mirror of https://github.com/GOSTSec/vanitygen
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1078 lines
25 KiB
1078 lines
25 KiB
/* |
|
* Vanitygen, vanity bitcoin address generator |
|
* Copyright (C) 2011 <samr7@cs.washington.edu> |
|
* |
|
* Vanitygen is free software: you can redistribute it and/or modify |
|
* it under the terms of the GNU Affero General Public License as published by |
|
* the Free Software Foundation, either version 3 of the License, or |
|
* any later version. |
|
* |
|
* Vanitygen is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
* GNU Affero General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Affero General Public License |
|
* along with Vanitygen. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
#if defined(_WIN32) |
|
#define _USE_MATH_DEFINES |
|
#endif /* defined(_WIN32) */ |
|
|
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include <assert.h> |
|
#include <math.h> |
|
|
|
#include <openssl/bn.h> |
|
#include <openssl/sha.h> |
|
#include <openssl/ripemd.h> |
|
#include <openssl/hmac.h> |
|
#include <openssl/evp.h> |
|
#include <openssl/rand.h> |
|
#include <openssl/x509.h> |
|
#include <openssl/pem.h> |
|
#include <openssl/pkcs12.h> |
|
|
|
#include "pattern.h" |
|
#include "util.h" |
|
|
|
const char *vg_b58_alphabet = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"; |
|
|
|
const signed char vg_b58_reverse_map[256] = { |
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, -1, -1, -1, |
|
-1, 9, 10, 11, 12, 13, 14, 15, 16, -1, 17, 18, 19, 20, 21, -1, |
|
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, -1, -1, -1, -1, -1, |
|
-1, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, -1, 44, 45, 46, |
|
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 |
|
}; |
|
|
|
void |
|
fdumphex(FILE *fp, const unsigned char *src, size_t len) |
|
{ |
|
size_t i; |
|
for (i = 0; i < len; i++) { |
|
fprintf(fp, "%02x", src[i]); |
|
} |
|
printf("\n"); |
|
} |
|
|
|
void |
|
fdumpbn(FILE *fp, const BIGNUM *bn) |
|
{ |
|
char *buf; |
|
buf = BN_bn2hex(bn); |
|
fprintf(fp, "%s\n", buf ? buf : "0"); |
|
if (buf) |
|
OPENSSL_free(buf); |
|
} |
|
|
|
void |
|
dumphex(const unsigned char *src, size_t len) |
|
{ |
|
fdumphex(stdout, src, len); |
|
} |
|
|
|
void |
|
dumpbn(const BIGNUM *bn) |
|
{ |
|
fdumpbn(stdout, bn); |
|
} |
|
|
|
/* |
|
* Key format encode/decode |
|
*/ |
|
|
|
void |
|
vg_b58_encode_check(void *buf, size_t len, char *result) |
|
{ |
|
unsigned char hash1[32]; |
|
unsigned char hash2[32]; |
|
|
|
int d, p; |
|
|
|
BN_CTX *bnctx; |
|
BIGNUM *bn, *bndiv, *bntmp; |
|
BIGNUM bna, bnb, bnbase, bnrem; |
|
unsigned char *binres; |
|
int brlen, zpfx; |
|
|
|
bnctx = BN_CTX_new(); |
|
BN_init(&bna); |
|
BN_init(&bnb); |
|
BN_init(&bnbase); |
|
BN_init(&bnrem); |
|
BN_set_word(&bnbase, 58); |
|
|
|
bn = &bna; |
|
bndiv = &bnb; |
|
|
|
brlen = (2 * len) + 4; |
|
binres = (unsigned char*) malloc(brlen); |
|
memcpy(binres, buf, len); |
|
|
|
SHA256(binres, len, hash1); |
|
SHA256(hash1, sizeof(hash1), hash2); |
|
memcpy(&binres[len], hash2, 4); |
|
|
|
BN_bin2bn(binres, len + 4, bn); |
|
|
|
for (zpfx = 0; zpfx < (len + 4) && binres[zpfx] == 0; zpfx++); |
|
|
|
p = brlen; |
|
while (!BN_is_zero(bn)) { |
|
BN_div(bndiv, &bnrem, bn, &bnbase, bnctx); |
|
bntmp = bn; |
|
bn = bndiv; |
|
bndiv = bntmp; |
|
d = BN_get_word(&bnrem); |
|
binres[--p] = vg_b58_alphabet[d]; |
|
} |
|
|
|
while (zpfx--) { |
|
binres[--p] = vg_b58_alphabet[0]; |
|
} |
|
|
|
memcpy(result, &binres[p], brlen - p); |
|
result[brlen - p] = '\0'; |
|
|
|
free(binres); |
|
BN_clear_free(&bna); |
|
BN_clear_free(&bnb); |
|
BN_clear_free(&bnbase); |
|
BN_clear_free(&bnrem); |
|
BN_CTX_free(bnctx); |
|
} |
|
|
|
#define skip_char(c) \ |
|
(((c) == '\r') || ((c) == '\n') || ((c) == ' ') || ((c) == '\t')) |
|
|
|
int |
|
vg_b58_decode_check(const char *input, void *buf, size_t len) |
|
{ |
|
int i, l, c; |
|
unsigned char *xbuf = NULL; |
|
BIGNUM bn, bnw, bnbase; |
|
BN_CTX *bnctx; |
|
unsigned char hash1[32], hash2[32]; |
|
int zpfx; |
|
int res = 0; |
|
|
|
BN_init(&bn); |
|
BN_init(&bnw); |
|
BN_init(&bnbase); |
|
BN_set_word(&bnbase, 58); |
|
bnctx = BN_CTX_new(); |
|
|
|
/* Build a bignum from the encoded value */ |
|
l = strlen(input); |
|
for (i = 0; i < l; i++) { |
|
if (skip_char(input[i])) |
|
continue; |
|
c = vg_b58_reverse_map[(int)input[i]]; |
|
if (c < 0) |
|
goto out; |
|
BN_clear(&bnw); |
|
BN_set_word(&bnw, c); |
|
BN_mul(&bn, &bn, &bnbase, bnctx); |
|
BN_add(&bn, &bn, &bnw); |
|
} |
|
|
|
/* Copy the bignum to a byte buffer */ |
|
for (i = 0, zpfx = 0; input[i]; i++) { |
|
if (skip_char(input[i])) |
|
continue; |
|
if (input[i] != vg_b58_alphabet[0]) |
|
break; |
|
zpfx++; |
|
} |
|
c = BN_num_bytes(&bn); |
|
l = zpfx + c; |
|
if (l < 5) |
|
goto out; |
|
xbuf = (unsigned char *) malloc(l); |
|
if (!xbuf) |
|
goto out; |
|
if (zpfx) |
|
memset(xbuf, 0, zpfx); |
|
if (c) |
|
BN_bn2bin(&bn, xbuf + zpfx); |
|
|
|
/* Check the hash code */ |
|
l -= 4; |
|
SHA256(xbuf, l, hash1); |
|
SHA256(hash1, sizeof(hash1), hash2); |
|
if (memcmp(hash2, xbuf + l, 4)) |
|
goto out; |
|
|
|
/* Buffer verified */ |
|
if (len) { |
|
if (len > l) |
|
len = l; |
|
memcpy(buf, xbuf, len); |
|
} |
|
res = l; |
|
|
|
out: |
|
if (xbuf) |
|
free(xbuf); |
|
BN_clear_free(&bn); |
|
BN_clear_free(&bnw); |
|
BN_clear_free(&bnbase); |
|
BN_CTX_free(bnctx); |
|
return res; |
|
} |
|
|
|
void |
|
vg_encode_address(const EC_KEY *pkey, int addrtype, char *result) |
|
{ |
|
unsigned char eckey_buf[128], *pend; |
|
unsigned char binres[21] = {0,}; |
|
unsigned char hash1[32]; |
|
|
|
pend = eckey_buf; |
|
|
|
i2o_ECPublicKey((EC_KEY*)pkey, &pend); |
|
|
|
binres[0] = addrtype; |
|
SHA256(eckey_buf, pend - eckey_buf, hash1); |
|
RIPEMD160(hash1, sizeof(hash1), &binres[1]); |
|
|
|
vg_b58_encode_check(binres, sizeof(binres), result); |
|
} |
|
|
|
void |
|
vg_encode_script_address(const EC_KEY *pkey, int addrtype, char *result) |
|
{ |
|
unsigned char script_buf[69]; |
|
unsigned char *eckey_buf = script_buf + 2; |
|
unsigned char binres[21] = {0,}; |
|
unsigned char hash1[32]; |
|
|
|
script_buf[ 0] = 0x51; // OP_1 |
|
script_buf[ 1] = 0x41; // pubkey length |
|
// gap for pubkey |
|
script_buf[67] = 0x51; // OP_1 |
|
script_buf[68] = 0xae; // OP_CHECKMULTISIG |
|
|
|
i2o_ECPublicKey((EC_KEY*)pkey, &eckey_buf); |
|
assert(eckey_buf - script_buf == 67); |
|
|
|
binres[0] = addrtype; |
|
SHA256(script_buf, 69, hash1); |
|
RIPEMD160(hash1, sizeof(hash1), &binres[1]); |
|
|
|
vg_b58_encode_check(binres, sizeof(binres), result); |
|
} |
|
|
|
void |
|
vg_encode_privkey(const EC_KEY *pkey, int addrtype, char *result) |
|
{ |
|
unsigned char eckey_buf[128]; |
|
const BIGNUM *bn; |
|
int nbytes; |
|
|
|
bn = EC_KEY_get0_private_key(pkey); |
|
|
|
eckey_buf[0] = addrtype; |
|
nbytes = BN_num_bytes(bn); |
|
assert(nbytes <= 32); |
|
if (nbytes < 32) |
|
memset(eckey_buf + 1, 0, 32 - nbytes); |
|
BN_bn2bin(bn, &eckey_buf[33 - nbytes]); |
|
|
|
vg_b58_encode_check(eckey_buf, 33, result); |
|
} |
|
|
|
int |
|
vg_set_privkey(const BIGNUM *bnpriv, EC_KEY *pkey) |
|
{ |
|
const EC_GROUP *pgroup; |
|
EC_POINT *ppnt; |
|
int res; |
|
|
|
pgroup = EC_KEY_get0_group(pkey); |
|
ppnt = EC_POINT_new(pgroup); |
|
|
|
res = (ppnt && |
|
EC_KEY_set_private_key(pkey, bnpriv) && |
|
EC_POINT_mul(pgroup, ppnt, bnpriv, NULL, NULL, NULL) && |
|
EC_KEY_set_public_key(pkey, ppnt)); |
|
|
|
if (ppnt) |
|
EC_POINT_free(ppnt); |
|
|
|
if (!res) |
|
return 0; |
|
|
|
assert(EC_KEY_check_key(pkey)); |
|
return 1; |
|
} |
|
|
|
int |
|
vg_decode_privkey(const char *b58encoded, EC_KEY *pkey, int *addrtype) |
|
{ |
|
BIGNUM bnpriv; |
|
unsigned char ecpriv[48]; |
|
int res; |
|
|
|
res = vg_b58_decode_check(b58encoded, ecpriv, sizeof(ecpriv)); |
|
if (res != 33) |
|
return 0; |
|
|
|
BN_init(&bnpriv); |
|
BN_bin2bn(ecpriv + 1, res - 1, &bnpriv); |
|
res = vg_set_privkey(&bnpriv, pkey); |
|
BN_clear_free(&bnpriv); |
|
*addrtype = ecpriv[0]; |
|
return 1; |
|
} |
|
|
|
#if OPENSSL_VERSION_NUMBER < 0x10000000L |
|
/* The generic PBKDF2 function first appeared in OpenSSL 1.0 */ |
|
/* ==================================================================== |
|
* Copyright (c) 1999-2006 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* licensing@OpenSSL.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). |
|
* |
|
*/ |
|
int |
|
PKCS5_PBKDF2_HMAC(const char *pass, int passlen, |
|
const unsigned char *salt, int saltlen, int iter, |
|
const EVP_MD *digest, |
|
int keylen, unsigned char *out) |
|
{ |
|
unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4]; |
|
int cplen, j, k, tkeylen, mdlen; |
|
unsigned long i = 1; |
|
HMAC_CTX hctx; |
|
|
|
mdlen = EVP_MD_size(digest); |
|
if (mdlen < 0) |
|
return 0; |
|
|
|
HMAC_CTX_init(&hctx); |
|
p = out; |
|
tkeylen = keylen; |
|
if(!pass) |
|
passlen = 0; |
|
else if(passlen == -1) |
|
passlen = strlen(pass); |
|
while(tkeylen) |
|
{ |
|
if(tkeylen > mdlen) |
|
cplen = mdlen; |
|
else |
|
cplen = tkeylen; |
|
/* We are unlikely to ever use more than 256 blocks (5120 bits!) |
|
* but just in case... |
|
*/ |
|
itmp[0] = (unsigned char)((i >> 24) & 0xff); |
|
itmp[1] = (unsigned char)((i >> 16) & 0xff); |
|
itmp[2] = (unsigned char)((i >> 8) & 0xff); |
|
itmp[3] = (unsigned char)(i & 0xff); |
|
HMAC_Init_ex(&hctx, pass, passlen, digest, NULL); |
|
HMAC_Update(&hctx, salt, saltlen); |
|
HMAC_Update(&hctx, itmp, 4); |
|
HMAC_Final(&hctx, digtmp, NULL); |
|
memcpy(p, digtmp, cplen); |
|
for(j = 1; j < iter; j++) |
|
{ |
|
HMAC(digest, pass, passlen, |
|
digtmp, mdlen, digtmp, NULL); |
|
for(k = 0; k < cplen; k++) |
|
p[k] ^= digtmp[k]; |
|
} |
|
tkeylen-= cplen; |
|
i++; |
|
p+= cplen; |
|
} |
|
HMAC_CTX_cleanup(&hctx); |
|
return 1; |
|
} |
|
#endif /* OPENSSL_VERSION_NUMBER < 0x10000000L */ |
|
|
|
|
|
typedef struct { |
|
int mode; |
|
int iterations; |
|
const EVP_MD *(*pbkdf_hash_getter)(void); |
|
const EVP_CIPHER *(*cipher_getter)(void); |
|
} vg_protkey_parameters_t; |
|
|
|
static const vg_protkey_parameters_t protkey_parameters[] = { |
|
{ 0, 4096, EVP_sha256, EVP_aes_256_cbc }, |
|
{ 0, 0, NULL, NULL }, |
|
{ 0, 0, NULL, NULL }, |
|
{ 0, 0, NULL, NULL }, |
|
{ 0, 0, NULL, NULL }, |
|
{ 0, 0, NULL, NULL }, |
|
{ 0, 0, NULL, NULL }, |
|
{ 0, 0, NULL, NULL }, |
|
{ 0, 0, NULL, NULL }, |
|
{ 0, 0, NULL, NULL }, |
|
{ 0, 0, NULL, NULL }, |
|
{ 0, 0, NULL, NULL }, |
|
{ 0, 0, NULL, NULL }, |
|
{ 0, 0, NULL, NULL }, |
|
{ 0, 0, NULL, NULL }, |
|
{ 0, 0, NULL, NULL }, |
|
{ 1, 4096, EVP_sha256, EVP_aes_256_cbc }, |
|
}; |
|
|
|
static int |
|
vg_protect_crypt(int parameter_group, |
|
unsigned char *data_in, int data_in_len, |
|
unsigned char *data_out, |
|
const char *pass, int enc) |
|
{ |
|
EVP_CIPHER_CTX *ctx = NULL; |
|
unsigned char *salt; |
|
unsigned char keymaterial[EVP_MAX_KEY_LENGTH + EVP_MAX_IV_LENGTH + |
|
EVP_MAX_MD_SIZE]; |
|
unsigned char hmac[EVP_MAX_MD_SIZE]; |
|
int hmac_len = 0, hmac_keylen = 0; |
|
int salt_len; |
|
int plaintext_len = 32; |
|
int ciphertext_len; |
|
int pkcs7_padding = 1; |
|
const vg_protkey_parameters_t *params; |
|
const EVP_CIPHER *cipher; |
|
const EVP_MD *pbkdf_digest; |
|
const EVP_MD *hmac_digest; |
|
unsigned int hlen; |
|
int opos, olen, oincr, nbytes; |
|
int ipos; |
|
int ret = 0; |
|
|
|
ctx = EVP_CIPHER_CTX_new(); |
|
if (!ctx) |
|
goto out; |
|
|
|
if (parameter_group < 0) { |
|
if (enc) |
|
parameter_group = 0; |
|
else |
|
parameter_group = data_in[0]; |
|
} else { |
|
if (!enc && (parameter_group != data_in[0])) |
|
goto out; |
|
} |
|
|
|
if (parameter_group > (sizeof(protkey_parameters) / |
|
sizeof(protkey_parameters[0]))) |
|
goto out; |
|
params = &protkey_parameters[parameter_group]; |
|
|
|
if (!params->iterations || !params->pbkdf_hash_getter) |
|
goto out; |
|
|
|
pbkdf_digest = params->pbkdf_hash_getter(); |
|
cipher = params->cipher_getter(); |
|
|
|
if (params->mode == 0) { |
|
/* Brief encoding */ |
|
salt_len = 4; |
|
hmac_len = 8; |
|
hmac_keylen = 16; |
|
ciphertext_len = ((plaintext_len + cipher->block_size - 1) / |
|
cipher->block_size) * cipher->block_size; |
|
pkcs7_padding = 0; |
|
hmac_digest = EVP_sha256(); |
|
} else { |
|
/* PKCS-compliant encoding */ |
|
salt_len = 8; |
|
ciphertext_len = ((plaintext_len + cipher->block_size) / |
|
cipher->block_size) * cipher->block_size; |
|
hmac_digest = NULL; |
|
} |
|
|
|
if (!enc && (data_in_len != (1 + ciphertext_len + hmac_len + salt_len))) |
|
goto out; |
|
|
|
if (!pass || !data_out) { |
|
/* Format check mode */ |
|
ret = plaintext_len; |
|
goto out; |
|
} |
|
|
|
if (!enc) { |
|
salt = data_in + 1 + ciphertext_len + hmac_len; |
|
} else if (salt_len) { |
|
salt = data_out + 1 + ciphertext_len + hmac_len; |
|
RAND_bytes(salt, salt_len); |
|
} else { |
|
salt = NULL; |
|
} |
|
|
|
PKCS5_PBKDF2_HMAC((const char *) pass, strlen(pass) + 1, |
|
salt, salt_len, |
|
params->iterations, |
|
pbkdf_digest, |
|
cipher->key_len + cipher->iv_len + hmac_keylen, |
|
keymaterial); |
|
|
|
if (!EVP_CipherInit(ctx, cipher, |
|
keymaterial, |
|
keymaterial + cipher->key_len, |
|
enc)) { |
|
fprintf(stderr, "ERROR: could not configure cipher\n"); |
|
goto out; |
|
} |
|
|
|
if (!pkcs7_padding) |
|
EVP_CIPHER_CTX_set_padding(ctx, 0); |
|
|
|
if (!enc) { |
|
opos = 0; |
|
olen = plaintext_len; |
|
nbytes = ciphertext_len; |
|
ipos = 1; |
|
} else { |
|
data_out[0] = parameter_group; |
|
opos = 1; |
|
olen = 1 + ciphertext_len + hmac_len + salt_len - opos; |
|
nbytes = plaintext_len; |
|
ipos = 0; |
|
} |
|
|
|
oincr = olen; |
|
if (!EVP_CipherUpdate(ctx, data_out + opos, &oincr, |
|
data_in + ipos, nbytes)) |
|
goto invalid_pass; |
|
opos += oincr; |
|
olen -= oincr; |
|
oincr = olen; |
|
if (!EVP_CipherFinal(ctx, data_out + opos, &oincr)) |
|
goto invalid_pass; |
|
opos += oincr; |
|
|
|
if (hmac_len) { |
|
hlen = sizeof(hmac); |
|
HMAC(hmac_digest, |
|
keymaterial + cipher->key_len + cipher->iv_len, |
|
hmac_keylen, |
|
enc ? data_in : data_out, plaintext_len, |
|
hmac, &hlen); |
|
if (enc) { |
|
memcpy(data_out + 1 + ciphertext_len, hmac, hmac_len); |
|
} else if (memcmp(hmac, |
|
data_in + 1 + ciphertext_len, |
|
hmac_len)) |
|
goto invalid_pass; |
|
} |
|
|
|
if (enc) { |
|
if (opos != (1 + ciphertext_len)) { |
|
fprintf(stderr, "ERROR: plaintext size mismatch\n"); |
|
goto out; |
|
} |
|
opos += hmac_len + salt_len; |
|
} else if (opos != plaintext_len) { |
|
fprintf(stderr, "ERROR: plaintext size mismatch\n"); |
|
goto out; |
|
} |
|
|
|
ret = opos; |
|
|
|
if (0) { |
|
invalid_pass: |
|
fprintf(stderr, "ERROR: Invalid password\n"); |
|
} |
|
|
|
out: |
|
OPENSSL_cleanse(hmac, sizeof(hmac)); |
|
OPENSSL_cleanse(keymaterial, sizeof(keymaterial)); |
|
if (ctx) |
|
EVP_CIPHER_CTX_free(ctx); |
|
return ret; |
|
} |
|
|
|
int |
|
vg_protect_encode_privkey(char *out, |
|
const EC_KEY *pkey, int keytype, |
|
int parameter_group, |
|
const char *pass) |
|
{ |
|
unsigned char ecpriv[64]; |
|
unsigned char ecenc[128]; |
|
const BIGNUM *privkey; |
|
int nbytes; |
|
int restype; |
|
|
|
restype = (keytype & 1) ? 79 : 32; |
|
|
|
privkey = EC_KEY_get0_private_key(pkey); |
|
nbytes = BN_num_bytes(privkey); |
|
if (nbytes < 32) |
|
memset(ecpriv, 0, 32 - nbytes); |
|
BN_bn2bin(privkey, ecpriv + 32 - nbytes); |
|
|
|
nbytes = vg_protect_crypt(parameter_group, |
|
ecpriv, 32, |
|
&ecenc[1], pass, 1); |
|
if (nbytes <= 0) |
|
return 0; |
|
|
|
OPENSSL_cleanse(ecpriv, sizeof(ecpriv)); |
|
|
|
ecenc[0] = restype; |
|
vg_b58_encode_check(ecenc, nbytes + 1, out); |
|
nbytes = strlen(out); |
|
return nbytes; |
|
} |
|
|
|
|
|
int |
|
vg_protect_decode_privkey(EC_KEY *pkey, int *keytype, |
|
const char *encoded, const char *pass) |
|
{ |
|
unsigned char ecpriv[64]; |
|
unsigned char ecenc[128]; |
|
BIGNUM bn; |
|
int restype; |
|
int res; |
|
|
|
res = vg_b58_decode_check(encoded, ecenc, sizeof(ecenc)); |
|
|
|
if ((res < 2) || (res > sizeof(ecenc))) |
|
return 0; |
|
|
|
switch (ecenc[0]) { |
|
case 32: restype = 128; break; |
|
case 79: restype = 239; break; |
|
default: |
|
return 0; |
|
} |
|
|
|
if (!vg_protect_crypt(-1, |
|
ecenc + 1, res - 1, |
|
pkey ? ecpriv : NULL, |
|
pass, 0)) |
|
return 0; |
|
|
|
res = 1; |
|
if (pkey) { |
|
BN_init(&bn); |
|
BN_bin2bn(ecpriv, 32, &bn); |
|
res = vg_set_privkey(&bn, pkey); |
|
BN_clear_free(&bn); |
|
OPENSSL_cleanse(ecpriv, sizeof(ecpriv)); |
|
} |
|
|
|
*keytype = restype; |
|
return res; |
|
} |
|
|
|
/* |
|
* Besides the bitcoin-adapted formats, we also support PKCS#8. |
|
*/ |
|
int |
|
vg_pkcs8_encode_privkey(char *out, int outlen, |
|
const EC_KEY *pkey, const char *pass) |
|
{ |
|
EC_KEY *pkey_copy = NULL; |
|
EVP_PKEY *evp_key = NULL; |
|
PKCS8_PRIV_KEY_INFO *pkcs8 = NULL; |
|
X509_SIG *pkcs8_enc = NULL; |
|
BUF_MEM *memptr; |
|
BIO *bio = NULL; |
|
int res = 0; |
|
|
|
pkey_copy = EC_KEY_dup(pkey); |
|
if (!pkey_copy) |
|
goto out; |
|
evp_key = EVP_PKEY_new(); |
|
if (!evp_key || !EVP_PKEY_set1_EC_KEY(evp_key, pkey_copy)) |
|
goto out; |
|
pkcs8 = EVP_PKEY2PKCS8(evp_key); |
|
if (!pkcs8) |
|
goto out; |
|
|
|
bio = BIO_new(BIO_s_mem()); |
|
if (!bio) |
|
goto out; |
|
|
|
if (!pass) { |
|
res = PEM_write_bio_PKCS8_PRIV_KEY_INFO(bio, pkcs8); |
|
|
|
} else { |
|
pkcs8_enc = PKCS8_encrypt(-1, |
|
EVP_aes_256_cbc(), |
|
pass, strlen(pass), |
|
NULL, 0, |
|
4096, |
|
pkcs8); |
|
if (!pkcs8_enc) |
|
goto out; |
|
res = PEM_write_bio_PKCS8(bio, pkcs8_enc); |
|
} |
|
|
|
BIO_get_mem_ptr(bio, &memptr); |
|
res = memptr->length; |
|
if (res < outlen) { |
|
memcpy(out, memptr->data, res); |
|
out[res] = '\0'; |
|
} else { |
|
memcpy(out, memptr->data, outlen - 1); |
|
out[outlen-1] = '\0'; |
|
} |
|
|
|
out: |
|
if (bio) |
|
BIO_free(bio); |
|
if (pkey_copy) |
|
EC_KEY_free(pkey_copy); |
|
if (evp_key) |
|
EVP_PKEY_free(evp_key); |
|
if (pkcs8) |
|
PKCS8_PRIV_KEY_INFO_free(pkcs8); |
|
if (pkcs8_enc) |
|
X509_SIG_free(pkcs8_enc); |
|
return res; |
|
} |
|
|
|
int |
|
vg_pkcs8_decode_privkey(EC_KEY *pkey, const char *pem_in, const char *pass) |
|
{ |
|
EC_KEY *pkey_in = NULL; |
|
EC_KEY *test_key = NULL; |
|
EVP_PKEY *evp_key = NULL; |
|
PKCS8_PRIV_KEY_INFO *pkcs8 = NULL; |
|
X509_SIG *pkcs8_enc = NULL; |
|
BIO *bio = NULL; |
|
int res = 0; |
|
|
|
bio = BIO_new_mem_buf((char *)pem_in, strlen(pem_in)); |
|
if (!bio) |
|
goto out; |
|
|
|
pkcs8_enc = PEM_read_bio_PKCS8(bio, NULL, NULL, NULL); |
|
if (pkcs8_enc) { |
|
if (!pass) |
|
return -1; |
|
pkcs8 = PKCS8_decrypt(pkcs8_enc, pass, strlen(pass)); |
|
|
|
} else { |
|
(void) BIO_reset(bio); |
|
pkcs8 = PEM_read_bio_PKCS8_PRIV_KEY_INFO(bio, NULL, NULL, NULL); |
|
} |
|
|
|
if (!pkcs8) |
|
goto out; |
|
evp_key = EVP_PKCS82PKEY(pkcs8); |
|
if (!evp_key) |
|
goto out; |
|
pkey_in = EVP_PKEY_get1_EC_KEY(evp_key); |
|
if (!pkey_in) |
|
goto out; |
|
|
|
/* Expect a specific curve */ |
|
test_key = EC_KEY_new_by_curve_name(NID_secp256k1); |
|
if (!test_key || |
|
EC_GROUP_cmp(EC_KEY_get0_group(pkey_in), |
|
EC_KEY_get0_group(test_key), |
|
NULL)) |
|
goto out; |
|
|
|
if (!EC_KEY_copy(pkey, pkey_in)) |
|
goto out; |
|
|
|
res = 1; |
|
|
|
out: |
|
if (bio) |
|
BIO_free(bio); |
|
if (test_key) |
|
EC_KEY_free(pkey_in); |
|
if (evp_key) |
|
EVP_PKEY_free(evp_key); |
|
if (pkcs8) |
|
PKCS8_PRIV_KEY_INFO_free(pkcs8); |
|
if (pkcs8_enc) |
|
X509_SIG_free(pkcs8_enc); |
|
return res; |
|
} |
|
|
|
|
|
int |
|
vg_decode_privkey_any(EC_KEY *pkey, int *addrtype, const char *input, |
|
const char *pass) |
|
{ |
|
int res; |
|
|
|
if (vg_decode_privkey(input, pkey, addrtype)) |
|
return 1; |
|
if (vg_protect_decode_privkey(pkey, addrtype, input, NULL)) { |
|
if (!pass) |
|
return -1; |
|
return vg_protect_decode_privkey(pkey, addrtype, input, pass); |
|
} |
|
res = vg_pkcs8_decode_privkey(pkey, input, pass); |
|
if (res > 0) { |
|
/* Assume main network address */ |
|
*addrtype = 128; |
|
} |
|
return res; |
|
} |
|
|
|
|
|
int |
|
vg_read_password(char *buf, size_t size) |
|
{ |
|
return !EVP_read_pw_string(buf, size, "Enter new password:", 1); |
|
} |
|
|
|
|
|
/* |
|
* Password complexity checker |
|
* Heavily inspired by, but a simplification of "How Secure Is My Password?", |
|
* http://howsecureismypassword.net/ |
|
*/ |
|
static unsigned char ascii_class[] = { |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
5, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 5, 5, |
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 4, 5, 5, |
|
4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5, 5, 4, 4, |
|
5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 0, |
|
}; |
|
|
|
int |
|
vg_check_password_complexity(const char *pass, int verbose) |
|
{ |
|
int i, len; |
|
int classes[6] = { 0, }; |
|
const char *crackunit = "seconds"; |
|
int char_complexity = 0; |
|
double crackops, cracktime; |
|
int weak; |
|
|
|
/* |
|
* This number reflects a resourceful attacker with |
|
* USD >$20K in 2011 hardware |
|
*/ |
|
const int rate = 250000000; |
|
|
|
/* Consider the password weak if it can be cracked in <1 year */ |
|
const int weak_threshold = (60*60*24*365); |
|
|
|
len = strlen(pass); |
|
for (i = 0; i < len; i++) { |
|
if (pass[i] > sizeof(ascii_class)) |
|
/* FIXME: skip the rest of the UTF8 char */ |
|
classes[5]++; |
|
else if (!ascii_class[(int)pass[i]]) |
|
continue; |
|
else |
|
classes[(int)ascii_class[(int)pass[i]] - 1]++; |
|
} |
|
|
|
if (classes[0]) |
|
char_complexity += 26; |
|
if (classes[1]) |
|
char_complexity += 26; |
|
if (classes[2]) |
|
char_complexity += 10; |
|
if (classes[3]) |
|
char_complexity += 14; |
|
if (classes[4]) |
|
char_complexity += 19; |
|
if (classes[5]) |
|
char_complexity += 32; /* oversimplified */ |
|
|
|
/* This assumes brute-force and oversimplifies the problem */ |
|
crackops = pow((double)char_complexity, (double)len); |
|
cracktime = (crackops * (1 - (1/M_E))) / rate; |
|
weak = (cracktime < weak_threshold); |
|
|
|
if (cracktime > 60.0) { |
|
cracktime /= 60.0; |
|
crackunit = "minutes"; |
|
if (cracktime > 60.0) { |
|
cracktime /= 60.0; |
|
crackunit = "hours"; |
|
if (cracktime > 24.0) { |
|
cracktime /= 24; |
|
crackunit = "days"; |
|
if (cracktime > 365.0) { |
|
cracktime /= 365.0; |
|
crackunit = "years"; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* Complain by default about weak passwords */ |
|
if ((weak && (verbose > 0)) || (verbose > 1)) { |
|
if (cracktime < 1.0) { |
|
fprintf(stderr, |
|
"Estimated password crack time: >1 %s\n", |
|
crackunit); |
|
} else if (cracktime < 1000000) { |
|
fprintf(stderr, |
|
"Estimated password crack time: %.1f %s\n", |
|
cracktime, crackunit); |
|
} else { |
|
fprintf(stderr, |
|
"Estimated password crack time: %e %s\n", |
|
cracktime, crackunit); |
|
} |
|
if (!classes[0] && !classes[1] && classes[2] && |
|
!classes[3] && !classes[4] && !classes[5]) { |
|
fprintf(stderr, |
|
"WARNING: Password contains only numbers\n"); |
|
} |
|
else if (!classes[2] && !classes[3] && !classes[4] && |
|
!classes[5]) { |
|
if (!classes[0] || !classes[1]) { |
|
fprintf(stderr, |
|
"WARNING: Password contains " |
|
"only %scase letters\n", |
|
classes[0] ? "lower" : "upper"); |
|
} else { |
|
fprintf(stderr, |
|
"WARNING: Password contains " |
|
"only letters\n"); |
|
} |
|
} |
|
} |
|
|
|
return !weak; |
|
} |
|
|
|
|
|
/* |
|
* Pattern file reader |
|
* Absolutely disgusting, unable to free the pattern list when it's done |
|
*/ |
|
|
|
int |
|
vg_read_file(FILE *fp, char ***result, int *rescount) |
|
{ |
|
int ret = 1; |
|
|
|
char **patterns; |
|
char *buf = NULL, *obuf, *pat; |
|
const int blksize = 16*1024; |
|
int nalloc = 16; |
|
int npatterns = 0; |
|
int count, pos; |
|
|
|
patterns = (char**) malloc(sizeof(char*) * nalloc); |
|
count = 0; |
|
pos = 0; |
|
|
|
while (1) { |
|
obuf = buf; |
|
buf = (char *) malloc(blksize); |
|
if (!buf) { |
|
ret = 0; |
|
break; |
|
} |
|
if (pos < count) { |
|
memcpy(buf, &obuf[pos], count - pos); |
|
} |
|
pos = count - pos; |
|
count = fread(&buf[pos], 1, blksize - pos, fp); |
|
if (count < 0) { |
|
fprintf(stderr, |
|
"Error reading file: %s\n", strerror(errno)); |
|
ret = 0; |
|
} |
|
if (count <= 0) |
|
break; |
|
count += pos; |
|
pat = buf; |
|
|
|
while (pos < count) { |
|
if ((buf[pos] == '\r') || (buf[pos] == '\n')) { |
|
buf[pos] = '\0'; |
|
if (pat) { |
|
if (npatterns == nalloc) { |
|
nalloc *= 2; |
|
patterns = (char**) |
|
realloc(patterns, |
|
sizeof(char*) * |
|
nalloc); |
|
} |
|
patterns[npatterns] = pat; |
|
npatterns++; |
|
pat = NULL; |
|
} |
|
} |
|
else if (!pat) { |
|
pat = &buf[pos]; |
|
} |
|
pos++; |
|
} |
|
|
|
pos = pat ? (pat - buf) : count; |
|
} |
|
|
|
*result = patterns; |
|
*rescount = npatterns; |
|
|
|
return ret; |
|
}
|
|
|