mirror of https://github.com/GOSTSec/vanitygen
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1424 lines
36 KiB
1424 lines
36 KiB
/* |
|
* Vanitygen, vanity bitcoin address generator |
|
* Copyright (C) 2011 <samr7@cs.washington.edu> |
|
* |
|
* Vanitygen is free software: you can redistribute it and/or modify |
|
* it under the terms of the GNU Affero General Public License as published by |
|
* the Free Software Foundation, either version 3 of the License, or |
|
* any later version. |
|
* |
|
* Vanitygen is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
* GNU Affero General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Affero General Public License |
|
* along with Vanitygen. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* This file contains an OpenCL kernel for performing certain parts of |
|
* the bitcoin address calculation process. |
|
* |
|
* Kernel: ec_add_grid |
|
* |
|
* Inputs: |
|
* - Row: Array of (sequential) EC points |
|
* - Column: Array of column increment EC points (= rowsize * Pgenerator) |
|
* |
|
* Steps: |
|
* - Compute P = Row[x] + Column[y] |
|
* P is computed as numerator/denominator components Pxj, Pyj, Pz |
|
* Final values are: Px = Pxj / (Pz^2), Py = Pyj / (Pz^3) |
|
* |
|
* The modular inverse of Pz is required to compute Px and Py, and |
|
* can be computed more efficiently in large batches. This is done in |
|
* the next kernel heap_invert. |
|
* |
|
* - Store Pxj, Pyj to intermediate point buffer |
|
* - Store Pz to z_heap |
|
* |
|
* Outputs: |
|
* - Intermediate point buffer |
|
* - Denominator buffer (z_heap) |
|
* |
|
* ------------------------------- |
|
* Kernel: heap_invert |
|
* |
|
* Inputs: |
|
* - Denominator buffer (z_heap) |
|
* - N = Batch size (power of 2) |
|
* |
|
* Steps: |
|
* - Compute the product tree for N values in the denominator buffer |
|
* - Compute the modular inverse of the root of the product tree |
|
* - Multiply down the tree to compute the modular inverse of each leaf |
|
* |
|
* Outputs: |
|
* - Modular inverse denominator buffer (z_heap) |
|
* |
|
* ------------------------------- |
|
* Kernel: hash_ec_point_get |
|
* |
|
* Inputs: |
|
* - Intermediate point buffer |
|
* - Modular inverse denominator buffer (z_heap) |
|
* |
|
* Steps: |
|
* - Compute Px = Pxj * (1/Pz)^2 |
|
* - Compute Py = Pyj * (1/Pz)^3 |
|
* - Compute H = RIPEMD160(SHA256(0x04 | Px | Py)) |
|
* |
|
* Output: |
|
* - Array of 20-byte address hash values |
|
* |
|
* ------------------------------- |
|
* Kernel: hash_ec_point_search_prefix |
|
* |
|
* Like hash_ec_point_get, but instead of storing the complete hash |
|
* value to an output buffer, it searches a sorted list of ranges, |
|
* and if a match is found, writes a flag to an output buffer. |
|
*/ |
|
|
|
|
|
/* Byte-swapping and endianness */ |
|
#define bswap32(v) \ |
|
(((v) >> 24) | (((v) >> 8) & 0xff00) | \ |
|
(((v) << 8) & 0xff0000) | ((v) << 24)) |
|
|
|
#if __ENDIAN_LITTLE__ != 1 |
|
#define load_le32(v) bswap32(v) |
|
#define load_be32(v) (v) |
|
#else |
|
#define load_le32(v) (v) |
|
#define load_be32(v) bswap32(v) |
|
#endif |
|
|
|
/* |
|
* Loop unrolling macros |
|
* |
|
* In most cases, preprocessor unrolling works best. |
|
* The exception is NVIDIA's compiler, which seems to take unreasonably |
|
* long to compile a loop with a larger iteration count, or a loop with |
|
* a body of >50 PTX instructions, with preprocessor unrolling. |
|
* However, it does not seem to take as long with pragma unroll, and |
|
* produces good output. |
|
*/ |
|
|
|
/* Explicit loop unrolling */ |
|
#define unroll_5(a) do { a(0) a(1) a(2) a(3) a(4) } while (0) |
|
#define unroll_8(a) do { a(0) a(1) a(2) a(3) a(4) a(5) a(6) a(7) } while (0) |
|
#define unroll_8_sf(a) do { a(1) a(2) a(3) a(4) a(5) a(6) a(7) } while (0) |
|
#define unroll_8_sl(a) do { a(0) a(1) a(2) a(3) a(4) a(5) a(6) } while (0) |
|
#define unroll_8_reverse(a) \ |
|
do { a(7) a(6) a(5) a(4) a(3) a(2) a(1) a(0) } while (0) |
|
#define unroll_8_reverse_sl(a) \ |
|
do { a(7) a(6) a(5) a(4) a(3) a(2) a(1) } while (0) |
|
#define unroll_16(a) do { \ |
|
a(0) a(1) a(2) a(3) a(4) a(5) a(6) a(7) \ |
|
a(8) a(9) a(10) a(11) a(12) a(13) a(14) a(15) \ |
|
} while (0) |
|
#define unroll_64(a) do { \ |
|
a(0) a(1) a(2) a(3) a(4) a(5) a(6) a(7) \ |
|
a(8) a(9) a(10) a(11) a(12) a(13) a(14) a(15) \ |
|
a(16) a(17) a(18) a(19) a(20) a(21) a(22) a(23) \ |
|
a(24) a(25) a(26) a(27) a(28) a(29) a(30) a(31) \ |
|
a(32) a(33) a(34) a(35) a(36) a(37) a(38) a(39) \ |
|
a(40) a(41) a(42) a(43) a(44) a(45) a(46) a(47) \ |
|
a(48) a(49) a(50) a(51) a(52) a(53) a(54) a(55) \ |
|
a(56) a(57) a(58) a(59) a(60) a(61) a(62) a(63) \ |
|
} while (0) |
|
|
|
/* Conditional loop unrolling */ |
|
#if defined(DEEP_PREPROC_UNROLL) |
|
#define iter_5(a) unroll_5(a) |
|
#define iter_8(a) unroll_8(a) |
|
#define iter_16(a) unroll_16(a) |
|
#define iter_64(a) unroll_64(a) |
|
#else |
|
#define iter_5(a) do {int _i; for (_i = 0; _i < 5; _i++) { a(_i) }} while (0) |
|
#define iter_8(a) do {int _i; for (_i = 0; _i < 8; _i++) { a(_i) }} while (0) |
|
#define iter_16(a) do {int _i; for (_i = 0; _i < 16; _i++) { a(_i) }} while (0) |
|
#define iter_64(a) do {int _i; for (_i = 0; _i < 64; _i++) { a(_i) }} while (0) |
|
#endif |
|
|
|
/* |
|
* BIGNUM mini-library |
|
* This module deals with fixed-size 256-bit bignums. |
|
* Where modular arithmetic is performed, the SECP256k1 prime |
|
* modulus (below) is assumed. |
|
* |
|
* Methods include: |
|
* - bn_is_zero/bn_is_one/bn_is_odd/bn_is_even/bn_is_bit_set |
|
* - bn_rshift[1]/bn_lshift[1] |
|
* - bn_neg |
|
* - bn_uadd/bn_uadd_p |
|
* - bn_usub/bn_usub_p |
|
*/ |
|
|
|
typedef uint bn_word; |
|
#define BN_NBITS 256 |
|
#define BN_WSHIFT 5 |
|
#define BN_WBITS (1 << BN_WSHIFT) |
|
#define BN_NWORDS ((BN_NBITS/8) / sizeof(bn_word)) |
|
#define BN_WORDMAX 0xffffffff |
|
|
|
#define MODULUS_BYTES \ |
|
0xfffffc2f, 0xfffffffe, 0xffffffff, 0xffffffff, \ |
|
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff |
|
|
|
typedef struct { |
|
bn_word d[BN_NWORDS]; |
|
} bignum; |
|
|
|
__constant bn_word modulus[] = { MODULUS_BYTES }; |
|
__constant bn_word bn_one[BN_NWORDS] = { 1, 0, }; |
|
__constant bignum bn_zero; |
|
|
|
__constant bn_word mont_rr[BN_NWORDS] = { 0xe90a1, 0x7a2, 0x1, 0, }; |
|
__constant bn_word mont_n0[2] = { 0xd2253531, 0xd838091d }; |
|
|
|
|
|
#define bn_is_odd(bn) (bn.d[0] & 1) |
|
#define bn_is_even(bn) (!bn_is_odd(bn)) |
|
#define bn_is_zero(bn) (!bn.d[0] && !bn.d[1] && !bn.d[2] && \ |
|
!bn.d[3] && !bn.d[4] && !bn.d[5] && \ |
|
!bn.d[6] && !bn.d[7]) |
|
#define bn_is_one(bn) ((bn.d[0] == 1) && !bn.d[1] && !bn.d[2] && \ |
|
!bn.d[3] && !bn.d[4] && !bn.d[5] && \ |
|
!bn.d[6] && !bn.d[7]) |
|
#define bn_is_bit_set(bn, n) \ |
|
((((bn_word*)&bn)[n >> BN_WSHIFT]) & (1 << (n & (BN_WBITS-1)))) |
|
|
|
#define bn_unroll(e) unroll_8(e) |
|
#define bn_unroll_sf(e) unroll_8_sf(e) |
|
#define bn_unroll_sl(e) unroll_8_sl(e) |
|
#define bn_unroll_reverse(e) unroll_8_reverse(e) |
|
#define bn_unroll_reverse_sl(e) unroll_8_reverse_sl(e) |
|
|
|
#define bn_unroll_arg(e, arg) \ |
|
e(arg, 0) e(arg, 1) e(arg, 2) e(arg, 3) \ |
|
e(arg, 4) e(arg, 5) e(arg, 6) e(arg, 7) |
|
#define bn_unroll_arg_sf(e, arg) \ |
|
e(arg, 1) e(arg, 2) e(arg, 3) \ |
|
e(arg, 4) e(arg, 5) e(arg, 6) e(arg, 7) |
|
|
|
#define bn_iter(e) iter_8(e) |
|
|
|
|
|
/* |
|
* Bitwise shift |
|
*/ |
|
|
|
void |
|
bn_lshift1(bignum *bn) |
|
{ |
|
#define bn_lshift1_inner1(i) \ |
|
bn->d[i] = (bn->d[i] << 1) | (bn->d[i-1] >> 31); |
|
bn_unroll_reverse_sl(bn_lshift1_inner1); |
|
bn->d[0] <<= 1; |
|
} |
|
|
|
void |
|
bn_rshift(bignum *bn, int shift) |
|
{ |
|
int wd, iws, iwr; |
|
bn_word ihw, ilw; |
|
iws = (shift & (BN_WBITS-1)); |
|
iwr = BN_WBITS - iws; |
|
wd = (shift >> BN_WSHIFT); |
|
ihw = (wd < BN_WBITS) ? bn->d[wd] : 0; |
|
|
|
#define bn_rshift_inner1(i) \ |
|
wd++; \ |
|
ilw = ihw; \ |
|
ihw = (wd < BN_WBITS) ? bn->d[wd] : 0; \ |
|
bn->d[i] = (ilw >> iws) | (ihw << iwr); |
|
bn_unroll_sl(bn_rshift_inner1); |
|
bn->d[BN_NWORDS-1] = (ihw >> iws); |
|
} |
|
|
|
void |
|
bn_rshift1(bignum *bn) |
|
{ |
|
#define bn_rshift1_inner1(i) \ |
|
bn->d[i] = (bn->d[i+1] << 31) | (bn->d[i] >> 1); |
|
bn_unroll_sl(bn_rshift1_inner1); |
|
bn->d[BN_NWORDS-1] >>= 1; |
|
} |
|
|
|
void |
|
bn_rshift1_2(bignum *bna, bignum *bnb) |
|
{ |
|
#define bn_rshift1_2_inner1(i) \ |
|
bna->d[i] = (bna->d[i+1] << 31) | (bna->d[i] >> 1); \ |
|
bnb->d[i] = (bnb->d[i+1] << 31) | (bnb->d[i] >> 1); |
|
bn_unroll_sl(bn_rshift1_2_inner1); |
|
bna->d[BN_NWORDS-1] >>= 1; |
|
bnb->d[BN_NWORDS-1] >>= 1; |
|
} |
|
|
|
|
|
/* |
|
* Unsigned comparison |
|
*/ |
|
|
|
int |
|
bn_ucmp_ge(bignum *a, bignum *b) |
|
{ |
|
int l = 0, g = 0; |
|
|
|
#define bn_ucmp_ge_inner1(i) \ |
|
if (a->d[i] < b->d[i]) l |= (1 << i); \ |
|
if (a->d[i] > b->d[i]) g |= (1 << i); |
|
bn_unroll_reverse(bn_ucmp_ge_inner1); |
|
return (l > g) ? 0 : 1; |
|
} |
|
|
|
int |
|
bn_ucmp_ge_c(bignum *a, __constant bn_word *b) |
|
{ |
|
int l = 0, g = 0; |
|
|
|
#define bn_ucmp_ge_c_inner1(i) \ |
|
if (a->d[i] < b[i]) l |= (1 << i); \ |
|
if (a->d[i] > b[i]) g |= (1 << i); |
|
bn_unroll_reverse(bn_ucmp_ge_c_inner1); |
|
return (l > g) ? 0 : 1; |
|
} |
|
|
|
/* |
|
* Negate |
|
*/ |
|
|
|
void |
|
bn_neg(bignum *n) |
|
{ |
|
int c = 1; |
|
|
|
#define bn_neg_inner1(i) \ |
|
c = (n->d[i] = (~n->d[i]) + c) ? 0 : c; |
|
bn_unroll(bn_neg_inner1); |
|
} |
|
|
|
/* |
|
* Add/subtract |
|
*/ |
|
|
|
#define bn_add_word(r, a, b, t, c) do { \ |
|
t = a + b; \ |
|
c = (t < a) ? 1 : 0; \ |
|
r = t; \ |
|
} while (0) |
|
|
|
#define bn_addc_word(r, a, b, t, c) do { \ |
|
t = a + b + c; \ |
|
c = (t < a) ? 1 : ((c & (t == a)) ? 1 : 0); \ |
|
r = t; \ |
|
} while (0) |
|
|
|
bn_word |
|
bn_uadd_words_seq(bn_word *r, bn_word *a, bn_word *b) |
|
{ |
|
bn_word t, c = 0; |
|
|
|
#define bn_uadd_words_seq_inner1(i) \ |
|
bn_addc_word(r[i], a[i], b[i], t, c); |
|
bn_add_word(r[0], a[0], b[0], t, c); |
|
bn_unroll_sf(bn_uadd_words_seq_inner1); |
|
return c; |
|
} |
|
|
|
bn_word |
|
bn_uadd_words_c_seq(bn_word *r, bn_word *a, __constant bn_word *b) |
|
{ |
|
bn_word t, c = 0; |
|
|
|
bn_add_word(r[0], a[0], b[0], t, c); |
|
bn_unroll_sf(bn_uadd_words_seq_inner1); |
|
return c; |
|
} |
|
|
|
#define bn_sub_word(r, a, b, t, c) do { \ |
|
t = a - b; \ |
|
c = (a < b) ? 1 : 0; \ |
|
r = t; \ |
|
} while (0) |
|
|
|
#define bn_subb_word(r, a, b, t, c) do { \ |
|
t = a - (b + c); \ |
|
c = (!(a) && c) ? 1 : 0; \ |
|
c |= (a < b) ? 1 : 0; \ |
|
r = t; \ |
|
} while (0) |
|
|
|
bn_word |
|
bn_usub_words_seq(bn_word *r, bn_word *a, bn_word *b) |
|
{ |
|
bn_word t, c = 0; |
|
|
|
#define bn_usub_words_seq_inner1(i) \ |
|
bn_subb_word(r[i], a[i], b[i], t, c); |
|
|
|
bn_sub_word(r[0], a[0], b[0], t, c); |
|
bn_unroll_sf(bn_usub_words_seq_inner1); |
|
return c; |
|
} |
|
|
|
bn_word |
|
bn_usub_words_c_seq(bn_word *r, bn_word *a, __constant bn_word *b) |
|
{ |
|
bn_word t, c = 0; |
|
|
|
bn_sub_word(r[0], a[0], b[0], t, c); |
|
bn_unroll_sf(bn_usub_words_seq_inner1); |
|
return c; |
|
} |
|
|
|
/* |
|
* Add/subtract better suited for AMD's VLIW architecture |
|
*/ |
|
bn_word |
|
bn_uadd_words_vliw(bn_word *r, bn_word *a, bn_word *b) |
|
{ |
|
bignum x; |
|
bn_word c = 0, cp = 0; |
|
|
|
#define bn_uadd_words_vliw_inner1(i) \ |
|
x.d[i] = a[i] + b[i]; |
|
|
|
#define bn_uadd_words_vliw_inner2(i) \ |
|
c |= (a[i] > x.d[i]) ? (1 << i) : 0; \ |
|
cp |= (!~x.d[i]) ? (1 << i) : 0; |
|
|
|
#define bn_uadd_words_vliw_inner3(i) \ |
|
r[i] = x.d[i] + ((c >> i) & 1); |
|
|
|
bn_unroll(bn_uadd_words_vliw_inner1); |
|
bn_unroll(bn_uadd_words_vliw_inner2); |
|
c = ((cp + (c << 1)) ^ cp); |
|
r[0] = x.d[0]; |
|
bn_unroll_sf(bn_uadd_words_vliw_inner3); |
|
return c >> BN_NWORDS; |
|
} |
|
|
|
bn_word |
|
bn_uadd_words_c_vliw(bn_word *r, bn_word *a, __constant bn_word *b) |
|
{ |
|
bignum x; |
|
bn_word c = 0, cp = 0; |
|
|
|
bn_unroll(bn_uadd_words_vliw_inner1); |
|
bn_unroll(bn_uadd_words_vliw_inner2); |
|
c = ((cp + (c << 1)) ^ cp); |
|
r[0] = x.d[0]; |
|
bn_unroll_sf(bn_uadd_words_vliw_inner3); |
|
return c >> BN_NWORDS; |
|
} |
|
|
|
bn_word |
|
bn_usub_words_vliw(bn_word *r, bn_word *a, bn_word *b) |
|
{ |
|
bignum x; |
|
bn_word c = 0, cp = 0; |
|
|
|
#define bn_usub_words_vliw_inner1(i) \ |
|
x.d[i] = a[i] - b[i]; |
|
|
|
#define bn_usub_words_vliw_inner2(i) \ |
|
c |= (a[i] < b[i]) ? (1 << i) : 0; \ |
|
cp |= (!x.d[i]) ? (1 << i) : 0; |
|
|
|
#define bn_usub_words_vliw_inner3(i) \ |
|
r[i] = x.d[i] - ((c >> i) & 1); |
|
|
|
bn_unroll(bn_usub_words_vliw_inner1); |
|
bn_unroll(bn_usub_words_vliw_inner2); |
|
c = ((cp + (c << 1)) ^ cp); |
|
r[0] = x.d[0]; |
|
bn_unroll_sf(bn_usub_words_vliw_inner3); |
|
return c >> BN_NWORDS; |
|
} |
|
|
|
bn_word |
|
bn_usub_words_c_vliw(bn_word *r, bn_word *a, __constant bn_word *b) |
|
{ |
|
bignum x; |
|
bn_word c = 0, cp = 0; |
|
|
|
bn_unroll(bn_usub_words_vliw_inner1); |
|
bn_unroll(bn_usub_words_vliw_inner2); |
|
c = ((cp + (c << 1)) ^ cp); |
|
r[0] = x.d[0]; |
|
bn_unroll_sf(bn_usub_words_vliw_inner3); |
|
return c >> BN_NWORDS; |
|
} |
|
|
|
|
|
#if defined(DEEP_VLIW) |
|
#define bn_uadd_words bn_uadd_words_vliw |
|
#define bn_uadd_words_c bn_uadd_words_c_vliw |
|
#define bn_usub_words bn_usub_words_vliw |
|
#define bn_usub_words_c bn_usub_words_c_vliw |
|
#else |
|
#define bn_uadd_words bn_uadd_words_seq |
|
#define bn_uadd_words_c bn_uadd_words_c_seq |
|
#define bn_usub_words bn_usub_words_seq |
|
#define bn_usub_words_c bn_usub_words_c_seq |
|
#endif |
|
|
|
#define bn_uadd(r, a, b) bn_uadd_words((r)->d, (a)->d, (b)->d) |
|
#define bn_uadd_c(r, a, b) bn_uadd_words_c((r)->d, (a)->d, b) |
|
#define bn_usub(r, a, b) bn_usub_words((r)->d, (a)->d, (b)->d) |
|
#define bn_usub_c(r, a, b) bn_usub_words_c((r)->d, (a)->d, b) |
|
|
|
/* |
|
* Modular add/sub |
|
*/ |
|
|
|
void |
|
bn_mod_add(bignum *r, bignum *a, bignum *b) |
|
{ |
|
if (bn_uadd(r, a, b) || |
|
(bn_ucmp_ge_c(r, modulus))) |
|
bn_usub_c(r, r, modulus); |
|
} |
|
|
|
void |
|
bn_mod_sub(bignum *r, bignum *a, bignum *b) |
|
{ |
|
if (bn_usub(r, a, b)) |
|
bn_uadd_c(r, r, modulus); |
|
} |
|
|
|
void |
|
bn_mod_lshift1(bignum *bn) |
|
{ |
|
bn_word c = (bn->d[BN_NWORDS-1] & 0x80000000); |
|
bn_lshift1(bn); |
|
if (c || (bn_ucmp_ge_c(bn, modulus))) |
|
bn_usub_c(bn, bn, modulus); |
|
} |
|
|
|
/* |
|
* Montgomery multiplication |
|
* |
|
* This includes normal multiplication of two "Montgomeryized" |
|
* bignums, and bn_from_mont for de-Montgomeryizing a bignum. |
|
*/ |
|
|
|
#define bn_mul_word(r, a, w, c, p, s) do { \ |
|
r = (a * w) + c; \ |
|
p = mul_hi(a, w); \ |
|
c = (r < c) ? p + 1 : p; \ |
|
} while (0) |
|
|
|
#define bn_mul_add_word(r, a, w, c, p, s) do { \ |
|
s = r + c; \ |
|
p = mul_hi(a, w); \ |
|
r = (a * w) + s; \ |
|
c = (s < c) ? p + 1 : p; \ |
|
if (r < s) c++; \ |
|
} while (0) |
|
void |
|
bn_mul_mont(bignum *r, bignum *a, bignum *b) |
|
{ |
|
bignum t; |
|
bn_word tea, teb, c, p, s, m; |
|
|
|
#if !defined(VERY_EXPENSIVE_BRANCHES) |
|
int q; |
|
#endif |
|
|
|
c = 0; |
|
#define bn_mul_mont_inner1(j) \ |
|
bn_mul_word(t.d[j], a->d[j], b->d[0], c, p, s); |
|
bn_unroll(bn_mul_mont_inner1); |
|
tea = c; |
|
teb = 0; |
|
|
|
c = 0; |
|
m = t.d[0] * mont_n0[0]; |
|
bn_mul_add_word(t.d[0], modulus[0], m, c, p, s); |
|
#define bn_mul_mont_inner2(j) \ |
|
bn_mul_add_word(t.d[j], modulus[j], m, c, p, s); \ |
|
t.d[j-1] = t.d[j]; |
|
bn_unroll_sf(bn_mul_mont_inner2); |
|
t.d[BN_NWORDS-1] = tea + c; |
|
tea = teb + ((t.d[BN_NWORDS-1] < c) ? 1 : 0); |
|
|
|
#define bn_mul_mont_inner3_1(i, j) \ |
|
bn_mul_add_word(t.d[j], a->d[j], b->d[i], c, p, s); |
|
#define bn_mul_mont_inner3_2(i, j) \ |
|
bn_mul_add_word(t.d[j], modulus[j], m, c, p, s); \ |
|
t.d[j-1] = t.d[j]; |
|
#define bn_mul_mont_inner3(i) \ |
|
c = 0; \ |
|
bn_unroll_arg(bn_mul_mont_inner3_1, i); \ |
|
tea += c; \ |
|
teb = ((tea < c) ? 1 : 0); \ |
|
c = 0; \ |
|
m = t.d[0] * mont_n0[0]; \ |
|
bn_mul_add_word(t.d[0], modulus[0], m, c, p, s); \ |
|
bn_unroll_arg_sf(bn_mul_mont_inner3_2, i); \ |
|
t.d[BN_NWORDS-1] = tea + c; \ |
|
tea = teb + ((t.d[BN_NWORDS-1] < c) ? 1 : 0); |
|
|
|
/* |
|
* The outer loop here is quite long, and we won't unroll it |
|
* unless VERY_EXPENSIVE_BRANCHES is set. |
|
*/ |
|
#if defined(VERY_EXPENSIVE_BRANCHES) |
|
bn_unroll_sf(bn_mul_mont_inner3); |
|
c = tea | !bn_usub_c(r, &t, modulus); |
|
if (!c) |
|
*r = t; |
|
|
|
#else |
|
for (q = 1; q < BN_NWORDS; q++) { |
|
bn_mul_mont_inner3(q); |
|
} |
|
c = tea || (t.d[BN_NWORDS-1] >= modulus[BN_NWORDS-1]); |
|
if (c) { |
|
c = tea | !bn_usub_c(r, &t, modulus); |
|
if (c) |
|
return; |
|
} |
|
*r = t; |
|
#endif |
|
} |
|
|
|
void |
|
bn_from_mont(bignum *rb, bignum *b) |
|
{ |
|
#define WORKSIZE ((2*BN_NWORDS) + 1) |
|
bn_word r[WORKSIZE]; |
|
bn_word m, c, p, s; |
|
#if defined(PRAGMA_UNROLL) |
|
int i; |
|
#endif |
|
|
|
/* Copy the input to the working area */ |
|
/* Zero the upper words */ |
|
#define bn_from_mont_inner1(i) \ |
|
r[i] = b->d[i]; |
|
#define bn_from_mont_inner2(i) \ |
|
r[BN_NWORDS+i] = 0; |
|
|
|
bn_unroll(bn_from_mont_inner1); |
|
bn_unroll(bn_from_mont_inner2); |
|
r[WORKSIZE-1] = 0; |
|
|
|
/* Multiply (long) by modulus */ |
|
#define bn_from_mont_inner3_1(i, j) \ |
|
bn_mul_add_word(r[i+j], modulus[j], m, c, p, s); |
|
|
|
#if !defined(VERY_EXPENSIVE_BRANCHES) |
|
#define bn_from_mont_inner3_2(i) \ |
|
if (r[BN_NWORDS + i] < c) \ |
|
r[BN_NWORDS + i + 1] += 1; |
|
#else |
|
#define bn_from_mont_inner3_2(i) \ |
|
r[BN_NWORDS + i + 1] += (r[BN_NWORDS + i] < c) ? 1 : 0; |
|
#endif |
|
|
|
#define bn_from_mont_inner3(i) \ |
|
m = r[i] * mont_n0[0]; \ |
|
c = 0; \ |
|
bn_unroll_arg(bn_from_mont_inner3_1, i); \ |
|
r[BN_NWORDS + i] += c; \ |
|
bn_from_mont_inner3_2(i) |
|
|
|
/* |
|
* The outer loop here is not very long, so we will unroll |
|
* it by default. However, it's just complicated enough to |
|
* cause NVIDIA's compiler to take unreasonably long to compile |
|
* it, unless we use pragma unroll. |
|
*/ |
|
#if !defined(PRAGMA_UNROLL) |
|
bn_iter(bn_from_mont_inner3); |
|
#else |
|
#pragma unroll 8 |
|
for (i = 0; i < BN_NWORDS; i++) { bn_from_mont_inner3(i) } |
|
#endif |
|
|
|
/* |
|
* Make sure the result is less than the modulus. |
|
* Subtracting is not much more expensive than compare, so |
|
* subtract always and assign based on the carry out value. |
|
*/ |
|
c = bn_usub_words_c(rb->d, &r[BN_NWORDS], modulus); |
|
if (c) { |
|
#define bn_from_mont_inner4(i) \ |
|
rb->d[i] = r[BN_NWORDS + i]; |
|
bn_unroll(bn_from_mont_inner4); |
|
} |
|
} |
|
|
|
/* |
|
* Modular inversion |
|
*/ |
|
|
|
void |
|
bn_mod_inverse(bignum *r, bignum *n) |
|
{ |
|
bignum a, b, x, y; |
|
int shift; |
|
bn_word xc, yc; |
|
for (shift = 0; shift < BN_NWORDS; shift++) { |
|
a.d[shift] = modulus[shift]; |
|
x.d[shift] = 0; |
|
y.d[shift] = 0; |
|
} |
|
b = *n; |
|
x.d[0] = 1; |
|
xc = 0; |
|
yc = 0; |
|
while (!bn_is_zero(b)) { |
|
shift = 0; |
|
while (!bn_is_odd(b)) { |
|
if (bn_is_odd(x)) |
|
xc += bn_uadd_c(&x, &x, modulus); |
|
bn_rshift1_2(&x, &b); |
|
x.d[7] |= (xc << 31); |
|
xc >>= 1; |
|
} |
|
|
|
while (!bn_is_odd(a)) { |
|
if (bn_is_odd(y)) |
|
yc += bn_uadd_c(&y, &y, modulus); |
|
bn_rshift1_2(&y, &a); |
|
y.d[7] |= (yc << 31); |
|
yc >>= 1; |
|
} |
|
|
|
if (bn_ucmp_ge(&b, &a)) { |
|
xc += yc + bn_uadd(&x, &x, &y); |
|
bn_usub(&b, &b, &a); |
|
} else { |
|
yc += xc + bn_uadd(&y, &y, &x); |
|
bn_usub(&a, &a, &b); |
|
} |
|
} |
|
|
|
if (!bn_is_one(a)) { |
|
/* no modular inverse */ |
|
*r = bn_zero; |
|
} else { |
|
/* Compute y % m as cheaply as possible */ |
|
while (yc < 0x80000000) |
|
yc -= bn_usub_c(&y, &y, modulus); |
|
bn_neg(&y); |
|
*r = y; |
|
} |
|
} |
|
|
|
/* |
|
* HASH FUNCTIONS |
|
* |
|
* BYTE ORDER NOTE: None of the hash functions below deal with byte |
|
* order. The caller is expected to be aware of this when it stuffs |
|
* data into in the native integer. |
|
* |
|
* NOTE #2: Endianness of the OpenCL device makes no difference here. |
|
*/ |
|
|
|
#define hash256_unroll(a) unroll_8(a) |
|
#define hash160_unroll(a) unroll_5(a) |
|
#define hash256_iter(a) iter_8(a) |
|
#define hash160_iter(a) iter_5(a) |
|
|
|
|
|
/* |
|
* SHA-2 256 |
|
* |
|
* CAUTION: Input buffer will be overwritten/mangled. |
|
* Data expected in big-endian format. |
|
* This implementation is designed for space efficiency more than |
|
* raw speed. |
|
*/ |
|
|
|
__constant uint sha2_init[8] = { |
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, |
|
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 |
|
}; |
|
|
|
__constant uint sha2_k[64] = { |
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, |
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, |
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, |
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, |
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, |
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
|
}; |
|
|
|
void |
|
sha2_256_init(uint *out) |
|
{ |
|
#define sha2_256_init_inner_1(i) \ |
|
out[i] = sha2_init[i]; |
|
|
|
hash256_unroll(sha2_256_init_inner_1); |
|
} |
|
|
|
/* The state variable remapping is really contorted */ |
|
#define sha2_stvar(vals, i, v) vals[(64+v-i) % 8] |
|
#define sha2_s0(a) (rotate(a, 30U) ^ rotate(a, 19U) ^ rotate(a, 10U)) |
|
#define sha2_s1(a) (rotate(a, 26U) ^ rotate(a, 21U) ^ rotate(a, 7U)) |
|
#if defined(AMD_BFI_INT) |
|
#pragma OPENCL EXTENSION cl_amd_media_ops : enable |
|
#define sha2_ch(a, b, c) amd_bytealign(a, b, c) |
|
#define sha2_ma(a, b, c) amd_bytealign((a^c), b, a) |
|
#else |
|
#define sha2_ch(a, b, c) (c ^ (a & (b ^ c))) |
|
#define sha2_ma(a, b, c) ((a & c) | (b & (a | c))) |
|
#endif |
|
|
|
void |
|
sha2_256_block(uint *out, uint *in) |
|
{ |
|
uint state[8], t1, t2; |
|
#if defined(PRAGMA_UNROLL) |
|
int i; |
|
#endif |
|
|
|
#define sha2_256_block_inner_1(i) \ |
|
state[i] = out[i]; |
|
hash256_unroll(sha2_256_block_inner_1); |
|
|
|
#define sha2_256_block_inner_2(i) \ |
|
if (i >= 16) { \ |
|
t1 = in[(i + 1) % 16]; \ |
|
t2 = in[(i + 14) % 16]; \ |
|
in[i % 16] += (in[(i + 9) % 16] + \ |
|
(rotate(t1, 25U) ^ rotate(t1, 14U) ^ (t1 >> 3)) + \ |
|
(rotate(t2, 15U) ^ rotate(t2, 13U) ^ (t2 >> 10))); \ |
|
} \ |
|
t1 = (sha2_stvar(state, i, 7) + \ |
|
sha2_s1(sha2_stvar(state, i, 4)) + \ |
|
sha2_ch(sha2_stvar(state, i, 4), \ |
|
sha2_stvar(state, i, 5), \ |
|
sha2_stvar(state, i, 6)) + \ |
|
sha2_k[i] + \ |
|
in[i % 16]); \ |
|
t2 = (sha2_s0(sha2_stvar(state, i, 0)) + \ |
|
sha2_ma(sha2_stvar(state, i, 0), \ |
|
sha2_stvar(state, i, 1), \ |
|
sha2_stvar(state, i, 2))); \ |
|
sha2_stvar(state, i, 3) += t1; \ |
|
sha2_stvar(state, i, 7) = t1 + t2; \ |
|
|
|
#if !defined(PRAGMA_UNROLL) |
|
iter_64(sha2_256_block_inner_2); |
|
#else |
|
#pragma unroll 64 |
|
for (i = 0; i < 64; i++) { sha2_256_block_inner_2(i) } |
|
#endif |
|
|
|
#define sha2_256_block_inner_3(i) \ |
|
out[i] += state[i]; |
|
|
|
hash256_unroll(sha2_256_block_inner_3); |
|
} |
|
|
|
|
|
/* |
|
* RIPEMD160 |
|
* |
|
* Data expected in little-endian format. |
|
*/ |
|
|
|
__constant uint ripemd160_iv[] = { |
|
0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 }; |
|
__constant uint ripemd160_k[] = { |
|
0x00000000, 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xA953FD4E }; |
|
__constant uint ripemd160_kp[] = { |
|
0x50A28BE6, 0x5C4DD124, 0x6D703EF3, 0x7A6D76E9, 0x00000000 }; |
|
__constant uchar ripemd160_ws[] = { |
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
|
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8, |
|
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12, |
|
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2, |
|
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13, |
|
}; |
|
__constant uchar ripemd160_wsp[] = { |
|
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, |
|
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2, |
|
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13, |
|
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14, |
|
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 |
|
}; |
|
__constant uchar ripemd160_rl[] = { |
|
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8, |
|
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12, |
|
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5, |
|
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12, |
|
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6, |
|
}; |
|
__constant uchar ripemd160_rlp[] = { |
|
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6, |
|
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11, |
|
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5, |
|
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8, |
|
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 |
|
}; |
|
|
|
#define ripemd160_val(v, i, n) (v)[(80+(n)-(i)) % 5] |
|
#define ripemd160_valp(v, i, n) (v)[5 + ((80+(n)-(i)) % 5)] |
|
#if defined(AMD_BFI_INT) |
|
#define ripemd160_f0(x, y, z) (x ^ y ^ z) |
|
#define ripemd160_f1(x, y, z) amd_bytealign(x, y, z) |
|
#define ripemd160_f2(x, y, z) (z ^ (x | ~y)) |
|
#define ripemd160_f3(x, y, z) amd_bytealign(z, x, y) |
|
#define ripemd160_f4(x, y, z) (x ^ (y | ~z)) |
|
#else |
|
#define ripemd160_f0(x, y, z) (x ^ y ^ z) |
|
#define ripemd160_f1(x, y, z) ((x & y) | (~x & z)) |
|
#define ripemd160_f2(x, y, z) (z ^ (x | ~y)) |
|
#define ripemd160_f3(x, y, z) ((x & z) | (y & ~z)) |
|
#define ripemd160_f4(x, y, z) (x ^ (y | ~z)) |
|
#endif |
|
#define ripemd160_round(i, in, vals, f, fp, t) do { \ |
|
ripemd160_val(vals, i, 0) = \ |
|
rotate(ripemd160_val(vals, i, 0) + \ |
|
f(ripemd160_val(vals, i, 1), \ |
|
ripemd160_val(vals, i, 2), \ |
|
ripemd160_val(vals, i, 3)) + \ |
|
in[ripemd160_ws[i]] + \ |
|
ripemd160_k[i / 16], \ |
|
(uint)ripemd160_rl[i]) + \ |
|
ripemd160_val(vals, i, 4); \ |
|
ripemd160_val(vals, i, 2) = \ |
|
rotate(ripemd160_val(vals, i, 2), 10U); \ |
|
ripemd160_valp(vals, i, 0) = \ |
|
rotate(ripemd160_valp(vals, i, 0) + \ |
|
fp(ripemd160_valp(vals, i, 1), \ |
|
ripemd160_valp(vals, i, 2), \ |
|
ripemd160_valp(vals, i, 3)) + \ |
|
in[ripemd160_wsp[i]] + \ |
|
ripemd160_kp[i / 16], \ |
|
(uint)ripemd160_rlp[i]) + \ |
|
ripemd160_valp(vals, i, 4); \ |
|
ripemd160_valp(vals, i, 2) = \ |
|
rotate(ripemd160_valp(vals, i, 2), 10U); \ |
|
} while (0) |
|
|
|
void |
|
ripemd160_init(uint *out) |
|
{ |
|
#define ripemd160_init_inner_1(i) \ |
|
out[i] = ripemd160_iv[i]; |
|
|
|
hash160_unroll(ripemd160_init_inner_1); |
|
} |
|
|
|
void |
|
ripemd160_block(uint *out, uint *in) |
|
{ |
|
uint vals[10], t; |
|
#if defined(PRAGMA_UNROLL) |
|
int i; |
|
#endif |
|
|
|
#define ripemd160_block_inner_1(i) \ |
|
vals[i] = vals[i + 5] = out[i]; |
|
|
|
hash160_unroll(ripemd160_block_inner_1); |
|
|
|
#define ripemd160_block_inner_p0(i) \ |
|
ripemd160_round(i, in, vals, \ |
|
ripemd160_f0, ripemd160_f4, t); |
|
#define ripemd160_block_inner_p1(i) \ |
|
ripemd160_round((16 + i), in, vals, \ |
|
ripemd160_f1, ripemd160_f3, t); |
|
#define ripemd160_block_inner_p2(i) \ |
|
ripemd160_round((32 + i), in, vals, \ |
|
ripemd160_f2, ripemd160_f2, t); |
|
#define ripemd160_block_inner_p3(i) \ |
|
ripemd160_round((48 + i), in, vals, \ |
|
ripemd160_f3, ripemd160_f1, t); |
|
#define ripemd160_block_inner_p4(i) \ |
|
ripemd160_round((64 + i), in, vals, \ |
|
ripemd160_f4, ripemd160_f0, t); |
|
|
|
#if !defined(PRAGMA_UNROLL) |
|
iter_16(ripemd160_block_inner_p0); |
|
iter_16(ripemd160_block_inner_p1); |
|
iter_16(ripemd160_block_inner_p2); |
|
iter_16(ripemd160_block_inner_p3); |
|
iter_16(ripemd160_block_inner_p4); |
|
#else |
|
#pragma unroll 16 |
|
for (i = 0; i < 16; i++) { ripemd160_block_inner_p0(i); } |
|
#pragma unroll 16 |
|
for (i = 0; i < 16; i++) { ripemd160_block_inner_p1(i); } |
|
#pragma unroll 16 |
|
for (i = 0; i < 16; i++) { ripemd160_block_inner_p2(i); } |
|
#pragma unroll 16 |
|
for (i = 0; i < 16; i++) { ripemd160_block_inner_p3(i); } |
|
#pragma unroll 16 |
|
for (i = 0; i < 16; i++) { ripemd160_block_inner_p4(i); } |
|
#endif |
|
|
|
t = out[1] + vals[2] + vals[8]; |
|
out[1] = out[2] + vals[3] + vals[9]; |
|
out[2] = out[3] + vals[4] + vals[5]; |
|
out[3] = out[4] + vals[0] + vals[6]; |
|
out[4] = out[0] + vals[1] + vals[7]; |
|
out[0] = t; |
|
} |
|
|
|
|
|
#ifdef TEST_KERNELS |
|
/* |
|
* Test kernels |
|
*/ |
|
|
|
/* Montgomery multiplication test kernel */ |
|
__kernel void |
|
test_mul_mont(__global bignum *products_out, __global bignum *nums_in) |
|
{ |
|
bignum a, b, c; |
|
int o; |
|
o = get_global_id(0); |
|
nums_in += (2*o); |
|
|
|
a = nums_in[0]; |
|
b = nums_in[1]; |
|
bn_mul_mont(&c, &a, &b); |
|
products_out[o] = c; |
|
} |
|
|
|
/* modular inversion test kernel */ |
|
__kernel void |
|
test_mod_inverse(__global bignum *inv_out, __global bignum *nums_in, |
|
int count) |
|
{ |
|
bignum x, xp; |
|
int i, o; |
|
o = get_global_id(0) * count; |
|
for (i = 0; i < count; i++) { |
|
x = nums_in[o]; |
|
bn_mod_inverse(&xp, &x); |
|
inv_out[o++] = xp; |
|
} |
|
} |
|
#endif /* TEST_KERNELS */ |
|
|
|
|
|
#define ACCESS_BUNDLE 1024 |
|
#define ACCESS_STRIDE (ACCESS_BUNDLE/BN_NWORDS) |
|
|
|
__kernel void |
|
ec_add_grid(__global bn_word *points_out, __global bn_word *z_heap, |
|
__global bn_word *row_in, __global bignum *col_in) |
|
{ |
|
bignum rx, ry; |
|
bignum x1, y1, a, b, c, d, e, z; |
|
bn_word cy; |
|
int i, cell, start; |
|
|
|
/* Load the row increment point */ |
|
i = 2 * get_global_id(1); |
|
rx = col_in[i]; |
|
ry = col_in[i+1]; |
|
|
|
cell = get_global_id(0); |
|
start = ((((2 * cell) / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(cell % (ACCESS_STRIDE/2))); |
|
|
|
#define ec_add_grid_inner_1(i) \ |
|
x1.d[i] = row_in[start + (i*ACCESS_STRIDE)]; |
|
|
|
bn_unroll(ec_add_grid_inner_1); |
|
start += (ACCESS_STRIDE/2); |
|
|
|
#define ec_add_grid_inner_2(i) \ |
|
y1.d[i] = row_in[start + (i*ACCESS_STRIDE)]; |
|
|
|
bn_unroll(ec_add_grid_inner_2); |
|
|
|
bn_mod_sub(&z, &x1, &rx); |
|
|
|
cell += (get_global_id(1) * get_global_size(0)); |
|
start = (((cell / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(cell % ACCESS_STRIDE)); |
|
|
|
#define ec_add_grid_inner_3(i) \ |
|
z_heap[start + (i*ACCESS_STRIDE)] = z.d[i]; |
|
|
|
bn_unroll(ec_add_grid_inner_3); |
|
|
|
bn_mod_sub(&b, &y1, &ry); |
|
bn_mod_add(&c, &x1, &rx); |
|
bn_mod_add(&d, &y1, &ry); |
|
bn_mul_mont(&y1, &b, &b); |
|
bn_mul_mont(&x1, &z, &z); |
|
bn_mul_mont(&e, &c, &x1); |
|
bn_mod_sub(&y1, &y1, &e); |
|
|
|
/* |
|
* This disgusting code caters to the global memory unit on |
|
* various GPUs, by giving it a nice contiguous patch to write |
|
* per warp/wavefront. |
|
*/ |
|
start = ((((2 * cell) / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(cell % (ACCESS_STRIDE/2))); |
|
|
|
#define ec_add_grid_inner_4(i) \ |
|
points_out[start + (i*ACCESS_STRIDE)] = y1.d[i]; |
|
|
|
bn_unroll(ec_add_grid_inner_4); |
|
|
|
bn_mod_lshift1(&y1); |
|
bn_mod_sub(&y1, &e, &y1); |
|
bn_mul_mont(&y1, &y1, &b); |
|
bn_mul_mont(&a, &x1, &z); |
|
bn_mul_mont(&c, &d, &a); |
|
bn_mod_sub(&y1, &y1, &c); |
|
cy = 0; |
|
if (bn_is_odd(y1)) |
|
cy = bn_uadd_c(&y1, &y1, modulus); |
|
bn_rshift1(&y1); |
|
y1.d[BN_NWORDS-1] |= (cy ? 0x80000000 : 0); |
|
|
|
start += (ACCESS_STRIDE/2); |
|
|
|
bn_unroll(ec_add_grid_inner_4); |
|
} |
|
|
|
__kernel void |
|
heap_invert(__global bn_word *z_heap, int batch) |
|
{ |
|
bignum a, b, c, z; |
|
int i, off, lcell, hcell, start; |
|
|
|
#define heap_invert_inner_load_a(j) \ |
|
a.d[j] = z_heap[start + j*ACCESS_STRIDE]; |
|
#define heap_invert_inner_load_b(j) \ |
|
b.d[j] = z_heap[start + j*ACCESS_STRIDE]; |
|
#define heap_invert_inner_load_z(j) \ |
|
z.d[j] = z_heap[start + j*ACCESS_STRIDE]; |
|
#define heap_invert_inner_store_z(j) \ |
|
z_heap[start + j*ACCESS_STRIDE] = z.d[j]; |
|
#define heap_invert_inner_store_c(j) \ |
|
z_heap[start + j*ACCESS_STRIDE] = c.d[j]; |
|
|
|
off = get_global_size(0); |
|
lcell = get_global_id(0); |
|
hcell = (off * batch) + lcell; |
|
for (i = 0; i < (batch-1); i++) { |
|
|
|
start = (((lcell / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(lcell % ACCESS_STRIDE)); |
|
|
|
bn_unroll(heap_invert_inner_load_a); |
|
|
|
lcell += off; |
|
start = (((lcell / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(lcell % ACCESS_STRIDE)); |
|
|
|
bn_unroll(heap_invert_inner_load_b); |
|
|
|
bn_mul_mont(&z, &a, &b); |
|
|
|
start = (((hcell / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(hcell % ACCESS_STRIDE)); |
|
|
|
bn_unroll(heap_invert_inner_store_z); |
|
|
|
lcell += off; |
|
hcell += off; |
|
} |
|
|
|
/* Invert the root, fix up 1/ZR -> R/Z */ |
|
bn_mod_inverse(&z, &z); |
|
|
|
#define heap_invert_inner_1(i) \ |
|
a.d[i] = mont_rr[i]; |
|
|
|
bn_unroll(heap_invert_inner_1); |
|
|
|
bn_mul_mont(&z, &z, &a); |
|
bn_mul_mont(&z, &z, &a); |
|
|
|
/* Unroll the first iteration to avoid a load/store on the root */ |
|
lcell -= (off << 1); |
|
hcell -= (off << 1); |
|
|
|
start = (((lcell / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(lcell % ACCESS_STRIDE)); |
|
bn_unroll(heap_invert_inner_load_a); |
|
|
|
lcell += off; |
|
start = (((lcell / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(lcell % ACCESS_STRIDE)); |
|
bn_unroll(heap_invert_inner_load_b); |
|
|
|
bn_mul_mont(&c, &a, &z); |
|
|
|
bn_unroll(heap_invert_inner_store_c); |
|
|
|
bn_mul_mont(&c, &b, &z); |
|
|
|
lcell -= off; |
|
start = (((lcell / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(lcell % ACCESS_STRIDE)); |
|
bn_unroll(heap_invert_inner_store_c); |
|
|
|
lcell -= (off << 1); |
|
|
|
for (i = 0; i < (batch-2); i++) { |
|
start = (((hcell / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(hcell % ACCESS_STRIDE)); |
|
bn_unroll(heap_invert_inner_load_z); |
|
|
|
start = (((lcell / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(lcell % ACCESS_STRIDE)); |
|
bn_unroll(heap_invert_inner_load_a); |
|
|
|
lcell += off; |
|
start = (((lcell / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(lcell % ACCESS_STRIDE)); |
|
bn_unroll(heap_invert_inner_load_b); |
|
|
|
bn_mul_mont(&c, &a, &z); |
|
|
|
bn_unroll(heap_invert_inner_store_c); |
|
|
|
bn_mul_mont(&c, &b, &z); |
|
|
|
lcell -= off; |
|
start = (((lcell / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(lcell % ACCESS_STRIDE)); |
|
bn_unroll(heap_invert_inner_store_c); |
|
|
|
lcell -= (off << 1); |
|
hcell -= off; |
|
} |
|
} |
|
|
|
void |
|
hash_ec_point(uint *hash_out, __global bn_word *xy, __global bn_word *zip) |
|
{ |
|
uint hash1[16], hash2[16]; |
|
bignum c, zi, zzi; |
|
bn_word wh, wl; |
|
|
|
/* |
|
* Multiply the coordinates by the inverted Z values. |
|
* Stash the coordinates in the hash buffer. |
|
* SHA-2 requires big endian, and our intended hash input |
|
* is big-endian, so swapping is unnecessary, but |
|
* inserting the format byte in front causes a headache. |
|
*/ |
|
#define hash_ec_point_inner_1(i) \ |
|
zi.d[i] = zip[i*ACCESS_STRIDE]; |
|
|
|
bn_unroll(hash_ec_point_inner_1); |
|
|
|
bn_mul_mont(&zzi, &zi, &zi); /* 1 / Z^2 */ |
|
|
|
#define hash_ec_point_inner_2(i) \ |
|
c.d[i] = xy[i*ACCESS_STRIDE]; |
|
|
|
bn_unroll(hash_ec_point_inner_2); |
|
|
|
bn_mul_mont(&c, &c, &zzi); /* X / Z^2 */ |
|
bn_from_mont(&c, &c); |
|
|
|
wh = 0x00000004; /* POINT_CONVERSION_UNCOMPRESSED */ |
|
|
|
#define hash_ec_point_inner_3(i) \ |
|
wl = wh; \ |
|
wh = c.d[(BN_NWORDS - 1) - i]; \ |
|
hash1[i] = (wl << 24) | (wh >> 8); |
|
|
|
bn_unroll(hash_ec_point_inner_3); |
|
|
|
bn_mul_mont(&zzi, &zzi, &zi); /* 1 / Z^3 */ |
|
|
|
#define hash_ec_point_inner_4(i) \ |
|
c.d[i] = xy[(ACCESS_STRIDE/2) + i*ACCESS_STRIDE]; |
|
|
|
bn_unroll(hash_ec_point_inner_4); |
|
|
|
bn_mul_mont(&c, &c, &zzi); /* Y / Z^3 */ |
|
bn_from_mont(&c, &c); |
|
|
|
#define hash_ec_point_inner_5(i) \ |
|
wl = wh; \ |
|
wh = c.d[(BN_NWORDS - 1) - i]; \ |
|
hash1[BN_NWORDS + i] = (wl << 24) | (wh >> 8); |
|
|
|
bn_unroll(hash_ec_point_inner_5); |
|
|
|
/* |
|
* Hash the first 64 bytes of the buffer |
|
*/ |
|
sha2_256_init(hash2); |
|
sha2_256_block(hash2, hash1); |
|
|
|
/* |
|
* Hash the last byte of the buffer + SHA-2 padding |
|
*/ |
|
hash1[0] = wh << 24 | 0x800000; |
|
hash1[1] = 0; |
|
hash1[2] = 0; |
|
hash1[3] = 0; |
|
hash1[4] = 0; |
|
hash1[5] = 0; |
|
hash1[6] = 0; |
|
hash1[7] = 0; |
|
hash1[8] = 0; |
|
hash1[9] = 0; |
|
hash1[10] = 0; |
|
hash1[11] = 0; |
|
hash1[12] = 0; |
|
hash1[13] = 0; |
|
hash1[14] = 0; |
|
hash1[15] = 65 * 8; |
|
sha2_256_block(hash2, hash1); |
|
|
|
/* |
|
* Hash the SHA-2 result with RIPEMD160 |
|
* Unfortunately, SHA-2 outputs big-endian, but |
|
* RIPEMD160 expects little-endian. Need to swap! |
|
*/ |
|
|
|
#define hash_ec_point_inner_6(i) \ |
|
hash2[i] = bswap32(hash2[i]); |
|
|
|
hash256_unroll(hash_ec_point_inner_6); |
|
|
|
hash2[8] = bswap32(0x80000000); |
|
hash2[9] = 0; |
|
hash2[10] = 0; |
|
hash2[11] = 0; |
|
hash2[12] = 0; |
|
hash2[13] = 0; |
|
hash2[14] = 32 * 8; |
|
hash2[15] = 0; |
|
ripemd160_init(hash_out); |
|
ripemd160_block(hash_out, hash2); |
|
} |
|
|
|
|
|
__kernel void |
|
hash_ec_point_get(__global uint *hashes_out, |
|
__global bn_word *points_in, __global bn_word *z_heap) |
|
{ |
|
uint hash[5]; |
|
int i, p, cell, start; |
|
|
|
cell = ((get_global_id(1) * get_global_size(0)) + get_global_id(0)); |
|
start = (((cell / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(cell % ACCESS_STRIDE)); |
|
z_heap += start; |
|
|
|
start = ((((2 * cell) / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(cell % (ACCESS_STRIDE/2))); |
|
points_in += start; |
|
|
|
/* Complete the coordinates and hash */ |
|
hash_ec_point(hash, points_in, z_heap); |
|
|
|
p = get_global_size(0); |
|
i = p * get_global_id(1); |
|
hashes_out += 5 * (i + get_global_id(0)); |
|
|
|
/* Output the hash in proper byte-order */ |
|
#define hash_ec_point_get_inner_1(i) \ |
|
hashes_out[i] = load_le32(hash[i]); |
|
|
|
hash160_unroll(hash_ec_point_get_inner_1); |
|
} |
|
|
|
/* |
|
* Normally this would be one function that compared two hash160s. |
|
* This one compares a hash160 with an upper and lower bound in one |
|
* function to work around a problem with AMD's OpenCL compiler. |
|
*/ |
|
int |
|
hash160_ucmp_g(uint *a, __global uint *bound) |
|
{ |
|
uint gv; |
|
|
|
#define hash160_ucmp_g_inner_1(i) \ |
|
gv = load_be32(bound[i]); \ |
|
if (a[i] < gv) return -1; \ |
|
if (a[i] > gv) break; |
|
|
|
hash160_iter(hash160_ucmp_g_inner_1); |
|
|
|
#define hash160_ucmp_g_inner_2(i) \ |
|
gv = load_be32(bound[5+i]); \ |
|
if (a[i] < gv) return 0; \ |
|
if (a[i] > gv) return 1; |
|
|
|
hash160_iter(hash160_ucmp_g_inner_2); |
|
return 0; |
|
} |
|
|
|
__kernel void |
|
hash_ec_point_search_prefix(__global uint *found, |
|
__global bn_word *points_in, |
|
__global bn_word *z_heap, |
|
__global uint *target_table, int ntargets) |
|
{ |
|
uint hash[5]; |
|
int i, high, low, p, cell, start; |
|
|
|
cell = ((get_global_id(1) * get_global_size(0)) + get_global_id(0)); |
|
start = (((cell / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(cell % ACCESS_STRIDE)); |
|
z_heap += start; |
|
|
|
start = ((((2 * cell) / ACCESS_STRIDE) * ACCESS_BUNDLE) + |
|
(cell % (ACCESS_STRIDE/2))); |
|
points_in += start; |
|
|
|
/* Complete the coordinates and hash */ |
|
hash_ec_point(hash, points_in, z_heap); |
|
|
|
/* |
|
* Unconditionally byteswap the hash result, because: |
|
* - The byte-level convention of RIPEMD160 is little-endian |
|
* - We are comparing it in big-endian order |
|
*/ |
|
#define hash_ec_point_search_prefix_inner_1(i) \ |
|
hash[i] = bswap32(hash[i]); |
|
|
|
hash160_unroll(hash_ec_point_search_prefix_inner_1); |
|
|
|
/* Binary-search the target table for the hash we just computed */ |
|
for (high = ntargets - 1, low = 0, i = high >> 1; |
|
high >= low; |
|
i = low + ((high - low) >> 1)) { |
|
p = hash160_ucmp_g(hash, &target_table[10*i]); |
|
low = (p > 0) ? (i + 1) : low; |
|
high = (p < 0) ? (i - 1) : high; |
|
if (p == 0) { |
|
/* For debugging purposes, write the hash value */ |
|
found[0] = ((get_global_id(1) * get_global_size(0)) + |
|
get_global_id(0)); |
|
found[1] = i; |
|
|
|
#define hash_ec_point_search_prefix_inner_2(i) \ |
|
found[i+2] = load_be32(hash[i]); |
|
|
|
hash160_unroll(hash_ec_point_search_prefix_inner_2); |
|
high = -1; |
|
} |
|
} |
|
}
|
|
|