_list &events = wait_list())
{
BOOST_ASSERT(image.get_context() == this->get_context());
size_t origin3[3] = { 0, 0, 0 };
size_t region3[3] = { 1, 1, 1 };
std::copy(origin.data(), origin.data() + N, origin3);
std::copy(region.data(), region.data() + N, region3);
return enqueue_map_image(
image, flags, origin3, region3,
output_row_pitch, output_slice_pitch, map_image_event, events
);
}
/// \overload
template<size_t N>
void* enqueue_map_image(image_object& image,
cl_map_flags flags,
const extents<N> origin,
const extents<N> region,
size_t &output_row_pitch,
size_t &output_slice_pitch,
const wait_list &events = wait_list())
{
event event_;
return enqueue_map_image(
image, flags, origin, region,
output_row_pitch, output_slice_pitch, event_, events
);
}
/// Enqueues a command to map \p image into the host address space.
/// Map operation is performed asynchronously. The pointer to the mapped
/// region cannot be used until the map operation has completed.
///
/// Event associated with map operation is returned through
/// \p map_image_event parameter.
///
/// \see_opencl_ref{clEnqueueMapImage}
void* enqueue_map_image_async(const image_object &image,
cl_map_flags flags,
const size_t *origin,
const size_t *region,
size_t &output_row_pitch,
size_t &output_slice_pitch,
event &map_image_event,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(image.get_context() == this->get_context());
cl_int ret = 0;
void *pointer = clEnqueueMapImage(
m_queue,
image.get(),
CL_FALSE,
flags,
origin,
region,
&output_row_pitch,
&output_slice_pitch,
events.size(),
events.get_event_ptr(),
&map_image_event.get(),
&ret
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return pointer;
}
/// \overload
template<size_t N>
void* enqueue_map_image_async(image_object& image,
cl_map_flags flags,
const extents<N> origin,
const extents<N> region,
size_t &output_row_pitch,
size_t &output_slice_pitch,
event &map_image_event,
const wait_list &events = wait_list())
{
BOOST_ASSERT(image.get_context() == this->get_context());
size_t origin3[3] = { 0, 0, 0 };
size_t region3[3] = { 1, 1, 1 };
std::copy(origin.data(), origin.data() + N, origin3);
std::copy(region.data(), region.data() + N, region3);
return enqueue_map_image_async(
image, flags, origin3, region3,
output_row_pitch, output_slice_pitch, map_image_event, events
);
}
/// Enqueues a command to unmap \p image from the host memory space.
///
/// \see_opencl_ref{clEnqueueUnmapMemObject}
event enqueue_unmap_image(const image_object &image,
void *mapped_ptr,
const wait_list &events = wait_list())
{
BOOST_ASSERT(image.get_context() == this->get_context());
return enqueue_unmap_mem_object(image.get(), mapped_ptr, events);
}
/// Enqueues a command to copy data from \p src_image to \p dst_image.
///
/// \see_opencl_ref{clEnqueueCopyImage}
event enqueue_copy_image(const image_object& src_image,
image_object& dst_image,
const size_t *src_origin,
const size_t *dst_origin,
const size_t *region,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
event event_;
cl_int ret = clEnqueueCopyImage(
m_queue,
src_image.get(),
dst_image.get(),
src_origin,
dst_origin,
region,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// \overload
template<size_t N>
event enqueue_copy_image(const image_object& src_image,
image_object& dst_image,
const extents<N> src_origin,
const extents<N> dst_origin,
const extents<N> region,
const wait_list &events = wait_list())
{
BOOST_ASSERT(src_image.get_context() == this->get_context());
BOOST_ASSERT(dst_image.get_context() == this->get_context());
BOOST_ASSERT_MSG(src_image.format() == dst_image.format(),
"Source and destination image formats must match.");
size_t src_origin3[3] = { 0, 0, 0 };
size_t dst_origin3[3] = { 0, 0, 0 };
size_t region3[3] = { 1, 1, 1 };
std::copy(src_origin.data(), src_origin.data() + N, src_origin3);
std::copy(dst_origin.data(), dst_origin.data() + N, dst_origin3);
std::copy(region.data(), region.data() + N, region3);
return enqueue_copy_image(
src_image, dst_image, src_origin3, dst_origin3, region3, events
);
}
/// Enqueues a command to copy data from \p src_image to \p dst_buffer.
///
/// \see_opencl_ref{clEnqueueCopyImageToBuffer}
event enqueue_copy_image_to_buffer(const image_object& src_image,
memory_object& dst_buffer,
const size_t *src_origin,
const size_t *region,
size_t dst_offset,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
event event_;
cl_int ret = clEnqueueCopyImageToBuffer(
m_queue,
src_image.get(),
dst_buffer.get(),
src_origin,
region,
dst_offset,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// Enqueues a command to copy data from \p src_buffer to \p dst_image.
///
/// \see_opencl_ref{clEnqueueCopyBufferToImage}
event enqueue_copy_buffer_to_image(const memory_object& src_buffer,
image_object& dst_image,
size_t src_offset,
const size_t *dst_origin,
const size_t *region,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
event event_;
cl_int ret = clEnqueueCopyBufferToImage(
m_queue,
src_buffer.get(),
dst_image.get(),
src_offset,
dst_origin,
region,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
#if defined(BOOST_COMPUTE_CL_VERSION_1_2) || defined(BOOST_COMPUTE_DOXYGEN_INVOKED)
/// Enqueues a command to fill \p image with \p fill_color.
///
/// \see_opencl_ref{clEnqueueFillImage}
///
/// \opencl_version_warning{1,2}
event enqueue_fill_image(image_object& image,
const void *fill_color,
const size_t *origin,
const size_t *region,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
event event_;
cl_int ret = clEnqueueFillImage(
m_queue,
image.get(),
fill_color,
origin,
region,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// \overload
template<size_t N>
event enqueue_fill_image(image_object& image,
const void *fill_color,
const extents<N> origin,
const extents<N> region,
const wait_list &events = wait_list())
{
BOOST_ASSERT(image.get_context() == this->get_context());
size_t origin3[3] = { 0, 0, 0 };
size_t region3[3] = { 1, 1, 1 };
std::copy(origin.data(), origin.data() + N, origin3);
std::copy(region.data(), region.data() + N, region3);
return enqueue_fill_image(
image, fill_color, origin3, region3, events
);
}
/// Enqueues a command to migrate \p mem_objects.
///
/// \see_opencl_ref{clEnqueueMigrateMemObjects}
///
/// \opencl_version_warning{1,2}
event enqueue_migrate_memory_objects(uint_ num_mem_objects,
const cl_mem *mem_objects,
cl_mem_migration_flags flags,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
event event_;
cl_int ret = clEnqueueMigrateMemObjects(
m_queue,
num_mem_objects,
mem_objects,
flags,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
#endif // BOOST_COMPUTE_CL_VERSION_1_2
/// Enqueues a kernel for execution.
///
/// \see_opencl_ref{clEnqueueNDRangeKernel}
event enqueue_nd_range_kernel(const kernel &kernel,
size_t work_dim,
const size_t *global_work_offset,
const size_t *global_work_size,
const size_t *local_work_size,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(kernel.get_context() == this->get_context());
event event_;
cl_int ret = clEnqueueNDRangeKernel(
m_queue,
kernel,
static_cast<cl_uint>(work_dim),
global_work_offset,
global_work_size,
local_work_size,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// \overload
template<size_t N>
event enqueue_nd_range_kernel(const kernel &kernel,
const extents<N> &global_work_offset,
const extents<N> &global_work_size,
const extents<N> &local_work_size,
const wait_list &events = wait_list())
{
return enqueue_nd_range_kernel(
kernel,
N,
global_work_offset.data(),
global_work_size.data(),
local_work_size.data(),
events
);
}
/// Convenience method which calls enqueue_nd_range_kernel() with a
/// one-dimensional range.
event enqueue_1d_range_kernel(const kernel &kernel,
size_t global_work_offset,
size_t global_work_size,
size_t local_work_size,
const wait_list &events = wait_list())
{
return enqueue_nd_range_kernel(
kernel,
1,
&global_work_offset,
&global_work_size,
local_work_size ? &local_work_size : 0,
events
);
}
/// Enqueues a kernel to execute using a single work-item.
///
/// \see_opencl_ref{clEnqueueTask}
event enqueue_task(const kernel &kernel, const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
BOOST_ASSERT(kernel.get_context() == this->get_context());
event event_;
// clEnqueueTask() was deprecated in OpenCL 2.0. In that case we
// just forward to the equivalent clEnqueueNDRangeKernel() call.
#ifdef BOOST_COMPUTE_CL_VERSION_2_0
size_t one = 1;
cl_int ret = clEnqueueNDRangeKernel(
m_queue, kernel, 1, 0, &one, &one,
events.size(), events.get_event_ptr(), &event_.get()
);
#else
cl_int ret = clEnqueueTask(
m_queue, kernel, events.size(), events.get_event_ptr(), &event_.get()
);
#endif
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// Enqueues a function to execute on the host.
event enqueue_native_kernel(void (BOOST_COMPUTE_CL_CALLBACK *user_func)(void *),
void *args,
size_t cb_args,
uint_ num_mem_objects,
const cl_mem *mem_list,
const void **args_mem_loc,
const wait_list &events = wait_list())
{
BOOST_ASSERT(m_queue != 0);
event event_;
cl_int ret = clEnqueueNativeKernel(
m_queue,
user_func,
args,
cb_args,
num_mem_objects,
mem_list,
args_mem_loc,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// Convenience overload for enqueue_native_kernel() which enqueues a
/// native kernel on the host with a nullary function.
event enqueue_native_kernel(void (BOOST_COMPUTE_CL_CALLBACK *user_func)(void),
const wait_list &events = wait_list())
{
return enqueue_native_kernel(
detail::nullary_native_kernel_trampoline,
reinterpret_cast<void *>(&user_func),
sizeof(user_func),
0,
0,
0,
events
);
}
/// Flushes the command queue.
///
/// \see_opencl_ref{clFlush}
void flush()
{
BOOST_ASSERT(m_queue != 0);
cl_int ret = clFlush(m_queue);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
}
/// Blocks until all outstanding commands in the queue have finished.
///
/// \see_opencl_ref{clFinish}
void finish()
{
BOOST_ASSERT(m_queue != 0);
cl_int ret = clFinish(m_queue);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
}
/// Enqueues a barrier in the queue.
void enqueue_barrier()
{
BOOST_ASSERT(m_queue != 0);
cl_int ret = CL_SUCCESS;
#ifdef BOOST_COMPUTE_CL_VERSION_1_2
if(get_device().check_version(1, 2)){
ret = clEnqueueBarrierWithWaitList(m_queue, 0, 0, 0);
} else
#endif // BOOST_COMPUTE_CL_VERSION_1_2
{
// Suppress deprecated declarations warning
BOOST_COMPUTE_DISABLE_DEPRECATED_DECLARATIONS();
ret = clEnqueueBarrier(m_queue);
BOOST_COMPUTE_ENABLE_DEPRECATED_DECLARATIONS();
}
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
}
#if defined(BOOST_COMPUTE_CL_VERSION_1_2) || defined(BOOST_COMPUTE_DOXYGEN_INVOKED)
/// Enqueues a barrier in the queue after \p events.
///
/// \opencl_version_warning{1,2}
event enqueue_barrier(const wait_list &events)
{
BOOST_ASSERT(m_queue != 0);
event event_;
cl_int ret = CL_SUCCESS;
ret = clEnqueueBarrierWithWaitList(
m_queue, events.size(), events.get_event_ptr(), &event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
#endif // BOOST_COMPUTE_CL_VERSION_1_2
/// Enqueues a marker in the queue and returns an event that can be
/// used to track its progress.
event enqueue_marker()
{
event event_;
cl_int ret = CL_SUCCESS;
#ifdef BOOST_COMPUTE_CL_VERSION_1_2
if(get_device().check_version(1, 2)){
ret = clEnqueueMarkerWithWaitList(m_queue, 0, 0, &event_.get());
} else
#endif
{
// Suppress deprecated declarations warning
BOOST_COMPUTE_DISABLE_DEPRECATED_DECLARATIONS();
ret = clEnqueueMarker(m_queue, &event_.get());
BOOST_COMPUTE_ENABLE_DEPRECATED_DECLARATIONS();
}
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
#if defined(BOOST_COMPUTE_CL_VERSION_1_2) || defined(BOOST_COMPUTE_DOXYGEN_INVOKED)
/// Enqueues a marker after \p events in the queue and returns an
/// event that can be used to track its progress.
///
/// \opencl_version_warning{1,2}
event enqueue_marker(const wait_list &events)
{
event event_;
cl_int ret = clEnqueueMarkerWithWaitList(
m_queue, events.size(), events.get_event_ptr(), &event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
#endif // BOOST_COMPUTE_CL_VERSION_1_2
#if defined(BOOST_COMPUTE_CL_VERSION_2_0) || defined(BOOST_COMPUTE_DOXYGEN_INVOKED)
/// Enqueues a command to copy \p size bytes of data from \p src_ptr to
/// \p dst_ptr.
///
/// \opencl_version_warning{2,0}
///
/// \see_opencl2_ref{clEnqueueSVMMemcpy}
event enqueue_svm_memcpy(void *dst_ptr,
const void *src_ptr,
size_t size,
const wait_list &events = wait_list())
{
event event_;
cl_int ret = clEnqueueSVMMemcpy(
m_queue,
CL_TRUE,
dst_ptr,
src_ptr,
size,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// Enqueues a command to copy \p size bytes of data from \p src_ptr to
/// \p dst_ptr. The operation is performed asynchronously.
///
/// \opencl_version_warning{2,0}
///
/// \see_opencl2_ref{clEnqueueSVMMemcpy}
event enqueue_svm_memcpy_async(void *dst_ptr,
const void *src_ptr,
size_t size,
const wait_list &events = wait_list())
{
event event_;
cl_int ret = clEnqueueSVMMemcpy(
m_queue,
CL_FALSE,
dst_ptr,
src_ptr,
size,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// Enqueues a command to fill \p size bytes of data at \p svm_ptr with
/// \p pattern.
///
/// \opencl_version_warning{2,0}
///
/// \see_opencl2_ref{clEnqueueSVMMemFill}
event enqueue_svm_fill(void *svm_ptr,
const void *pattern,
size_t pattern_size,
size_t size,
const wait_list &events = wait_list())
{
event event_;
cl_int ret = clEnqueueSVMMemFill(
m_queue,
svm_ptr,
pattern,
pattern_size,
size,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// Enqueues a command to free \p svm_ptr.
///
/// \opencl_version_warning{2,0}
///
/// \see_opencl2_ref{clEnqueueSVMFree}
///
/// \see svm_free()
event enqueue_svm_free(void *svm_ptr,
const wait_list &events = wait_list())
{
event event_;
cl_int ret = clEnqueueSVMFree(
m_queue,
1,
&svm_ptr,
0,
0,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// Enqueues a command to map \p svm_ptr to the host memory space.
///
/// \opencl_version_warning{2,0}
///
/// \see_opencl2_ref{clEnqueueSVMMap}
event enqueue_svm_map(void *svm_ptr,
size_t size,
cl_map_flags flags,
const wait_list &events = wait_list())
{
event event_;
cl_int ret = clEnqueueSVMMap(
m_queue,
CL_TRUE,
flags,
svm_ptr,
size,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// Enqueues a command to unmap \p svm_ptr from the host memory space.
///
/// \opencl_version_warning{2,0}
///
/// \see_opencl2_ref{clEnqueueSVMUnmap}
event enqueue_svm_unmap(void *svm_ptr,
const wait_list &events = wait_list())
{
event event_;
cl_int ret = clEnqueueSVMUnmap(
m_queue,
svm_ptr,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
#endif // BOOST_COMPUTE_CL_VERSION_2_0
#if defined(BOOST_COMPUTE_CL_VERSION_2_1) || defined(BOOST_COMPUTE_DOXYGEN_INVOKED)
/// Enqueues a command to indicate which device a set of ranges of SVM allocations
/// should be associated with. The pair \p svm_ptrs[i] and \p sizes[i] together define
/// the starting address and number of bytes in a range to be migrated.
///
/// If \p sizes is empty, then that means every allocation containing any \p svm_ptrs[i]
/// is to be migrated. Also, if \p sizes[i] is zero, then the entire allocation containing
/// \p svm_ptrs[i] is migrated.
///
/// \opencl_version_warning{2,1}
///
/// \see_opencl21_ref{clEnqueueSVMMigrateMem}
event enqueue_svm_migrate_memory(const std::vector<const void*> &svm_ptrs,
const std::vector<size_t> &sizes,
const cl_mem_migration_flags flags = 0,
const wait_list &events = wait_list())
{
BOOST_ASSERT(svm_ptrs.size() == sizes.size() || sizes.size() == 0);
event event_;
cl_int ret = clEnqueueSVMMigrateMem(
m_queue,
static_cast<cl_uint>(svm_ptrs.size()),
const_cast<void const **>(&svm_ptrs[0]),
sizes.size() > 0 ? &sizes[0] : NULL,
flags,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
/// Enqueues a command to indicate which device a range of SVM allocation
/// should be associated with. The pair \p svm_ptr and \p size together define
/// the starting address and number of bytes in a range to be migrated.
///
/// If \p size is 0, then the entire allocation containing \p svm_ptr is
/// migrated. The default value for \p size is 0.
///
/// \opencl_version_warning{2,1}
///
/// \see_opencl21_ref{clEnqueueSVMMigrateMem}
event enqueue_svm_migrate_memory(const void* svm_ptr,
const size_t size = 0,
const cl_mem_migration_flags flags = 0,
const wait_list &events = wait_list())
{
event event_;
cl_int ret = clEnqueueSVMMigrateMem(
m_queue,
cl_uint(1),
&svm_ptr,
&size,
flags,
events.size(),
events.get_event_ptr(),
&event_.get()
);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
return event_;
}
#endif // BOOST_COMPUTE_CL_VERSION_2_1
/// Returns \c true if the command queue is the same at \p other.
bool operator==(const command_queue &other) const
{
return m_queue == other.m_queue;
}
/// Returns \c true if the command queue is different from \p other.
bool operator!=(const command_queue &other) const
{
return m_queue != other.m_queue;
}
/// \internal_
operator cl_command_queue() const
{
return m_queue;
}
/// \internal_
bool check_device_version(int major, int minor) const
{
return get_device().check_version(major, minor);
}
private:
cl_command_queue m_queue;
};
inline buffer buffer::clone(command_queue &queue) const
{
buffer copy(get_context(), size(), get_memory_flags());
queue.enqueue_copy_buffer(*this, copy, 0, 0, size());
return copy;
}
inline image1d image1d::clone(command_queue &queue) const
{
image1d copy(
get_context(), width(), format(), get_memory_flags()
);
queue.enqueue_copy_image(*this, copy, origin(), copy.origin(), size());
return copy;
}
inline image2d image2d::clone(command_queue &queue) const
{
image2d copy(
get_context(), width(), height(), format(), get_memory_flags()
);
queue.enqueue_copy_image(*this, copy, origin(), copy.origin(), size());
return copy;
}
inline image3d image3d::clone(command_queue &queue) const
{
image3d copy(
get_context(), width(), height(), depth(), format(), get_memory_flags()
);
queue.enqueue_copy_image(*this, copy, origin(), copy.origin(), size());
return copy;
}
/// \internal_ define get_info() specializations for command_queue
BOOST_COMPUTE_DETAIL_DEFINE_GET_INFO_SPECIALIZATIONS(command_queue,
((cl_context, CL_QUEUE_CONTEXT))
((cl_device_id, CL_QUEUE_DEVICE))
((uint_, CL_QUEUE_REFERENCE_COUNT))
((cl_command_queue_properties, CL_QUEUE_PROPERTIES))
)
#ifdef BOOST_COMPUTE_CL_VERSION_2_1
BOOST_COMPUTE_DETAIL_DEFINE_GET_INFO_SPECIALIZATIONS(command_queue,
((cl_command_queue, CL_QUEUE_DEVICE_DEFAULT))
)
#endif // BOOST_COMPUTE_CL_VERSION_2_1
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_COMMAND_QUEUE_HPP