mirror of https://github.com/GOSTSec/vanitygen
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
788 lines
17 KiB
788 lines
17 KiB
14 years ago
|
/*
|
||
|
* Vanitygen, vanity bitcoin address generator
|
||
|
* Copyright (C) 2011 <samr7@cs.washington.edu>
|
||
|
*
|
||
|
* Vanitygen is free software: you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU Affero General Public License as published by
|
||
|
* the Free Software Foundation, either version 3 of the License, or
|
||
|
* any later version.
|
||
|
*
|
||
|
* Vanitygen is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU Affero General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Affero General Public License
|
||
|
* along with Vanitygen. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
#include <openssl/sha.h>
|
||
|
#include <openssl/ripemd.h>
|
||
|
#include <openssl/ec.h>
|
||
|
#include <openssl/obj_mac.h>
|
||
|
#include <openssl/bn.h>
|
||
|
|
||
|
#include <pcre.h>
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <string.h>
|
||
|
#include <sys/time.h>
|
||
|
#include <assert.h>
|
||
|
#include <unistd.h>
|
||
|
|
||
|
const int debug = 0;
|
||
|
|
||
|
static const char *b58_alphabet = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";
|
||
|
|
||
|
void
|
||
|
encode_b58_check(void *buf, size_t len, char *result)
|
||
|
{
|
||
|
unsigned char hash1[32];
|
||
|
unsigned char hash2[32];
|
||
|
|
||
|
int d, p;
|
||
|
|
||
|
BN_CTX *bnctx;
|
||
|
BIGNUM *bn, *bndiv, *bntmp;
|
||
|
BIGNUM bna, bnb, bnbase, bnrem;
|
||
|
unsigned char *binres;
|
||
|
int brlen, zpfx;
|
||
|
|
||
|
bnctx = BN_CTX_new();
|
||
|
BN_init(&bna);
|
||
|
BN_init(&bnb);
|
||
|
BN_init(&bnbase);
|
||
|
BN_init(&bnrem);
|
||
|
BN_set_word(&bnbase, 58);
|
||
|
|
||
|
bn = &bna;
|
||
|
bndiv = &bnb;
|
||
|
|
||
|
brlen = (2 * len) + 4;
|
||
|
binres = malloc(brlen);
|
||
|
memcpy(binres, buf, len);
|
||
|
|
||
|
SHA256(binres, len, hash1);
|
||
|
SHA256(hash1, sizeof(hash1), hash2);
|
||
|
memcpy(&binres[len], hash2, 4);
|
||
|
|
||
|
BN_bin2bn(binres, len + 4, bn);
|
||
|
|
||
|
for (zpfx = 0; zpfx < (len + 4) && binres[zpfx] == 0; zpfx++);
|
||
|
|
||
|
p = brlen;
|
||
|
while (!BN_is_zero(bn)) {
|
||
|
BN_div(bndiv, &bnrem, bn, &bnbase, bnctx);
|
||
|
bntmp = bn;
|
||
|
bn = bndiv;
|
||
|
bndiv = bntmp;
|
||
|
d = BN_get_word(&bnrem);
|
||
|
binres[--p] = b58_alphabet[d];
|
||
|
}
|
||
|
|
||
|
while (zpfx--) {
|
||
|
binres[--p] = b58_alphabet[0];
|
||
|
}
|
||
|
|
||
|
memcpy(result, &binres[p], brlen - p);
|
||
|
result[brlen - p] = '\0';
|
||
|
|
||
|
free(binres);
|
||
|
BN_clear_free(&bna);
|
||
|
BN_clear_free(&bnb);
|
||
|
BN_clear_free(&bnbase);
|
||
|
BN_clear_free(&bnrem);
|
||
|
BN_CTX_free(bnctx);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
encode_address(EC_KEY *pkey, int addrtype, char *result)
|
||
|
{
|
||
|
unsigned char eckey_buf[128], *pend;
|
||
|
unsigned char binres[21] = {0,};
|
||
|
unsigned char hash1[32];
|
||
|
|
||
|
pend = eckey_buf;
|
||
|
|
||
|
i2o_ECPublicKey(pkey, &pend);
|
||
|
|
||
|
binres[0] = addrtype;
|
||
|
SHA256(eckey_buf, pend - eckey_buf, hash1);
|
||
|
RIPEMD160(hash1, sizeof(hash1), &binres[1]);
|
||
|
|
||
|
encode_b58_check(binres, sizeof(binres), result);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
encode_privkey(EC_KEY *pkey, int addrtype, char *result)
|
||
|
{
|
||
|
unsigned char eckey_buf[128];
|
||
|
const BIGNUM *bn;
|
||
|
int nbytes;
|
||
|
|
||
|
bn = EC_KEY_get0_private_key(pkey);
|
||
|
|
||
|
eckey_buf[0] = addrtype;
|
||
|
nbytes = BN_bn2bin(bn, &eckey_buf[1]);
|
||
|
|
||
|
encode_b58_check(eckey_buf, nbytes + 1, result);
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
dumphex(const unsigned char *src, size_t len)
|
||
|
{
|
||
|
size_t i;
|
||
|
for (i = 0; i < len; i++) {
|
||
|
printf("%02x", src[i]);
|
||
|
}
|
||
|
printf("\n");
|
||
|
}
|
||
|
|
||
|
void
|
||
|
dumpbn(const BIGNUM *bn)
|
||
|
{
|
||
|
char *buf;
|
||
|
buf = BN_bn2hex(bn);
|
||
|
printf("%s\n", buf);
|
||
|
OPENSSL_free(buf);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
output_match(EC_KEY *pkey, int addrtype, int privtype)
|
||
|
{
|
||
|
unsigned char key_buf[512], *pend;
|
||
|
char print_buf[512];
|
||
|
int len;
|
||
|
|
||
|
assert(EC_KEY_check_key(pkey));
|
||
|
|
||
|
/* Hexadecimal OpenSSL notation */
|
||
|
pend = key_buf;
|
||
|
len = i2o_ECPublicKey(pkey, &pend);
|
||
|
printf("Pubkey (hex): ");
|
||
|
dumphex(key_buf, len);
|
||
|
pend = key_buf;
|
||
|
len = i2d_ECPrivateKey(pkey, &pend);
|
||
|
printf("Privkey (hex): ");
|
||
|
dumphex(key_buf, len);
|
||
|
|
||
|
/* Base-58 bitcoin notation public key hash */
|
||
|
encode_address(pkey, addrtype, print_buf);
|
||
|
printf("Address: %s\n", print_buf);
|
||
|
|
||
|
/* Base-58 bitcoin notation private key */
|
||
|
encode_privkey(pkey, privtype, print_buf);
|
||
|
printf("Privkey: %s\n", print_buf);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Search for a key for which the encoded address has a specific prefix.
|
||
|
* Uses bignum arithmetic to predetermine value ranges.
|
||
|
* Faster than regular expression searching.
|
||
|
*/
|
||
|
void
|
||
|
generate_address_prefix(int addrtype, int privtype, const char *pfx)
|
||
|
{
|
||
|
unsigned char eckey_buf[128];
|
||
|
unsigned char hash1[32];
|
||
|
unsigned char binres[25] = {0,};
|
||
|
char *dbuf;
|
||
|
|
||
|
int i, p, c, t;
|
||
|
int b58pow, b58ceil, b58top = 0;
|
||
|
|
||
|
BN_ULONG npoints, rekey_at;
|
||
|
|
||
|
int zero_prefix = 0;
|
||
|
int check_upper = 0;
|
||
|
|
||
|
BN_CTX *bnctx;
|
||
|
BIGNUM *bnap, *bnbp, *bntp;
|
||
|
BIGNUM bntarg, bnceil, bnfloor;
|
||
|
BIGNUM bnbase;
|
||
|
BIGNUM bnhigh, bnlow, bnhigh2, bnlow2;
|
||
|
BIGNUM bntmp, bntmp2;
|
||
|
|
||
|
EC_KEY *pkey;
|
||
|
const EC_GROUP *pgroup;
|
||
|
const EC_POINT *pgen;
|
||
|
EC_POINT *ppnt = NULL;
|
||
|
|
||
|
struct timeval tvstart, tvnow, tv;
|
||
|
|
||
|
bnctx = BN_CTX_new();
|
||
|
|
||
|
BN_init(&bntarg);
|
||
|
BN_init(&bnceil);
|
||
|
BN_init(&bnfloor);
|
||
|
BN_init(&bnbase);
|
||
|
BN_init(&bnhigh);
|
||
|
BN_init(&bnlow);
|
||
|
BN_init(&bnhigh2);
|
||
|
BN_init(&bnlow2);
|
||
|
BN_init(&bntmp);
|
||
|
BN_init(&bntmp2);
|
||
|
|
||
|
BN_set_word(&bnbase, 58);
|
||
|
|
||
|
/*
|
||
|
* Step 1: compute the integer boundaries for accepted addresses
|
||
|
* Results are stored in bnlow, bnhigh, bnlow2, bnhigh2.
|
||
|
*/
|
||
|
|
||
|
p = strlen(pfx);
|
||
|
|
||
|
for (i = 0; i < p; i++) {
|
||
|
for (c = 0; c < 58; c++) {
|
||
|
if (pfx[i] == b58_alphabet[c])
|
||
|
break;
|
||
|
}
|
||
|
if (c >= 58) {
|
||
|
printf("Invalid character '%c' in address\n", pfx[i]);
|
||
|
return;
|
||
|
}
|
||
|
if (i == zero_prefix) {
|
||
|
if (c == 0) {
|
||
|
/* Add another zero prefix */
|
||
|
zero_prefix++;
|
||
|
if (zero_prefix > 19) {
|
||
|
printf("Prefix is too long\n");
|
||
|
return;
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* First non-zero character */
|
||
|
b58top = c;
|
||
|
BN_set_word(&bntarg, c);
|
||
|
|
||
|
} else {
|
||
|
BN_set_word(&bntmp2, c);
|
||
|
BN_mul(&bntmp, &bntarg, &bnbase, bnctx);
|
||
|
BN_add(&bntarg, &bntmp, &bntmp2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Power-of-two ceiling and floor values based on leading 1s */
|
||
|
BN_clear(&bntmp);
|
||
|
BN_set_bit(&bntmp, 200 - (zero_prefix * 8));
|
||
|
BN_set_word(&bntmp2, 1);
|
||
|
BN_sub(&bnceil, &bntmp, &bntmp2);
|
||
|
BN_set_bit(&bnfloor, 192 - (zero_prefix * 8));
|
||
|
|
||
|
if (b58top) {
|
||
|
/*
|
||
|
* If a non-zero was given in the prefix, find the
|
||
|
* numeric boundaries of the prefix.
|
||
|
*/
|
||
|
BN_copy(&bntmp, &bnceil);
|
||
|
bnap = &bntmp;
|
||
|
bnbp = &bntmp2;
|
||
|
b58pow = 0;
|
||
|
while (BN_cmp(bnap, &bnbase) > 0) {
|
||
|
b58pow++;
|
||
|
BN_div(bnbp, NULL, bnap, &bnbase, bnctx);
|
||
|
bntp = bnap;
|
||
|
bnap = bnbp;
|
||
|
bnbp = bntp;
|
||
|
}
|
||
|
b58ceil = BN_get_word(bnap);
|
||
|
|
||
|
if ((b58pow - (p - zero_prefix)) < 6) {
|
||
|
/*
|
||
|
* Do not allow the prefix to constrain the
|
||
|
* check value, this is ridiculous.
|
||
|
*/
|
||
|
printf("Prefix is too long\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
BN_set_word(&bntmp2, b58pow - (p - zero_prefix));
|
||
|
BN_exp(&bntmp, &bnbase, &bntmp2, bnctx);
|
||
|
BN_mul(&bnlow, &bntmp, &bntarg, bnctx);
|
||
|
BN_set_word(&bnhigh, 1);
|
||
|
BN_sub(&bntmp2, &bntmp, &bnhigh);
|
||
|
BN_add(&bnhigh, &bnlow, &bntmp2);
|
||
|
|
||
|
if (b58top <= b58ceil) {
|
||
|
/* Fill out the upper range too */
|
||
|
check_upper = 1;
|
||
|
BN_mul(&bnlow2, &bnlow, &bnbase, bnctx);
|
||
|
BN_mul(&bntmp2, &bnhigh, &bnbase, bnctx);
|
||
|
BN_set_word(&bntmp, 57);
|
||
|
BN_add(&bnhigh2, &bntmp2, &bntmp);
|
||
|
|
||
|
/*
|
||
|
* Addresses above the ceiling will have one
|
||
|
* fewer "1" prefix in front than we require.
|
||
|
*/
|
||
|
if (BN_cmp(&bnceil, &bnlow2) < 0)
|
||
|
/* High prefix is above the ceiling */
|
||
|
check_upper = 0;
|
||
|
else if (BN_cmp(&bnceil, &bnhigh2) < 0)
|
||
|
/* High prefix is partly above the ceiling */
|
||
|
BN_copy(&bnhigh2, &bnceil);
|
||
|
|
||
|
/*
|
||
|
* Addresses below the floor will have another
|
||
|
* "1" prefix in front instead of our target.
|
||
|
*/
|
||
|
if (BN_cmp(&bnfloor, &bnhigh) >= 0) {
|
||
|
/* Low prefix is completely below the floor */
|
||
|
check_upper = 0;
|
||
|
BN_copy(&bnhigh, &bnhigh2);
|
||
|
BN_copy(&bnlow, &bnlow2);
|
||
|
}
|
||
|
else if (BN_cmp(&bnfloor, &bnlow) > 0) {
|
||
|
/* Low prefix is partly below the floor */
|
||
|
BN_copy(&bnlow, &bnfloor);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
BN_copy(&bnhigh, &bnceil);
|
||
|
BN_set_word(&bnlow, 0);
|
||
|
}
|
||
|
|
||
|
/* Limit the prefix to the address type */
|
||
|
BN_clear(&bntmp);
|
||
|
BN_set_word(&bntmp, addrtype);
|
||
|
BN_lshift(&bntmp2, &bntmp, 192);
|
||
|
|
||
|
if (check_upper) {
|
||
|
if (BN_cmp(&bntmp2, &bnhigh2) > 0)
|
||
|
check_upper = 0;
|
||
|
else if (BN_cmp(&bntmp2, &bnlow2) > 0)
|
||
|
BN_copy(&bnlow2, &bntmp2);
|
||
|
}
|
||
|
|
||
|
if (BN_cmp(&bntmp2, &bnhigh) > 0) {
|
||
|
if (!check_upper) {
|
||
|
printf("Address prefix not possible\n");
|
||
|
return;
|
||
|
}
|
||
|
check_upper = 0;
|
||
|
BN_copy(&bnhigh, &bnhigh2);
|
||
|
BN_copy(&bnlow, &bnlow2);
|
||
|
}
|
||
|
else if (BN_cmp(&bntmp2, &bnlow) > 0) {
|
||
|
BN_copy(&bnlow, &bntmp2);
|
||
|
}
|
||
|
|
||
|
BN_set_word(&bntmp, addrtype + 1);
|
||
|
BN_lshift(&bntmp2, &bntmp, 192);
|
||
|
|
||
|
if (check_upper) {
|
||
|
if (BN_cmp(&bntmp2, &bnlow2) < 0)
|
||
|
check_upper = 0;
|
||
|
else if (BN_cmp(&bntmp2, &bnhigh2) < 0)
|
||
|
BN_copy(&bnlow2, &bntmp2);
|
||
|
}
|
||
|
|
||
|
if (BN_cmp(&bntmp2, &bnlow) < 0) {
|
||
|
if (!check_upper) {
|
||
|
printf("Address prefix not possible\n");
|
||
|
return;
|
||
|
}
|
||
|
check_upper = 0;
|
||
|
BN_copy(&bnhigh, &bnhigh2);
|
||
|
BN_copy(&bnlow, &bnlow2);
|
||
|
}
|
||
|
else if (BN_cmp(&bntmp2, &bnhigh) < 0) {
|
||
|
BN_copy(&bnhigh, &bntmp2);
|
||
|
}
|
||
|
|
||
|
/* Address ranges are complete */
|
||
|
|
||
|
if (debug) {
|
||
|
if (check_upper) {
|
||
|
printf("Upper Min: ");
|
||
|
dumpbn(&bnlow2);
|
||
|
printf("Upper Max: ");
|
||
|
dumpbn(&bnhigh2);
|
||
|
}
|
||
|
printf("Min: ");
|
||
|
dumpbn(&bnlow);
|
||
|
printf("Max: ");
|
||
|
dumpbn(&bnhigh);
|
||
|
}
|
||
|
|
||
|
/* Determine the probability of finding a match */
|
||
|
BN_sub(&bntarg, &bnhigh, &bnlow);
|
||
|
if (check_upper) {
|
||
|
BN_sub(&bntmp, &bnhigh2, &bnlow2);
|
||
|
BN_add(&bntmp2, &bntarg, &bntmp);
|
||
|
BN_copy(&bntarg, &bntmp2);
|
||
|
}
|
||
|
BN_set_word(&bntmp, 0);
|
||
|
BN_set_bit(&bntmp, 192);
|
||
|
BN_div(&bntmp2, NULL, &bntmp, &bntarg, bnctx);
|
||
|
dbuf = BN_bn2dec(&bntmp2);
|
||
|
printf("Difficulty: %s\n", dbuf);
|
||
|
OPENSSL_free(dbuf);
|
||
|
|
||
|
/*
|
||
|
* Step 2: Search for matching private keys
|
||
|
* Generate a base private key, and start searching increments.
|
||
|
*/
|
||
|
|
||
|
pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
|
||
|
pgroup = EC_KEY_get0_group(pkey);
|
||
|
pgen = EC_GROUP_get0_generator(pgroup);
|
||
|
|
||
|
EC_KEY_precompute_mult(pkey, bnctx);
|
||
|
|
||
|
npoints = 0;
|
||
|
rekey_at = 0;
|
||
|
binres[0] = addrtype;
|
||
|
t = 0;
|
||
|
c = 0;
|
||
|
gettimeofday(&tvstart, NULL);
|
||
|
while (1) {
|
||
|
if (++npoints >= rekey_at) {
|
||
|
/* Generate a new random private key */
|
||
|
EC_KEY_generate_key(pkey);
|
||
|
npoints = 0;
|
||
|
|
||
|
/* Determine rekey interval */
|
||
|
EC_GROUP_get_order(pgroup, &bntmp, bnctx);
|
||
|
BN_sub(&bntmp2,
|
||
|
&bntmp,
|
||
|
EC_KEY_get0_private_key(pkey));
|
||
|
rekey_at = BN_get_word(&bntmp2);
|
||
|
if ((rekey_at == BN_MASK2) || (rekey_at > 1000000))
|
||
|
rekey_at = 1000000;
|
||
|
assert(rekey_at > 0);
|
||
|
|
||
|
if (ppnt)
|
||
|
EC_POINT_free(ppnt);
|
||
|
ppnt = EC_POINT_dup(EC_KEY_get0_public_key(pkey),
|
||
|
pgroup);
|
||
|
|
||
|
} else {
|
||
|
/* Common case: next point */
|
||
|
EC_POINT_add(pgroup, ppnt, ppnt, pgen, bnctx);
|
||
|
}
|
||
|
|
||
|
/* Hash the public key */
|
||
|
i = EC_POINT_point2oct(pgroup, ppnt,
|
||
|
POINT_CONVERSION_UNCOMPRESSED,
|
||
|
eckey_buf, sizeof(eckey_buf), bnctx);
|
||
|
SHA256(eckey_buf, i, hash1);
|
||
|
RIPEMD160(hash1, sizeof(hash1), &binres[1]);
|
||
|
|
||
|
/*
|
||
|
* We constrain the prefix so that we can check for a match
|
||
|
* without generating the lower four byte check code.
|
||
|
*/
|
||
|
|
||
|
BN_bin2bn(binres, sizeof(binres), &bntarg);
|
||
|
|
||
|
if ((check_upper &&
|
||
|
(BN_cmp(&bnlow2, &bntarg) <= 0) &&
|
||
|
(BN_cmp(&bnhigh2, &bntarg) > 0)) ||
|
||
|
((BN_cmp(&bnlow, &bntarg) <= 0) &&
|
||
|
(BN_cmp(&bnhigh, &bntarg) > 0))) {
|
||
|
|
||
|
printf("\n");
|
||
|
|
||
|
if (npoints) {
|
||
|
BN_clear(&bntmp);
|
||
|
BN_set_word(&bntmp, npoints);
|
||
|
BN_add(&bntmp2,
|
||
|
EC_KEY_get0_private_key(pkey),
|
||
|
&bntmp);
|
||
|
EC_KEY_set_private_key(pkey, &bntmp2);
|
||
|
}
|
||
|
|
||
|
EC_KEY_set_public_key(pkey, ppnt);
|
||
|
|
||
|
output_match(pkey, addrtype, privtype);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (++c >= 20000) {
|
||
|
long long rate;
|
||
|
gettimeofday(&tvnow, NULL);
|
||
|
timersub(&tvnow, &tvstart, &tv);
|
||
|
memcpy(&tvstart, &tvnow, sizeof(tvstart));
|
||
|
rate = tv.tv_usec + (1000000 * tv.tv_sec);
|
||
|
rate = (1000000ULL * c) / rate;
|
||
|
t += c;
|
||
|
c = 0;
|
||
|
printf("\r%lld K/s, total %d ", rate, t);
|
||
|
fflush(stdout);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
BN_clear_free(&bntarg);
|
||
|
BN_clear_free(&bnceil);
|
||
|
BN_clear_free(&bnfloor);
|
||
|
BN_clear_free(&bnbase);
|
||
|
BN_clear_free(&bnhigh);
|
||
|
BN_clear_free(&bnlow);
|
||
|
BN_clear_free(&bnhigh2);
|
||
|
BN_clear_free(&bnlow2);
|
||
|
BN_clear_free(&bntmp);
|
||
|
BN_clear_free(&bntmp2);
|
||
|
BN_CTX_free(bnctx);
|
||
|
EC_KEY_free(pkey);
|
||
|
EC_POINT_free(ppnt);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Search for a key for which the encoded address matches a regular
|
||
|
* expression.
|
||
|
* Equivalent behavior to the bitcoin vanity address patch.
|
||
|
*/
|
||
|
void
|
||
|
generate_address_regex(int addrtype, int privtype, const char *re)
|
||
|
{
|
||
|
unsigned char eckey_buf[128];
|
||
|
unsigned char hash1[32], hash2[32];
|
||
|
unsigned char binres[25] = {0,};
|
||
|
char b58[40];
|
||
|
|
||
|
int t, c, zpfx, p, d, re_vec[9];
|
||
|
|
||
|
BN_ULONG npoints, rekey_at;
|
||
|
|
||
|
BN_CTX *bnctx;
|
||
|
BIGNUM bna, bnb, bnbase, bnrem, bntmp, bntmp2;
|
||
|
BIGNUM *bn, *bndiv, *bnptmp;
|
||
|
|
||
|
EC_KEY *pkey;
|
||
|
const EC_GROUP *pgroup;
|
||
|
const EC_POINT *pgen;
|
||
|
EC_POINT *ppnt = NULL;
|
||
|
|
||
|
pcre *regex;
|
||
|
pcre_extra *regex_extra;
|
||
|
const char *pcre_errptr;
|
||
|
int pcre_erroffset;
|
||
|
|
||
|
struct timeval tvstart, tvnow, tv;
|
||
|
|
||
|
regex = pcre_compile(re, 0, &pcre_errptr, &pcre_erroffset, NULL);
|
||
|
if (!regex) {
|
||
|
const char *spaces = " ";
|
||
|
printf("%s\n", re);
|
||
|
while (pcre_erroffset > 16) {
|
||
|
printf("%s", spaces);
|
||
|
pcre_erroffset -= 16;
|
||
|
}
|
||
|
if (pcre_erroffset > 0)
|
||
|
printf("%s", &spaces[16 - pcre_erroffset]);
|
||
|
printf("^\nRegex error: %s\n", pcre_errptr);
|
||
|
return;
|
||
|
}
|
||
|
regex_extra = pcre_study(regex, 0, &pcre_errptr);
|
||
|
if (!regex_extra) {
|
||
|
printf("Regex error: %s\n", pcre_errptr);
|
||
|
pcre_free(regex);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
bnctx = BN_CTX_new();
|
||
|
|
||
|
BN_init(&bna);
|
||
|
BN_init(&bnb);
|
||
|
BN_init(&bnbase);
|
||
|
BN_init(&bnrem);
|
||
|
BN_init(&bntmp);
|
||
|
BN_init(&bntmp2);
|
||
|
|
||
|
BN_set_word(&bnbase, 58);
|
||
|
|
||
|
pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
|
||
|
pgroup = EC_KEY_get0_group(pkey);
|
||
|
pgen = EC_GROUP_get0_generator(pgroup);
|
||
|
|
||
|
EC_KEY_precompute_mult(pkey, bnctx);
|
||
|
|
||
|
npoints = 0;
|
||
|
rekey_at = 0;
|
||
|
binres[0] = addrtype;
|
||
|
t = 0;
|
||
|
c = 0;
|
||
|
gettimeofday(&tvstart, NULL);
|
||
|
|
||
|
while (1) {
|
||
|
if (++npoints >= rekey_at) {
|
||
|
/* Generate a new random private key */
|
||
|
EC_KEY_generate_key(pkey);
|
||
|
npoints = 0;
|
||
|
|
||
|
/* Determine rekey interval */
|
||
|
EC_GROUP_get_order(pgroup, &bntmp, bnctx);
|
||
|
BN_sub(&bntmp2,
|
||
|
&bntmp,
|
||
|
EC_KEY_get0_private_key(pkey));
|
||
|
rekey_at = BN_get_word(&bntmp2);
|
||
|
if ((rekey_at == BN_MASK2) || (rekey_at > 1000000))
|
||
|
rekey_at = 1000000;
|
||
|
assert(rekey_at > 0);
|
||
|
|
||
|
if (ppnt)
|
||
|
EC_POINT_free(ppnt);
|
||
|
ppnt = EC_POINT_dup(EC_KEY_get0_public_key(pkey),
|
||
|
pgroup);
|
||
|
|
||
|
} else {
|
||
|
/* Common case: next point */
|
||
|
EC_POINT_add(pgroup, ppnt, ppnt, pgen, bnctx);
|
||
|
}
|
||
|
|
||
|
/* Hash the public key */
|
||
|
d = EC_POINT_point2oct(pgroup, ppnt,
|
||
|
POINT_CONVERSION_UNCOMPRESSED,
|
||
|
eckey_buf, sizeof(eckey_buf), bnctx);
|
||
|
SHA256(eckey_buf, d, hash1);
|
||
|
RIPEMD160(hash1, sizeof(hash1), &binres[1]);
|
||
|
|
||
|
/* Hash the hash and write the four byte check code */
|
||
|
SHA256(binres, 21, hash1);
|
||
|
SHA256(hash1, sizeof(hash1), hash2);
|
||
|
memcpy(hash2, &binres[21], 4);
|
||
|
|
||
|
bn = &bna;
|
||
|
bndiv = &bnb;
|
||
|
|
||
|
BN_bin2bn(binres, sizeof(binres), bn);
|
||
|
|
||
|
/* Compute the complete encoded address */
|
||
|
for (zpfx = 0; zpfx < 25 && binres[zpfx] == 0; zpfx++);
|
||
|
p = sizeof(b58) - 1;
|
||
|
b58[p] = '\0';
|
||
|
while (!BN_is_zero(bn)) {
|
||
|
BN_div(bndiv, &bnrem, bn, &bnbase, bnctx);
|
||
|
bnptmp = bn;
|
||
|
bn = bndiv;
|
||
|
bndiv = bnptmp;
|
||
|
d = BN_get_word(&bnrem);
|
||
|
b58[--p] = b58_alphabet[d];
|
||
|
}
|
||
|
while (zpfx--) {
|
||
|
b58[--p] = b58_alphabet[0];
|
||
|
}
|
||
|
|
||
|
/* Run the regular expression on it */
|
||
|
d = pcre_exec(regex, regex_extra,
|
||
|
&b58[p], sizeof(b58) - (p+1), 0,
|
||
|
0,
|
||
|
re_vec, sizeof(re_vec)/sizeof(re_vec[0]));
|
||
|
|
||
|
if (d > 0) {
|
||
|
printf("\n");
|
||
|
|
||
|
if (npoints) {
|
||
|
BN_clear(&bntmp);
|
||
|
BN_set_word(&bntmp, npoints);
|
||
|
BN_add(&bntmp2,
|
||
|
EC_KEY_get0_private_key(pkey),
|
||
|
&bntmp);
|
||
|
EC_KEY_set_private_key(pkey, &bntmp2);
|
||
|
}
|
||
|
|
||
|
EC_KEY_set_public_key(pkey, ppnt);
|
||
|
|
||
|
output_match(pkey, addrtype, privtype);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (d != PCRE_ERROR_NOMATCH) {
|
||
|
printf("PCRE error: %d\n", d);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (++c >= 10000) {
|
||
|
long long rate;
|
||
|
gettimeofday(&tvnow, NULL);
|
||
|
timersub(&tvnow, &tvstart, &tv);
|
||
|
memcpy(&tvstart, &tvnow, sizeof(tvstart));
|
||
|
rate = tv.tv_usec + (1000000 * tv.tv_sec);
|
||
|
rate = (1000000ULL * c) / rate;
|
||
|
t += c;
|
||
|
|
||
|
c = 0;
|
||
|
printf("\r%lld K/s, total %d ", rate, t);
|
||
|
fflush(stdout);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
BN_clear_free(&bna);
|
||
|
BN_clear_free(&bnb);
|
||
|
BN_clear_free(&bnbase);
|
||
|
BN_clear_free(&bnrem);
|
||
|
BN_clear_free(&bntmp);
|
||
|
BN_clear_free(&bntmp2);
|
||
|
BN_CTX_free(bnctx);
|
||
|
EC_KEY_free(pkey);
|
||
|
EC_POINT_free(ppnt);
|
||
|
pcre_free(regex_extra);
|
||
|
pcre_free(regex);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
usage(const char *name)
|
||
|
{
|
||
|
printf(
|
||
|
"Usage: %s [-rNT] <pattern>\n"
|
||
|
"Generates a bitcoin receiving address matching <pattern>, and outputs the\n"
|
||
|
"address and associated private key. The private key may be stored in a safe\n"
|
||
|
"location or imported into a bitcoin client to spend any balance received on\n"
|
||
|
"the address.\n"
|
||
|
"By default, <pattern> is interpreted as an exact prefix.\n"
|
||
|
"\n"
|
||
|
"Options:\n"
|
||
|
"-r Use regular expression match instead of prefix\n"
|
||
|
" (Feasibility of expression is not checked)\n"
|
||
|
"-N Generate namecoin address\n"
|
||
|
"-T Generate bitcoin testnet address\n", name);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
main(int argc, char **argv)
|
||
|
{
|
||
|
int addrtype = 0;
|
||
|
int privtype = 128;
|
||
|
int regex = 0;
|
||
|
int opt;
|
||
|
const char *pattern = argv[1];
|
||
|
|
||
|
while ((opt = getopt(argc, argv, "rNTh?")) != -1) {
|
||
|
switch (opt) {
|
||
|
case 'r':
|
||
|
regex = 1;
|
||
|
break;
|
||
|
case 'N':
|
||
|
addrtype = 52;
|
||
|
break;
|
||
|
case 'T':
|
||
|
addrtype = 111;
|
||
|
privtype = 239;
|
||
|
break;
|
||
|
default:
|
||
|
usage(argv[0]);
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (optind >= argc) {
|
||
|
usage(argv[0]);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
pattern = argv[optind];
|
||
|
|
||
|
if (regex)
|
||
|
generate_address_regex(addrtype, privtype, pattern);
|
||
|
else
|
||
|
generate_address_prefix(addrtype, privtype, pattern);
|
||
|
|
||
|
return 0;
|
||
|
}
|