mirror of https://github.com/GOSTSec/vanitygen
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
860 lines
20 KiB
860 lines
20 KiB
/* |
|
* Vanitygen, vanity bitcoin address generator |
|
* Copyright (C) 2011 <samr7@cs.washington.edu> |
|
* |
|
* Vanitygen is free software: you can redistribute it and/or modify |
|
* it under the terms of the GNU Affero General Public License as published by |
|
* the Free Software Foundation, either version 3 of the License, or |
|
* any later version. |
|
* |
|
* Vanitygen is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
* GNU Affero General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Affero General Public License |
|
* along with Vanitygen. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* This file contains an OpenCL kernel for performing certain parts of |
|
* the bitcoin address calculation process. |
|
* |
|
* Kernel: calc_addrs |
|
* |
|
* Inputs: |
|
* - Row of (sequential) EC points |
|
* - Array of column increment EC points (= rowsize * Pgenerator) |
|
* |
|
* Steps: |
|
* - For each row increment value C: |
|
* - For each row point P: |
|
* - Compute P + C |
|
* - Normalize and hash with SHA256 and RIPEMD160 |
|
* - Store hash value in output array |
|
* |
|
* Output: |
|
* - Array of 20-byte address hash values |
|
* |
|
* Each instance of the kernel computes one full row. With a typical |
|
* row size of 256 points, this makes each kernel instance very heavy. |
|
* This tradeoff is chosen in favor of batched modular inversion, which |
|
* substantially reduces the cost of performing modular inversion. |
|
*/ |
|
|
|
/* |
|
* BIGNUM mini-library |
|
* This module deals with fixed-size 256-bit bignums. |
|
* Where modular arithmetic is performed, the SECP256k1 prime |
|
* modulus (below) is assumed. |
|
* |
|
* Methods include: |
|
* - bn_is_zero/bn_is_one/bn_is_odd/bn_is_even/bn_is_bit_set |
|
* - bn_rshift[1]/bn_lshift[1] |
|
* - bn_neg |
|
* - bn_uadd/bn_uadd_p |
|
* - bn_usub/bn_usub_p |
|
*/ |
|
|
|
typedef uint bn_word; |
|
#define BN_NBITS 256 |
|
#define BN_WSHIFT 5 |
|
#define BN_WBITS (1 << BN_WSHIFT) |
|
#define BN_NWORDS ((BN_NBITS/8) / sizeof(bn_word)) |
|
#define BN_WORDMAX 0xffffffff |
|
|
|
#define MODULUS_BYTES \ |
|
0xfffffc2f, 0xfffffffe, 0xffffffff, 0xffffffff, \ |
|
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff |
|
|
|
typedef struct { |
|
bn_word d[BN_NWORDS]; |
|
} bignum; |
|
|
|
__constant bn_word modulus[] = { MODULUS_BYTES }; |
|
__constant bn_word bn_one[BN_NWORDS] = { 1, 0, }; |
|
__constant bignum bn_zero; |
|
|
|
__constant bn_word mont_rr[BN_NWORDS] = { 0xe90a1, 0x7a2, 0x1, 0, }; |
|
__constant bn_word mont_n0[2] = { 0xd2253531, 0xd838091d }; |
|
|
|
|
|
#define bn_is_odd(bn) (bn.d[0] & 1) |
|
#define bn_is_even(bn) (!bn_is_odd(bn)) |
|
#define bn_is_zero(bn) (!bn.d[0] && !bn.d[1] && !bn.d[2] && \ |
|
!bn.d[3] && !bn.d[4] && !bn.d[5] && \ |
|
!bn.d[6] && !bn.d[7]) |
|
#define bn_is_one(bn) ((bn.d[0] == 1) && !bn.d[1] && !bn.d[2] && \ |
|
!bn.d[3] && !bn.d[4] && !bn.d[5] && \ |
|
!bn.d[6] && !bn.d[7]) |
|
#define bn_is_bit_set(bn, n) \ |
|
((((bn_word*)&bn)[n >> BN_WSHIFT]) & (1 << (n & (BN_WBITS-1)))) |
|
|
|
|
|
/* |
|
* Bitwise shift |
|
*/ |
|
|
|
void |
|
bn_lshift1(bignum *bn) |
|
{ |
|
int i; |
|
for (i = (BN_NWORDS - 1); i > 0; i--) |
|
bn->d[i] = (bn->d[i] << 1) | (bn->d[i-1] >> 31); |
|
bn->d[i] <<= 1; |
|
} |
|
|
|
void |
|
bn_rshift(bignum *bn, int shift) |
|
{ |
|
int i, wd, iws; |
|
bn_word *op, *ip, ihw, ilw; |
|
iws = (shift & (BN_WBITS-1)); |
|
wd = (shift >> BN_WSHIFT); |
|
ip = ((bn_word*)bn); |
|
op = ip + wd; |
|
wd = BN_NWORDS - wd; |
|
ihw = ip[0]; |
|
for (i = 1; i < wd; i++) { |
|
ilw = ihw; |
|
ihw = ip[i]; |
|
op[i-1] = ((ilw >> iws) | (ihw << (BN_WBITS - iws))); |
|
} |
|
op[i-1] = (ihw >> iws); |
|
if (i < BN_NWORDS) { |
|
while (i < BN_NWORDS) |
|
op[i++] = 0; |
|
} |
|
} |
|
|
|
void |
|
bn_rshift1(bignum *bn) |
|
{ |
|
int i; |
|
for (i = 0; i < (BN_NWORDS - 1); i++) |
|
bn->d[i] = (bn->d[i+1] << 31) | (bn->d[i] >> 1); |
|
bn->d[i] >>= 1; |
|
} |
|
|
|
|
|
/* |
|
* Unsigned comparison |
|
*/ |
|
|
|
int |
|
bn_ucmp(bignum *a, bignum *b) |
|
{ |
|
int i; |
|
for (i = (BN_NWORDS - 1); i >= 0; i--) { |
|
if (a->d[i] < b->d[i]) return -1; |
|
if (a->d[i] > b->d[i]) return 1; |
|
} |
|
return 0; |
|
} |
|
|
|
int |
|
bn_ucmp_c(bignum *a, __constant bn_word *b) |
|
{ |
|
int i; |
|
for (i = (BN_NWORDS - 1); i >= 0; i--) { |
|
if (a->d[i] < b[i]) return -1; |
|
if (a->d[i] > b[i]) return 1; |
|
} |
|
return 0; |
|
} |
|
|
|
/* |
|
* Negate |
|
*/ |
|
|
|
void |
|
bn_neg(bignum *n) |
|
{ |
|
int i, c; |
|
for (i = 0, c = 1; i < BN_NWORDS; i++) |
|
if ((n->d[i] = (~n->d[i]) + c) && c) |
|
c = 0; |
|
} |
|
|
|
/* |
|
* Add/subtract |
|
*/ |
|
|
|
#define bn_add_word(r, a, b, t, c) do { \ |
|
t = a + b; \ |
|
c = (t < a) ? 1 : 0; \ |
|
r = t; \ |
|
} while (0) |
|
|
|
#define bn_addc_word(r, a, b, t, c) do { \ |
|
t = a + b + c; \ |
|
c = (t < a) ? 1 : ((c && (t == a)) ? 1 : 0); \ |
|
r = t; \ |
|
} while (0) |
|
|
|
bn_word |
|
bn_uadd(bignum *r, bignum *a, bignum *b) |
|
{ |
|
bn_word t, c = 0; |
|
int i; |
|
bn_add_word(r->d[0], a->d[0], b->d[0], t, c); |
|
for (i = 1; i < BN_NWORDS; i++) |
|
bn_addc_word(r->d[i], a->d[i], b->d[i], t, c); |
|
return c; |
|
} |
|
|
|
bn_word |
|
bn_uadd_c(bignum *r, bignum *a, __constant bn_word *b) |
|
{ |
|
bn_word t, c = 0; |
|
int i; |
|
bn_add_word(r->d[0], a->d[0], b[0], t, c); |
|
for (i = 1; i < BN_NWORDS; i++) |
|
bn_addc_word(r->d[i], a->d[i], b[i], t, c); |
|
return c; |
|
} |
|
|
|
#define bn_sub_word(r, a, b, t, c) do { \ |
|
t = a - b; \ |
|
c = (a < b) ? 1 : 0; \ |
|
r = t; \ |
|
} while (0) |
|
|
|
#define bn_subb_word(r, a, b, t, c) do { \ |
|
t = a - (b + c); \ |
|
c = ((a < b) || (!a && c)) ? 1 : 0; \ |
|
r = t; \ |
|
} while (0) |
|
|
|
bn_word |
|
bn_usub(bignum *r, bignum *a, bignum *b) |
|
{ |
|
bn_word t, c = 0; |
|
int i; |
|
bn_sub_word(r->d[0], a->d[0], b->d[0], t, c); |
|
for (i = 1; i < BN_NWORDS; i++) |
|
bn_subb_word(r->d[i], a->d[i], b->d[i], t, c); |
|
return c; |
|
} |
|
|
|
bn_word |
|
bn_usub_c(bignum *r, bignum *a, __constant bn_word *b) |
|
{ |
|
bn_word t, c = 0; |
|
int i; |
|
bn_sub_word(r->d[0], a->d[0], b[0], t, c); |
|
for (i = 1; i < BN_NWORDS; i++) |
|
bn_subb_word(r->d[i], a->d[i], b[i], t, c); |
|
return c; |
|
} |
|
|
|
/* |
|
* Modular add/sub |
|
*/ |
|
|
|
void |
|
bn_mod_add(bignum *r, bignum *a, bignum *b) |
|
{ |
|
if (bn_uadd(r, a, b) || |
|
(bn_ucmp_c(r, modulus) >= 0)) |
|
bn_usub_c(r, r, modulus); |
|
} |
|
|
|
void |
|
bn_mod_sub(bignum *r, bignum *a, bignum *b) |
|
{ |
|
if (bn_usub(r, a, b)) |
|
bn_uadd_c(r, r, modulus); |
|
} |
|
|
|
void |
|
bn_mod_lshift1(bignum *bn) |
|
{ |
|
bn_word c = (bn->d[BN_NWORDS-1] & 0x80000000); |
|
bn_lshift1(bn); |
|
if (c || (bn_ucmp_c(bn, modulus) >= 0)) |
|
bn_usub_c(bn, bn, modulus); |
|
} |
|
|
|
/* |
|
* Montgomery multiplication |
|
* |
|
* This includes normal multiplication of two "Montgomeryized" |
|
* bignums, and bn_from_mont for de-Montgomeryizing a bignum. |
|
*/ |
|
|
|
#define bn_mul_word(r, a, w, c, p, s) do { \ |
|
p = mul_hi(a, w); \ |
|
r = (a * w) + c; \ |
|
c = (r < c) ? p + 1 : p; \ |
|
} while (0) |
|
|
|
#define bn_mul_add_word(r, a, w, c, p, s) do { \ |
|
p = mul_hi(a, w); \ |
|
s = r + c; \ |
|
r = (a * w) + s; \ |
|
c = (s < c) ? p + 1 : p; \ |
|
if (r < s) c++; \ |
|
} while (0) |
|
|
|
void |
|
bn_mul_mont(bignum *r, bignum *a, bignum *b) |
|
{ |
|
bignum t; |
|
bn_word tea, teb, c, p, s, m; |
|
int i, j; |
|
|
|
c = 0; |
|
for (j = 0; j < BN_NWORDS; j++) |
|
bn_mul_word(t.d[j], a->d[j], b->d[0], c, p, s); |
|
tea = c; |
|
teb = 0; |
|
|
|
c = 0; |
|
m = t.d[0] * mont_n0[0]; |
|
bn_mul_add_word(t.d[0], modulus[0], m, c, p, s); |
|
for (j = 1; j < BN_NWORDS; j++) { |
|
bn_mul_add_word(t.d[j], modulus[j], m, c, p, s); |
|
t.d[j-1] = t.d[j]; |
|
} |
|
t.d[BN_NWORDS-1] = tea + c; |
|
tea = teb + ((t.d[BN_NWORDS-1] < c) ? 1 : 0); |
|
|
|
for (i = 1; i < BN_NWORDS; i++) { |
|
c = 0; |
|
for (j = 0; j < BN_NWORDS; j++) |
|
bn_mul_add_word(t.d[j], a->d[j], b->d[i], c, p, s); |
|
tea += c; |
|
teb = ((tea < c) ? 1 : 0); |
|
|
|
c = 0; |
|
m = t.d[0] * mont_n0[0]; |
|
bn_mul_add_word(t.d[0], modulus[0], m, c, p, s); |
|
for (j = 1; j < BN_NWORDS; j++) { |
|
bn_mul_add_word(t.d[j], modulus[j], m, c, p, s); |
|
t.d[j-1] = t.d[j]; |
|
} |
|
t.d[BN_NWORDS-1] = tea + c; |
|
tea = teb + ((t.d[BN_NWORDS-1] < c) ? 1 : 0); |
|
} |
|
|
|
if (tea || (t.d[BN_NWORDS-1] >= modulus[7])) { |
|
c = bn_usub_c(r, &t, modulus); |
|
if (tea || !c) |
|
return; |
|
} |
|
*r = t; |
|
} |
|
|
|
void |
|
bn_from_mont(bignum *rb, bignum *b) |
|
{ |
|
#define WORKSIZE ((2*BN_NWORDS) + 1) |
|
bn_word r[WORKSIZE]; |
|
bn_word m, c, p, s; |
|
int i, j, top, tl; |
|
/* Copy the input to the working area */ |
|
for (i = 0; i < BN_NWORDS; i++) |
|
r[i] = b->d[i]; |
|
/* Zero the upper words */ |
|
for (i = BN_NWORDS; i < WORKSIZE; i++) |
|
r[i] = 0; |
|
/* Multiply (long) by modulus */ |
|
for (i = 0; i < BN_NWORDS; i++) { |
|
m = r[i] * mont_n0[0]; |
|
c = 0; |
|
for (j = 0; j < BN_NWORDS; j++) |
|
bn_mul_add_word(r[i+j], modulus[j], m, c, p, s); |
|
r[BN_NWORDS + i] += c; |
|
if (r[BN_NWORDS + i] < c) { |
|
if (++r[BN_NWORDS + i + 1] == 0) |
|
++r[BN_NWORDS + i + 2]; /* The end..? */ |
|
} |
|
} |
|
for (top = WORKSIZE - 1; (top > BN_NWORDS) && (r[top] == 0); top--); |
|
if (top <= BN_NWORDS) { |
|
*rb = bn_zero; |
|
return; |
|
} |
|
tl = top - BN_NWORDS; |
|
c = 0; |
|
for (j = 0; j < BN_NWORDS; j++) |
|
bn_subb_word(rb->d[j], r[BN_NWORDS + j], modulus[j], p, c); |
|
if (c) { |
|
for (j = 0; j < BN_NWORDS; j++) |
|
rb->d[j] = r[BN_NWORDS + j]; |
|
} |
|
} |
|
|
|
|
|
/* Montgomery multiplication test kernel */ |
|
__kernel void |
|
test_mul_mont(__global bignum *products_out, __global bignum *nums_in, |
|
int count) |
|
{ |
|
bignum x, y, tmp; |
|
int i, o, p; |
|
o = get_global_id(0) * count; |
|
p = o * 2; |
|
for (i = 0; i < count; i++) { |
|
x = nums_in[p++]; |
|
y = nums_in[p++]; |
|
bn_mul_mont(&tmp, &x, &y); |
|
bn_mul_mont(&tmp, &tmp, &x); |
|
bn_mul_mont(&tmp, &tmp, &y); |
|
bn_from_mont(&x, &tmp); |
|
products_out[o++] = x; |
|
} |
|
} |
|
|
|
/* |
|
* Modular inversion |
|
*/ |
|
|
|
void |
|
bn_mod_inverse(bignum *r, bignum *n) |
|
{ |
|
bignum a, b, x, y; |
|
int shift; |
|
bn_word xc, yc; |
|
for (shift = 0; shift < BN_NWORDS; shift++) { |
|
a.d[shift] = modulus[shift]; |
|
x.d[shift] = 0; |
|
y.d[shift] = 0; |
|
} |
|
b = *n; |
|
x.d[0] = 1; |
|
xc = 0; |
|
yc = 0; |
|
while (!bn_is_zero(b)) { |
|
shift = 0; |
|
while (!bn_is_bit_set(b, shift)) { |
|
shift++; |
|
if (bn_is_odd(x)) |
|
xc += bn_uadd_c(&x, &x, modulus); |
|
bn_rshift1(&x); |
|
x.d[7] |= (xc << 31); |
|
xc >>= 1; |
|
} |
|
if (shift) |
|
bn_rshift(&b, shift); |
|
|
|
shift = 0; |
|
while (!bn_is_bit_set(a, shift)) { |
|
shift++; |
|
if (bn_is_odd(y)) |
|
yc += bn_uadd_c(&y, &y, modulus); |
|
bn_rshift1(&y); |
|
y.d[7] |= (yc << 31); |
|
yc >>= 1; |
|
} |
|
if (shift) |
|
bn_rshift(&a, shift); |
|
|
|
if (bn_ucmp(&b, &a) >= 0) { |
|
xc += yc + bn_uadd(&x, &x, &y); |
|
bn_usub(&b, &b, &a); |
|
} else { |
|
yc += xc + bn_uadd(&y, &y, &x); |
|
bn_usub(&a, &a, &b); |
|
} |
|
} |
|
|
|
if (!bn_is_one(a)) { |
|
/* no modular inverse */ |
|
*r = bn_zero; |
|
return; |
|
} |
|
/* Compute y % m as cheaply as possible */ |
|
while (yc < 0x80000000) |
|
yc -= bn_usub_c(&y, &y, modulus); |
|
bn_neg(&y); |
|
*r = y; |
|
return; |
|
} |
|
|
|
/* modular inversion test kernel */ |
|
__kernel void |
|
test_mod_inverse(__global bignum *inv_out, __global bignum *nums_in, |
|
int count) |
|
{ |
|
bignum x, xp; |
|
int i, o; |
|
o = get_global_id(0) * count; |
|
for (i = 0; i < count; i++) { |
|
x = nums_in[o]; |
|
bn_mod_inverse(&xp, &x); |
|
inv_out[o++] = xp; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* HASH FUNCTIONS |
|
* |
|
* BYTE ORDER NOTE: None of the hash functions below deal with byte |
|
* order. The caller is expected to be aware of this when it stuffs |
|
* data into in the native integer. |
|
* |
|
* NOTE #2: Endianness of the OpenCL device makes no difference here. |
|
*/ |
|
|
|
/* |
|
* SHA-2 256 |
|
* |
|
* CAUTION: Input buffer will be overwritten/mangled. |
|
* Data expected in big-endian format. |
|
* This implementation is designed for space efficiency more than |
|
* raw speed. |
|
*/ |
|
|
|
__constant uint sha2_init[8] = { |
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, |
|
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 |
|
}; |
|
|
|
__constant uint sha2_k[64] = { |
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, |
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, |
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, |
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, |
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, |
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
|
}; |
|
|
|
void |
|
sha2_256_init(uint *out) |
|
{ |
|
int i; |
|
for (i = 0; i < 8; i++) |
|
out[i] = sha2_init[i]; |
|
} |
|
|
|
/* The state variable remapping is really contorted */ |
|
#define sha2_stvar(vals, i, v) vals[(i+(7-v)) % 8] |
|
|
|
void |
|
sha2_256_block(uint *out, uint *in) |
|
{ |
|
int i; |
|
uint state[8], s0, s1, t1, t2; |
|
for (i = 0; i < 8; i++) |
|
state[7-i] = out[i]; |
|
for (i = 0; i < 64; i++) { |
|
if (i >= 16) { |
|
/* Advance the input window */ |
|
t1 = in[(i + 1) % 16]; |
|
t2 = in[(i + 14) % 16]; |
|
in[i % 16] += (in[(i + 9) % 16] + |
|
(rotate(t1, 25U) ^ rotate(t1, 14U) ^ (t1 >> 3)) + |
|
(rotate(t2, 15U) ^ rotate(t2, 13U) ^ (t2 >> 10))); |
|
} |
|
|
|
/* Compute the t1, t2 augmentations */ |
|
t1 = sha2_stvar(state, i, 4); |
|
t2 = sha2_stvar(state, i, 0); |
|
s0 = (rotate(t2, 30U) ^ rotate(t2, 19U) ^ rotate(t2, 10U)); |
|
s1 = (rotate(t1, 26U) ^ rotate(t1, 21U) ^ rotate(t1, 7U)); |
|
|
|
t1 = (sha2_stvar(state, i, 7) + s1 + sha2_k[i] + in[i % 16] + |
|
((t1 & sha2_stvar(state, i, 5)) ^ |
|
(~t1 & sha2_stvar(state, i, 6)))); |
|
t2 = s0 + ((t2 & sha2_stvar(state, i, 1)) ^ |
|
(t2 & sha2_stvar(state, i, 2)) ^ |
|
(sha2_stvar(state, i, 1) & sha2_stvar(state, i, 2))); |
|
|
|
sha2_stvar(state, i, 3) += t1; |
|
sha2_stvar(state, i, 7) = t1 + t2; |
|
} |
|
for (i = 0; i < 8; i++) |
|
out[i] += state[7-i]; |
|
} |
|
|
|
|
|
/* |
|
* RIPEMD160 |
|
* |
|
* Data expected in little-endian format. |
|
*/ |
|
|
|
__constant uint ripemd160_iv[] = { |
|
0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 }; |
|
__constant uint ripemd160_k[] = { |
|
0x00000000, 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xA953FD4E }; |
|
__constant uint ripemd160_kp[] = { |
|
0x50A28BE6, 0x5C4DD124, 0x6D703EF3, 0x7A6D76E9, 0x00000000 }; |
|
__constant uchar ripemd160_ws[] = { |
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
|
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8, |
|
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12, |
|
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2, |
|
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13, |
|
}; |
|
__constant uchar ripemd160_wsp[] = { |
|
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, |
|
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2, |
|
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13, |
|
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14, |
|
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 |
|
}; |
|
__constant uchar ripemd160_rl[] = { |
|
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8, |
|
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12, |
|
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5, |
|
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12, |
|
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6, |
|
}; |
|
__constant uchar ripemd160_rlp[] = { |
|
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6, |
|
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11, |
|
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5, |
|
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8, |
|
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 |
|
}; |
|
|
|
#define ripemd160_f0(x, y, z) (x ^ y ^ z) |
|
#define ripemd160_f1(x, y, z) ((x & y) | (~x & z)) |
|
#define ripemd160_f2(x, y, z) ((x | ~y) ^ z) |
|
#define ripemd160_f3(x, y, z) ((x & z) | (y & ~z)) |
|
#define ripemd160_f4(x, y, z) (x ^ (y | ~z)) |
|
#define ripemd160_round(i, in, vals, f, fp, t) do { \ |
|
t = rotate(vals[0] + \ |
|
f(vals[1], vals[2], vals[3]) + \ |
|
in[ripemd160_ws[i]] + \ |
|
ripemd160_k[i / 16], \ |
|
(uint)ripemd160_rl[i]) + vals[4]; \ |
|
vals[0] = vals[4]; vals[4] = vals[3]; \ |
|
vals[3] = rotate(vals[2], 10U); vals[2] = vals[1]; \ |
|
vals[1] = t; \ |
|
t = rotate(vals[5] + \ |
|
fp(vals[6], vals[7], vals[8]) + \ |
|
in[ripemd160_wsp[i]] + \ |
|
ripemd160_kp[i / 16], \ |
|
(uint)ripemd160_rlp[i]) + vals[9]; \ |
|
vals[5] = vals[9]; vals[9] = vals[8]; \ |
|
vals[8] = rotate(vals[7], 10U); vals[7] = vals[6]; \ |
|
vals[6] = t; \ |
|
} while (0) |
|
|
|
void |
|
ripemd160_init(uint *out) |
|
{ |
|
int i; |
|
for(i = 0; i < 5; i++) |
|
out[i] = ripemd160_iv[i]; |
|
} |
|
|
|
void |
|
ripemd160_block(uint *out, uint *in) |
|
{ |
|
uint vals[10], t; |
|
int i; |
|
for (i = 0; i < 5; i++) |
|
vals[i] = vals[i + 5] = out[i]; |
|
for (i = 0; i < 16; i++) |
|
ripemd160_round(i, in, vals, |
|
ripemd160_f0, ripemd160_f4, t); |
|
for (i = 16; i < 32; i++) |
|
ripemd160_round(i, in, vals, |
|
ripemd160_f1, ripemd160_f3, t); |
|
for (i = 32; i < 48; i++) |
|
ripemd160_round(i, in, vals, |
|
ripemd160_f2, ripemd160_f2, t); |
|
for (i = 48; i < 64; i++) |
|
ripemd160_round(i, in, vals, |
|
ripemd160_f3, ripemd160_f1, t); |
|
for (i = 64; i < 80; i++) |
|
ripemd160_round(i, in, vals, |
|
ripemd160_f4, ripemd160_f0, t); |
|
t = out[1] + vals[2] + vals[8]; |
|
out[1] = out[2] + vals[3] + vals[9]; |
|
out[2] = out[3] + vals[4] + vals[5]; |
|
out[3] = out[4] + vals[0] + vals[6]; |
|
out[4] = out[0] + vals[1] + vals[7]; |
|
out[0] = t; |
|
} |
|
|
|
|
|
#define bswap32(v) \ |
|
(((v) >> 24) | (((v) >> 8) & 0xff00) | \ |
|
(((v) << 8) & 0xff0000) | ((v) << 24)) |
|
|
|
|
|
__kernel void |
|
calc_addrs(__global uint *hashes_out, |
|
__global bignum *z_heap, __global bignum *point_tmp, |
|
__global bignum *row_in, __global bignum *col_in, int ncols) |
|
{ |
|
uint hash1[16]; |
|
uint hash2[16]; |
|
uint wl, wh; |
|
bignum rx, ry; |
|
bignum x1, y1, a, b, c, d, e, z; |
|
bn_word cy; |
|
int i, o; |
|
|
|
/* Load the row increment point */ |
|
o = get_global_id(0); |
|
rx = col_in[2*o]; |
|
ry = col_in[(2*o) + 1]; |
|
hashes_out += (o * 5 * ncols); |
|
z_heap += (o * 2 * ncols); |
|
point_tmp += (o * 2 * ncols); |
|
|
|
/* |
|
* Perform the EC point add. |
|
* Add the row increment to all row points. |
|
* Save the X,Y in the point temporary space. |
|
* Save the Z in the z_heap for modular inversion. |
|
*/ |
|
for (i = 0; i < ncols; i++) { |
|
x1 = row_in[(2*i)]; |
|
y1 = row_in[(2*i) + 1]; |
|
|
|
bn_mod_sub(&z, &x1, &rx); |
|
z_heap[(ncols - 1) + i] = z; |
|
|
|
bn_mod_sub(&b, &y1, &ry); |
|
bn_mod_add(&c, &x1, &rx); |
|
bn_mod_add(&d, &y1, &ry); |
|
bn_mul_mont(&y1, &b, &b); |
|
bn_mul_mont(&x1, &z, &z); |
|
bn_mul_mont(&e, &c, &x1); |
|
bn_mod_sub(&y1, &y1, &e); |
|
point_tmp[2*i] = y1; |
|
bn_mod_lshift1(&y1); |
|
bn_mod_sub(&y1, &e, &y1); |
|
bn_mul_mont(&y1, &y1, &b); |
|
bn_mul_mont(&a, &x1, &z); |
|
bn_mul_mont(&c, &d, &a); |
|
bn_mod_sub(&y1, &y1, &c); |
|
cy = 0; |
|
if (bn_is_odd(y1)) |
|
cy = bn_uadd_c(&y1, &y1, modulus); |
|
bn_rshift1(&y1); |
|
if (cy) |
|
y1.d[BN_NWORDS-1] |= 0x80000000; |
|
point_tmp[(2*i)+1] = y1; |
|
} |
|
|
|
/* Compute the product hierarchy in z_heap */ |
|
for (i = ncols - 1; i > 0; i--) { |
|
a = z_heap[(i*2) - 1]; |
|
b = z_heap[(i*2)]; |
|
bn_mul_mont(&z, &a, &b); |
|
z_heap[i-1] = z; |
|
} |
|
|
|
/* Invert the root, fix up 1/ZR -> R/Z */ |
|
z = z_heap[0]; |
|
bn_mod_inverse(&z, &z); |
|
|
|
for (i = 0; i < BN_NWORDS; i++) |
|
a.d[i] = mont_rr[i]; |
|
bn_mul_mont(&z, &z, &a); |
|
bn_mul_mont(&z, &z, &a); |
|
z_heap[0] = z; |
|
|
|
for (i = 1; i < ncols; i++) { |
|
a = z_heap[i - 1]; |
|
b = z_heap[(i*2) - 1]; |
|
c = z_heap[i*2]; |
|
bn_mul_mont(&z, &a, &c); |
|
z_heap[(i*2) - 1] = z; |
|
bn_mul_mont(&z, &a, &b); |
|
z_heap[i*2] = z; |
|
} |
|
|
|
for (i = 0; i < ncols; i++) { |
|
/* |
|
* Multiply the coordinates by the inverted Z values. |
|
* Stash the coordinates in the hash buffer. |
|
* SHA-2 requires big endian, and our intended hash input |
|
* is big-endian, so swapping is unnecessary, but |
|
* inserting the format byte in front causes a headache. |
|
*/ |
|
a = z_heap[(ncols - 1) + i]; |
|
bn_mul_mont(&b, &a, &a); /* Z^2 */ |
|
x1 = point_tmp[2*i]; |
|
bn_mul_mont(&x1, &x1, &b); /* X / Z^2 */ |
|
bn_from_mont(&x1, &x1); |
|
|
|
wh = 0x00000004; /* POINT_CONVERSION_UNCOMPRESSED */ |
|
for (o = 0; o < BN_NWORDS; o++) { |
|
wl = wh; |
|
wh = x1.d[(BN_NWORDS - 1) - o]; |
|
hash1[o] = (wl << 24) | (wh >> 8); |
|
} |
|
|
|
bn_mul_mont(&a, &a, &b); /* Z^3 */ |
|
y1 = point_tmp[(2*i)+1]; |
|
bn_mul_mont(&y1, &y1, &a); /* Y / Z^3 */ |
|
bn_from_mont(&y1, &y1); |
|
|
|
for (o = 0; o < BN_NWORDS; o++) { |
|
wl = wh; |
|
wh = y1.d[(BN_NWORDS - 1) - o]; |
|
hash1[BN_NWORDS + o] = (wl << 24) | (wh >> 8); |
|
} |
|
|
|
/* |
|
* Hash the first 64 bytes of the buffer |
|
*/ |
|
sha2_256_init(hash2); |
|
sha2_256_block(hash2, hash1); |
|
|
|
/* |
|
* Hash the last byte of the buffer + SHA-2 padding |
|
*/ |
|
hash1[0] = wh << 24 | 0x800000; |
|
hash1[1] = 0; |
|
hash1[2] = 0; |
|
hash1[3] = 0; |
|
hash1[4] = 0; |
|
hash1[5] = 0; |
|
hash1[6] = 0; |
|
hash1[7] = 0; |
|
hash1[8] = 0; |
|
hash1[9] = 0; |
|
hash1[10] = 0; |
|
hash1[11] = 0; |
|
hash1[12] = 0; |
|
hash1[13] = 0; |
|
hash1[14] = 0; |
|
hash1[15] = 65 * 8; |
|
sha2_256_block(hash2, hash1); |
|
|
|
/* |
|
* Hash the SHA-2 result with RIPEMD160 |
|
* Unfortunately, SHA-2 outputs big-endian, but |
|
* RIPEMD160 expects little-endian. Need to swap! |
|
*/ |
|
for (o = 0; o < 8; o++) |
|
hash2[o] = bswap32(hash2[o]); |
|
hash2[8] = bswap32(0x80000000); |
|
hash2[9] = 0; |
|
hash2[10] = 0; |
|
hash2[11] = 0; |
|
hash2[12] = 0; |
|
hash2[13] = 0; |
|
hash2[14] = 32 * 8; |
|
hash2[15] = 0; |
|
ripemd160_init(hash1); |
|
ripemd160_block(hash1, hash2); |
|
|
|
/* Copy the hash to the output buffer */ |
|
for (o = 0; o < 5; o++) |
|
*(hashes_out++) = hash1[o]; |
|
} |
|
|
|
}
|
|
|