GOSTCoin addresses vainer
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1861 lines
41 KiB

/*
* Vanitygen, vanity bitcoin address generator
* Copyright (C) 2011 <samr7@cs.washington.edu>
*
* Vanitygen is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* Vanitygen is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with Vanitygen. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include <pthread.h>
#include <openssl/sha.h>
#include <openssl/ripemd.h>
#include <openssl/bn.h>
#include <openssl/ec.h>
#include <openssl/obj_mac.h>
#include <pcre.h>
#include "pattern.h"
#include "util.h"
/*
* Common code for execution helper
*/
int
vg_exec_context_init(vg_context_t *vcp, vg_exec_context_t *vxcp)
{
memset(vxcp, 0, sizeof(*vxcp));
vxcp->vxc_vc = vcp;
BN_init(&vxcp->vxc_bntarg);
BN_init(&vxcp->vxc_bnbase);
BN_init(&vxcp->vxc_bntmp);
BN_init(&vxcp->vxc_bntmp2);
BN_set_word(&vxcp->vxc_bnbase, 58);
vxcp->vxc_bnctx = BN_CTX_new();
assert(vxcp->vxc_bnctx);
vxcp->vxc_key = EC_KEY_new_by_curve_name(NID_secp256k1);
assert(vxcp->vxc_key);
EC_KEY_precompute_mult(vxcp->vxc_key, vxcp->vxc_bnctx);
return 1;
}
void
vg_exec_context_del(vg_exec_context_t *vxcp)
{
BN_clear_free(&vxcp->vxc_bntarg);
BN_clear_free(&vxcp->vxc_bnbase);
BN_clear_free(&vxcp->vxc_bntmp);
BN_clear_free(&vxcp->vxc_bntmp2);
BN_CTX_free(vxcp->vxc_bnctx);
vxcp->vxc_bnctx = NULL;
}
void
vg_exec_context_consolidate_key(vg_exec_context_t *vxcp)
{
if (vxcp->vxc_delta) {
BN_clear(&vxcp->vxc_bntmp);
BN_set_word(&vxcp->vxc_bntmp, vxcp->vxc_delta);
BN_add(&vxcp->vxc_bntmp2,
EC_KEY_get0_private_key(vxcp->vxc_key),
&vxcp->vxc_bntmp);
vg_set_privkey(&vxcp->vxc_bntmp2, vxcp->vxc_key);
vxcp->vxc_delta = 0;
}
}
void
vg_exec_context_calc_address(vg_exec_context_t *vxcp)
{
const EC_GROUP *pgroup;
unsigned char eckey_buf[96], hash1[32], hash2[20];
int len;
vg_exec_context_consolidate_key(vxcp);
pgroup = EC_KEY_get0_group(vxcp->vxc_key);
len = EC_POINT_point2oct(pgroup,
EC_KEY_get0_public_key(vxcp->vxc_key),
POINT_CONVERSION_UNCOMPRESSED,
eckey_buf,
sizeof(eckey_buf),
vxcp->vxc_bnctx);
SHA256(eckey_buf, len, hash1);
RIPEMD160(hash1, sizeof(hash1), hash2);
memcpy(&vxcp->vxc_binres[1],
hash2, 20);
}
enum {
timing_hist_size = 5
};
typedef struct _timing_info_s {
struct _timing_info_s *ti_next;
pthread_t ti_thread;
unsigned long ti_last_rate;
unsigned long long ti_hist_time[timing_hist_size];
unsigned long ti_hist_work[timing_hist_size];
int ti_hist_last;
} timing_info_t;
int
vg_output_timing(vg_context_t *vcp, int cycle, struct timeval *last)
{
static unsigned long long total = 0, prevfound = 0, sincelast = 0;
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
static timing_info_t *timing_head = NULL;
pthread_t me;
struct timeval tvnow, tv;
timing_info_t *tip, *mytip;
unsigned long long rate, myrate = 0, mytime;
double count, prob, time, targ;
char linebuf[80];
char *unit;
int rem, p, i;
const double targs[] = { 0.5, 0.75, 0.8, 0.9, 0.95, 1.0 };
/* Compute the rate */
gettimeofday(&tvnow, NULL);
timersub(&tvnow, last, &tv);
memcpy(last, &tvnow, sizeof(*last));
mytime = tv.tv_usec + (1000000ULL * tv.tv_sec);
if (!mytime)
mytime = 1;
rate = 0;
pthread_mutex_lock(&mutex);
me = pthread_self();
for (tip = timing_head, mytip = NULL; tip != NULL; tip = tip->ti_next) {
if (pthread_equal(tip->ti_thread, me)) {
mytip = tip;
p = ((tip->ti_hist_last + 1) % timing_hist_size);
tip->ti_hist_time[p] = mytime;
tip->ti_hist_work[p] = cycle;
tip->ti_hist_last = p;
mytime = 0;
myrate = 0;
for (i = 0; i < timing_hist_size; i++) {
mytime += tip->ti_hist_time[i];
myrate += tip->ti_hist_work[i];
}
myrate = (myrate * 1000000) / mytime;
tip->ti_last_rate = myrate;
rate += myrate;
} else
rate += tip->ti_last_rate;
}
if (!mytip) {
mytip = (timing_info_t *) malloc(sizeof(*tip));
mytip->ti_next = timing_head;
mytip->ti_thread = me;
timing_head = mytip;
mytip->ti_hist_last = 0;
mytip->ti_hist_time[0] = mytime;
mytip->ti_hist_work[0] = cycle;
for (i = 1; i < timing_hist_size; i++) {
mytip->ti_hist_time[i] = 1;
mytip->ti_hist_work[i] = 0;
}
myrate = ((unsigned long long)cycle * 1000000) / mytime;
mytip->ti_last_rate = myrate;
rate += myrate;
}
total += cycle;
if (prevfound != vcp->vc_found) {
prevfound = vcp->vc_found;
sincelast = 0;
}
sincelast += cycle;
count = sincelast;
if (mytip != timing_head) {
pthread_mutex_unlock(&mutex);
return myrate;
}
pthread_mutex_unlock(&mutex);
targ = rate;
unit = "key/s";
if (targ > 1000) {
unit = "Kkey/s";
targ /= 1000.0;
if (targ > 1000) {
unit = "Mkey/s";
targ /= 1000.0;
}
}
rem = sizeof(linebuf);
p = snprintf(linebuf, rem, "[%.2f %s][total %lld]",
targ, unit, total);
assert(p > 0);
rem -= p;
if (rem < 0)
rem = 0;
if (vcp->vc_chance >= 1.0) {
prob = 1.0f - exp(-count/vcp->vc_chance);
if (prob <= 0.999) {
p = snprintf(&linebuf[p], rem, "[Prob %.1f%%]",
prob * 100);
assert(p > 0);
rem -= p;
if (rem < 0)
rem = 0;
p = sizeof(linebuf) - rem;
}
for (i = 0; i < sizeof(targs)/sizeof(targs[0]); i++) {
targ = targs[i];
if ((targ < 1.0) && (prob <= targ))
break;
}
if (targ < 1.0) {
time = ((-vcp->vc_chance * log(1.0 - targ)) - count) /
rate;
unit = "s";
if (time > 60) {
time /= 60;
unit = "min";
if (time > 60) {
time /= 60;
unit = "h";
if (time > 24) {
time /= 24;
unit = "d";
if (time > 365) {
time /= 365;
unit = "y";
}
}
}
}
if (time > 1000000) {
p = snprintf(&linebuf[p], rem,
"[%d%% in %e%s]",
(int) (100 * targ), time, unit);
} else {
p = snprintf(&linebuf[p], rem,
"[%d%% in %.1f%s]",
(int) (100 * targ), time, unit);
}
assert(p > 0);
rem -= p;
if (rem < 0)
rem = 0;
p = sizeof(linebuf) - rem;
}
}
if (vcp->vc_found) {
if (vcp->vc_remove_on_match)
p = snprintf(&linebuf[p], rem, "[Found %lld/%ld]",
vcp->vc_found, vcp->vc_npatterns_start);
else
p = snprintf(&linebuf[p], rem, "[Found %lld]",
vcp->vc_found);
assert(p > 0);
rem -= p;
if (rem < 0)
rem = 0;
}
if (rem) {
memset(&linebuf[sizeof(linebuf)-rem], 0x20, rem);
linebuf[sizeof(linebuf)-1] = '\0';
}
printf("\r%s", linebuf);
fflush(stdout);
return myrate;
}
void
vg_output_match(vg_context_t *vcp, EC_KEY *pkey, const char *pattern)
{
unsigned char key_buf[512], *pend;
char addr_buf[64];
char privkey_buf[VG_PROTKEY_MAX_B58];
const char *keytype = "Privkey";
int len;
assert(EC_KEY_check_key(pkey));
vg_encode_address(pkey, vcp->vc_addrtype, addr_buf);
if (vcp->vc_key_protect_pass) {
len = vg_protect_encode_privkey(privkey_buf,
pkey, vcp->vc_privtype,
VG_PROTKEY_DEFAULT,
vcp->vc_key_protect_pass);
if (len) {
keytype = "Protkey";
} else {
fprintf(stderr,
"ERROR: could not password-protect key\n");
vcp->vc_key_protect_pass = NULL;
}
}
if (!vcp->vc_key_protect_pass) {
vg_encode_privkey(pkey, vcp->vc_privtype, privkey_buf);
}
if (!vcp->vc_result_file || (vcp->vc_verbose > 0)) {
printf("\r%79s\rPattern: %s\n", "", pattern);
}
if (vcp->vc_verbose > 0) {
if (vcp->vc_verbose > 1) {
pend = key_buf;
len = i2o_ECPublicKey(pkey, &pend);
printf("Pubkey (hex): ");
dumphex(key_buf, len);
printf("Privkey (hex): ");
dumpbn(EC_KEY_get0_private_key(pkey));
pend = key_buf;
len = i2d_ECPrivateKey(pkey, &pend);
printf("Privkey (ASN1): ");
dumphex(key_buf, len);
}
}
if (!vcp->vc_result_file || (vcp->vc_verbose > 0)) {
printf("Address: %s\n"
"%s: %s\n",
addr_buf, keytype, privkey_buf);
}
if (vcp->vc_result_file) {
FILE *fp = fopen(vcp->vc_result_file, "a");
if (!fp) {
fprintf(stderr,
"ERROR: could not open result file: %s\n",
strerror(errno));
} else {
fprintf(fp,
"Pattern: %s\n"
"Address: %s\n"
"%s: %s\n",
pattern, addr_buf, keytype, privkey_buf);
fclose(fp);
}
}
}
void
vg_context_free(vg_context_t *vcp)
{
vcp->vc_free(vcp);
}
int
vg_context_add_patterns(vg_context_t *vcp,
char ** const patterns, int npatterns)
{
return vcp->vc_add_patterns(vcp, patterns, npatterns);
}
int
vg_context_hash160_sort(vg_context_t *vcp, void *buf)
{
if (!vcp->vc_hash160_sort)
return 0;
return vcp->vc_hash160_sort(vcp, buf);
}
/*
* Find the bignum ranges that produce a given prefix.
*/
static int
get_prefix_ranges(int addrtype, const char *pfx, BIGNUM **result,
BN_CTX *bnctx)
{
int i, p, c;
int zero_prefix = 0;
int check_upper = 0;
int b58pow, b58ceil, b58top = 0;
int ret = -1;
BIGNUM bntarg, bnceil, bnfloor;
BIGNUM bnbase;
BIGNUM *bnap, *bnbp, *bntp;
BIGNUM *bnhigh = NULL, *bnlow = NULL, *bnhigh2 = NULL, *bnlow2 = NULL;
BIGNUM bntmp, bntmp2;
BN_init(&bntarg);
BN_init(&bnceil);
BN_init(&bnfloor);
BN_init(&bnbase);
BN_init(&bntmp);
BN_init(&bntmp2);
BN_set_word(&bnbase, 58);
p = strlen(pfx);
for (i = 0; i < p; i++) {
c = vg_b58_reverse_map[(int)pfx[i]];
if (c == -1) {
fprintf(stderr,
"Invalid character '%c' in prefix '%s'\n",
pfx[i], pfx);
goto out;
}
if (i == zero_prefix) {
if (c == 0) {
/* Add another zero prefix */
zero_prefix++;
if (zero_prefix > 19) {
fprintf(stderr,
"Prefix '%s' is too long\n",
pfx);
goto out;
}
continue;
}
/* First non-zero character */
b58top = c;
BN_set_word(&bntarg, c);
} else {
BN_set_word(&bntmp2, c);
BN_mul(&bntmp, &bntarg, &bnbase, bnctx);
BN_add(&bntarg, &bntmp, &bntmp2);
}
}
/* Power-of-two ceiling and floor values based on leading 1s */
BN_clear(&bntmp);
BN_set_bit(&bntmp, 200 - (zero_prefix * 8));
BN_sub(&bnceil, &bntmp, BN_value_one());
BN_set_bit(&bnfloor, 192 - (zero_prefix * 8));
bnlow = BN_new();
bnhigh = BN_new();
if (b58top) {
/*
* If a non-zero was given in the prefix, find the
* numeric boundaries of the prefix.
*/
BN_copy(&bntmp, &bnceil);
bnap = &bntmp;
bnbp = &bntmp2;
b58pow = 0;
while (BN_cmp(bnap, &bnbase) > 0) {
b58pow++;
BN_div(bnbp, NULL, bnap, &bnbase, bnctx);
bntp = bnap;
bnap = bnbp;
bnbp = bntp;
}
b58ceil = BN_get_word(bnap);
if ((b58pow - (p - zero_prefix)) < 6) {
/*
* Do not allow the prefix to constrain the
* check value, this is ridiculous.
*/
fprintf(stderr, "Prefix '%s' is too long\n", pfx);
goto out;
}
BN_set_word(&bntmp2, b58pow - (p - zero_prefix));
BN_exp(&bntmp, &bnbase, &bntmp2, bnctx);
BN_mul(bnlow, &bntmp, &bntarg, bnctx);
BN_sub(&bntmp2, &bntmp, BN_value_one());
BN_add(bnhigh, bnlow, &bntmp2);
if (b58top <= b58ceil) {
/* Fill out the upper range too */
check_upper = 1;
bnlow2 = BN_new();
bnhigh2 = BN_new();
BN_mul(bnlow2, bnlow, &bnbase, bnctx);
BN_mul(&bntmp2, bnhigh, &bnbase, bnctx);
BN_set_word(&bntmp, 57);
BN_add(bnhigh2, &bntmp2, &bntmp);
/*
* Addresses above the ceiling will have one
* fewer "1" prefix in front than we require.
*/
if (BN_cmp(&bnceil, bnlow2) < 0) {
/* High prefix is above the ceiling */
check_upper = 0;
BN_free(bnhigh2);
bnhigh2 = NULL;
BN_free(bnlow2);
bnlow2 = NULL;
}
else if (BN_cmp(&bnceil, bnhigh2) < 0)
/* High prefix is partly above the ceiling */
BN_copy(bnhigh2, &bnceil);
/*
* Addresses below the floor will have another
* "1" prefix in front instead of our target.
*/
if (BN_cmp(&bnfloor, bnhigh) >= 0) {
/* Low prefix is completely below the floor */
assert(check_upper);
check_upper = 0;
BN_free(bnhigh);
bnhigh = bnhigh2;
bnhigh2 = NULL;
BN_free(bnlow);
bnlow = bnlow2;
bnlow2 = NULL;
}
else if (BN_cmp(&bnfloor, bnlow) > 0) {
/* Low prefix is partly below the floor */
BN_copy(bnlow, &bnfloor);
}
}
} else {
BN_copy(bnhigh, &bnceil);
BN_clear(bnlow);
}
/* Limit the prefix to the address type */
BN_clear(&bntmp);
BN_set_word(&bntmp, addrtype);
BN_lshift(&bntmp2, &bntmp, 192);
if (check_upper) {
if (BN_cmp(&bntmp2, bnhigh2) > 0) {
check_upper = 0;
BN_free(bnhigh2);
bnhigh2 = NULL;
BN_free(bnlow2);
bnlow2 = NULL;
}
else if (BN_cmp(&bntmp2, bnlow2) > 0)
BN_copy(bnlow2, &bntmp2);
}
if (BN_cmp(&bntmp2, bnhigh) > 0) {
if (!check_upper)
goto not_possible;
check_upper = 0;
BN_free(bnhigh);
bnhigh = bnhigh2;
bnhigh2 = NULL;
BN_free(bnlow);
bnlow = bnlow2;
bnlow2 = NULL;
}
else if (BN_cmp(&bntmp2, bnlow) > 0) {
BN_copy(bnlow, &bntmp2);
}
BN_set_word(&bntmp, addrtype + 1);
BN_lshift(&bntmp2, &bntmp, 192);
if (check_upper) {
if (BN_cmp(&bntmp2, bnlow2) < 0) {
check_upper = 0;
BN_free(bnhigh2);
bnhigh2 = NULL;
BN_free(bnlow2);
bnlow2 = NULL;
}
else if (BN_cmp(&bntmp2, bnhigh2) < 0)
BN_copy(bnlow2, &bntmp2);
}
if (BN_cmp(&bntmp2, bnlow) < 0) {
if (!check_upper)
goto not_possible;
check_upper = 0;
BN_free(bnhigh);
bnhigh = bnhigh2;
bnhigh2 = NULL;
BN_free(bnlow);
bnlow = bnlow2;
bnlow2 = NULL;
}
else if (BN_cmp(&bntmp2, bnhigh) < 0) {
BN_copy(bnhigh, &bntmp2);
}
/* Address ranges are complete */
assert(check_upper || ((bnlow2 == NULL) && (bnhigh2 == NULL)));
result[0] = bnlow;
result[1] = bnhigh;
result[2] = bnlow2;
result[3] = bnhigh2;
bnlow = NULL;
bnhigh = NULL;
bnlow2 = NULL;
bnhigh2 = NULL;
ret = 0;
if (0) {
not_possible:
ret = -2;
}
out:
BN_clear_free(&bntarg);
BN_clear_free(&bnceil);
BN_clear_free(&bnfloor);
BN_clear_free(&bnbase);
BN_clear_free(&bntmp);
BN_clear_free(&bntmp2);
if (bnhigh)
BN_free(bnhigh);
if (bnlow)
BN_free(bnlow);
if (bnhigh2)
BN_free(bnhigh2);
if (bnlow2)
BN_free(bnlow2);
return ret;
}
/*
* AVL tree implementation
*/
typedef enum { CENT = 1, LEFT = 0, RIGHT = 2 } avl_balance_t;
typedef struct _avl_item_s {
struct _avl_item_s *ai_left, *ai_right, *ai_up;
avl_balance_t ai_balance;
#ifndef NDEBUG
int ai_indexed;
#endif
} avl_item_t;
typedef struct _avl_root_s {
avl_item_t *ar_root;
} avl_root_t;
static INLINE void
avl_root_init(avl_root_t *rootp)
{
rootp->ar_root = NULL;
}
static INLINE int
avl_root_empty(avl_root_t *rootp)
{
return (rootp->ar_root == NULL) ? 1 : 0;
}
static INLINE void
avl_item_init(avl_item_t *itemp)
{
memset(itemp, 0, sizeof(*itemp));
itemp->ai_balance = CENT;
}
#define container_of(ptr, type, member) \
(((type*) (((unsigned char *)ptr) - \
(size_t)&(((type *)((unsigned char *)0))->member))))
#define avl_item_entry(ptr, type, member) \
container_of(ptr, type, member)
static INLINE void
_avl_rotate_ll(avl_root_t *rootp, avl_item_t *itemp)
{
avl_item_t *tmp;
tmp = itemp->ai_left;
itemp->ai_left = tmp->ai_right;
if (itemp->ai_left)
itemp->ai_left->ai_up = itemp;
tmp->ai_right = itemp;
if (itemp->ai_up) {
if (itemp->ai_up->ai_left == itemp) {
itemp->ai_up->ai_left = tmp;
} else {
assert(itemp->ai_up->ai_right == itemp);
itemp->ai_up->ai_right = tmp;
}
} else {
rootp->ar_root = tmp;
}
tmp->ai_up = itemp->ai_up;
itemp->ai_up = tmp;
}
static INLINE void
_avl_rotate_lr(avl_root_t *rootp, avl_item_t *itemp)
{
avl_item_t *rcp, *rlcp;
rcp = itemp->ai_left;
rlcp = rcp->ai_right;
if (itemp->ai_up) {
if (itemp == itemp->ai_up->ai_left) {
itemp->ai_up->ai_left = rlcp;
} else {
assert(itemp == itemp->ai_up->ai_right);
itemp->ai_up->ai_right = rlcp;
}
} else {
rootp->ar_root = rlcp;
}
rlcp->ai_up = itemp->ai_up;
rcp->ai_right = rlcp->ai_left;
if (rcp->ai_right)
rcp->ai_right->ai_up = rcp;
itemp->ai_left = rlcp->ai_right;
if (itemp->ai_left)
itemp->ai_left->ai_up = itemp;
rlcp->ai_left = rcp;
rlcp->ai_right = itemp;
rcp->ai_up = rlcp;
itemp->ai_up = rlcp;
}
static INLINE void
_avl_rotate_rr(avl_root_t *rootp, avl_item_t *itemp)
{
avl_item_t *tmp;
tmp = itemp->ai_right;
itemp->ai_right = tmp->ai_left;
if (itemp->ai_right)
itemp->ai_right->ai_up = itemp;
tmp->ai_left = itemp;
if (itemp->ai_up) {
if (itemp->ai_up->ai_right == itemp) {
itemp->ai_up->ai_right = tmp;
} else {
assert(itemp->ai_up->ai_left == itemp);
itemp->ai_up->ai_left = tmp;
}
} else {
rootp->ar_root = tmp;
}
tmp->ai_up = itemp->ai_up;
itemp->ai_up = tmp;
}
static INLINE void
_avl_rotate_rl(avl_root_t *rootp, avl_item_t *itemp)
{
avl_item_t *rcp, *rlcp;
rcp = itemp->ai_right;
rlcp = rcp->ai_left;
if (itemp->ai_up) {
if (itemp == itemp->ai_up->ai_right) {
itemp->ai_up->ai_right = rlcp;
} else {
assert(itemp == itemp->ai_up->ai_left);
itemp->ai_up->ai_left = rlcp;
}
} else {
rootp->ar_root = rlcp;
}
rlcp->ai_up = itemp->ai_up;
rcp->ai_left = rlcp->ai_right;
if (rcp->ai_left)
rcp->ai_left->ai_up = rcp;
itemp->ai_right = rlcp->ai_left;
if (itemp->ai_right)
itemp->ai_right->ai_up = itemp;
rlcp->ai_right = rcp;
rlcp->ai_left = itemp;
rcp->ai_up = rlcp;
itemp->ai_up = rlcp;
}
static void
avl_delete_fix(avl_root_t *rootp, avl_item_t *itemp, avl_item_t *parentp)
{
avl_item_t *childp;
if ((parentp->ai_left == NULL) &&
(parentp->ai_right == NULL)) {
assert(itemp == NULL);
parentp->ai_balance = CENT;
itemp = parentp;
parentp = itemp->ai_up;
}
while (parentp) {
if (itemp == parentp->ai_right) {
itemp = parentp->ai_left;
if (parentp->ai_balance == LEFT) {
/* Parent was left-heavy, now worse */
if (itemp->ai_balance == LEFT) {
/* If left child is also
* left-heavy, LL fixes it. */
_avl_rotate_ll(rootp, parentp);
itemp->ai_balance = CENT;
parentp->ai_balance = CENT;
parentp = itemp;
} else if (itemp->ai_balance == CENT) {
_avl_rotate_ll(rootp, parentp);
itemp->ai_balance = RIGHT;
parentp->ai_balance = LEFT;
break;
} else {
childp = itemp->ai_right;
_avl_rotate_lr(rootp, parentp);
itemp->ai_balance = CENT;
parentp->ai_balance = CENT;
if (childp->ai_balance == RIGHT)
itemp->ai_balance = LEFT;
if (childp->ai_balance == LEFT)
parentp->ai_balance = RIGHT;
childp->ai_balance = CENT;
parentp = childp;
}
} else if (parentp->ai_balance == CENT) {
parentp->ai_balance = LEFT;
break;
} else {
parentp->ai_balance = CENT;
}
} else {
itemp = parentp->ai_right;
if (parentp->ai_balance == RIGHT) {
if (itemp->ai_balance == RIGHT) {
_avl_rotate_rr(rootp, parentp);
itemp->ai_balance = CENT;
parentp->ai_balance = CENT;
parentp = itemp;
} else if (itemp->ai_balance == CENT) {
_avl_rotate_rr(rootp, parentp);
itemp->ai_balance = LEFT;
parentp->ai_balance = RIGHT;
break;
} else {
childp = itemp->ai_left;
_avl_rotate_rl(rootp, parentp);
itemp->ai_balance = CENT;
parentp->ai_balance = CENT;
if (childp->ai_balance == RIGHT)
parentp->ai_balance = LEFT;
if (childp->ai_balance == LEFT)
itemp->ai_balance = RIGHT;
childp->ai_balance = CENT;
parentp = childp;
}
} else if (parentp->ai_balance == CENT) {
parentp->ai_balance = RIGHT;
break;
} else {
parentp->ai_balance = CENT;
}
}
itemp = parentp;
parentp = itemp->ai_up;
}
}
static void
avl_insert_fix(avl_root_t *rootp, avl_item_t *itemp)
{
avl_item_t *childp, *parentp = itemp->ai_up;
itemp->ai_left = itemp->ai_right = NULL;
#ifndef NDEBUG
assert(!itemp->ai_indexed);
itemp->ai_indexed = 1;
#endif
while (parentp) {
if (itemp == parentp->ai_left) {
if (parentp->ai_balance == LEFT) {
/* Parent was left-heavy, now worse */
if (itemp->ai_balance == LEFT) {
/* If left child is also
* left-heavy, LL fixes it. */
_avl_rotate_ll(rootp, parentp);
itemp->ai_balance = CENT;
parentp->ai_balance = CENT;
break;
} else {
assert(itemp->ai_balance != CENT);
childp = itemp->ai_right;
_avl_rotate_lr(rootp, parentp);
itemp->ai_balance = CENT;
parentp->ai_balance = CENT;
if (childp->ai_balance == RIGHT)
itemp->ai_balance = LEFT;
if (childp->ai_balance == LEFT)
parentp->ai_balance = RIGHT;
childp->ai_balance = CENT;
break;
}
} else if (parentp->ai_balance == CENT) {
parentp->ai_balance = LEFT;
} else {
parentp->ai_balance = CENT;
return;
}
} else {
if (parentp->ai_balance == RIGHT) {
if (itemp->ai_balance == RIGHT) {
_avl_rotate_rr(rootp, parentp);
itemp->ai_balance = CENT;
parentp->ai_balance = CENT;
break;
} else {
assert(itemp->ai_balance != CENT);
childp = itemp->ai_left;
_avl_rotate_rl(rootp, parentp);
itemp->ai_balance = CENT;
parentp->ai_balance = CENT;
if (childp->ai_balance == RIGHT)
parentp->ai_balance = LEFT;
if (childp->ai_balance == LEFT)
itemp->ai_balance = RIGHT;
childp->ai_balance = CENT;
break;
}
} else if (parentp->ai_balance == CENT) {
parentp->ai_balance = RIGHT;
} else {
parentp->ai_balance = CENT;
break;
}
}
itemp = parentp;
parentp = itemp->ai_up;
}
}
static INLINE avl_item_t *
avl_first(avl_root_t *rootp)
{
avl_item_t *itemp = rootp->ar_root;
if (itemp) {
while (itemp->ai_left)
itemp = itemp->ai_left;
}
return itemp;
}
static INLINE avl_item_t *
avl_next(avl_item_t *itemp)
{
if (itemp->ai_right) {
itemp = itemp->ai_right;
while (itemp->ai_left)
itemp = itemp->ai_left;
return itemp;
}
while (itemp->ai_up && (itemp == itemp->ai_up->ai_right))
itemp = itemp->ai_up;
if (!itemp->ai_up)
return NULL;
return itemp->ai_up;
}
static void
avl_remove(avl_root_t *rootp, avl_item_t *itemp)
{
avl_item_t *relocp, *replacep, *parentp = NULL;
#ifndef NDEBUG
assert(itemp->ai_indexed);
itemp->ai_indexed = 0;
#endif
/* If the item is directly replaceable, do it. */
if ((itemp->ai_left == NULL) || (itemp->ai_right == NULL)) {
parentp = itemp->ai_up;
replacep = itemp->ai_left;
if (replacep == NULL)
replacep = itemp->ai_right;
if (replacep != NULL)
replacep->ai_up = parentp;
if (parentp == NULL) {
rootp->ar_root = replacep;
} else {
if (itemp == parentp->ai_left)
parentp->ai_left = replacep;
else
parentp->ai_right = replacep;
avl_delete_fix(rootp, replacep, parentp);
}
return;
}
/*
* Otherwise we do an indirect replacement with
* the item's leftmost right descendant.
*/
relocp = avl_next(itemp);
assert(relocp);
assert(relocp->ai_up != NULL);
assert(relocp->ai_left == NULL);
replacep = relocp->ai_right;
relocp->ai_left = itemp->ai_left;
if (relocp->ai_left != NULL)
relocp->ai_left->ai_up = relocp;
if (itemp->ai_up == NULL)
rootp->ar_root = relocp;
else {
if (itemp == itemp->ai_up->ai_left)
itemp->ai_up->ai_left = relocp;
else
itemp->ai_up->ai_right = relocp;
}
if (relocp == relocp->ai_up->ai_left) {
assert(relocp->ai_up != itemp);
relocp->ai_up->ai_left = replacep;
parentp = relocp->ai_up;
if (replacep != NULL)
replacep->ai_up = relocp->ai_up;
relocp->ai_right = itemp->ai_right;
} else {
assert(relocp->ai_up == itemp);
relocp->ai_right = replacep;
parentp = relocp;
}
if (relocp->ai_right != NULL)
relocp->ai_right->ai_up = relocp;
relocp->ai_up = itemp->ai_up;
relocp->ai_balance = itemp->ai_balance;
avl_delete_fix(rootp, replacep, parentp);
}
/*
* Address prefix AVL tree node
*/
const int vpk_nwords = (25 + sizeof(BN_ULONG) - 1) / sizeof(BN_ULONG);
typedef struct _vg_prefix_s {
avl_item_t vp_item;
struct _vg_prefix_s *vp_sibling;
const char *vp_pattern;
BIGNUM *vp_low;
BIGNUM *vp_high;
} vg_prefix_t;
static void
vg_prefix_free(vg_prefix_t *vp)
{
if (vp->vp_low)
BN_free(vp->vp_low);
if (vp->vp_high)
BN_free(vp->vp_high);
free(vp);
}
static vg_prefix_t *
vg_prefix_avl_search(avl_root_t *rootp, BIGNUM *targ)
{
vg_prefix_t *vp;
avl_item_t *itemp = rootp->ar_root;
while (itemp) {
vp = avl_item_entry(itemp, vg_prefix_t, vp_item);
if (BN_cmp(vp->vp_low, targ) > 0) {
itemp = itemp->ai_left;
} else {
if (BN_cmp(vp->vp_high, targ) < 0) {
itemp = itemp->ai_right;
} else
return vp;
}
}
return NULL;
}
static vg_prefix_t *
vg_prefix_avl_insert(avl_root_t *rootp, vg_prefix_t *vpnew)
{
vg_prefix_t *vp;
avl_item_t *itemp = NULL;
avl_item_t **ptrp = &rootp->ar_root;
while (*ptrp) {
itemp = *ptrp;
vp = avl_item_entry(itemp, vg_prefix_t, vp_item);
if (BN_cmp(vp->vp_low, vpnew->vp_high) > 0) {
ptrp = &itemp->ai_left;
} else {
if (BN_cmp(vp->vp_high, vpnew->vp_low) < 0) {
ptrp = &itemp->ai_right;
} else
return vp;
}
}
vpnew->vp_item.ai_up = itemp;
itemp = &vpnew->vp_item;
*ptrp = itemp;
avl_insert_fix(rootp, itemp);
return NULL;
}
static vg_prefix_t *
vg_prefix_first(avl_root_t *rootp)
{
avl_item_t *itemp;
itemp = avl_first(rootp);
if (itemp)
return avl_item_entry(itemp, vg_prefix_t, vp_item);
return NULL;
}
static vg_prefix_t *
vg_prefix_next(vg_prefix_t *vp)
{
avl_item_t *itemp = &vp->vp_item;
itemp = avl_next(itemp);
if (itemp)
return avl_item_entry(itemp, vg_prefix_t, vp_item);
return NULL;
}
static vg_prefix_t *
vg_prefix_add(avl_root_t *rootp, const char *pattern, BIGNUM *low, BIGNUM *high)
{
vg_prefix_t *vp, *vp2;
assert(BN_cmp(low, high) < 0);
vp = (vg_prefix_t *) malloc(sizeof(*vp));
if (vp) {
avl_item_init(&vp->vp_item);
vp->vp_sibling = NULL;
vp->vp_pattern = pattern;
vp->vp_low = low;
vp->vp_high = high;
vp2 = vg_prefix_avl_insert(rootp, vp);
if (vp2 != NULL) {
fprintf(stderr,
"Prefix '%s' ignored, overlaps '%s'\n",
pattern, vp2->vp_pattern);
vg_prefix_free(vp);
vp = NULL;
}
}
return vp;
}
static void
vg_prefix_delete(avl_root_t *rootp, vg_prefix_t *vp)
{
vg_prefix_t *sibp, *delp;
avl_remove(rootp, &vp->vp_item);
sibp = vp->vp_sibling;
while (sibp && sibp != vp) {
avl_remove(rootp, &sibp->vp_item);
delp = sibp;
sibp = sibp->vp_sibling;
vg_prefix_free(delp);
}
vg_prefix_free(vp);
}
static vg_prefix_t *
vg_prefix_add_ranges(avl_root_t *rootp, const char *pattern, BIGNUM **ranges,
vg_prefix_t *master)
{
vg_prefix_t *vp, *vp2 = NULL;
assert(ranges[0]);
vp = vg_prefix_add(rootp, pattern, ranges[0], ranges[1]);
if (!vp)
return NULL;
if (ranges[2]) {
vp2 = vg_prefix_add(rootp, pattern, ranges[2], ranges[3]);
if (!vp2) {
vg_prefix_delete(rootp, vp);
return NULL;
}
}
if (!master) {
vp->vp_sibling = vp2;
if (vp2)
vp2->vp_sibling = vp;
} else if (vp2) {
vp->vp_sibling = vp2;
vp2->vp_sibling = (master->vp_sibling ?
master->vp_sibling :
master);
master->vp_sibling = vp;
} else {
vp->vp_sibling = (master->vp_sibling ?
master->vp_sibling :
master);
master->vp_sibling = vp;
}
return vp;
}
static void
vg_prefix_range_sum(vg_prefix_t *vp, BIGNUM *result, BIGNUM *tmp1)
{
vg_prefix_t *startp;
startp = vp;
BN_clear(result);
do {
BN_sub(tmp1, vp->vp_high, vp->vp_low);
BN_add(result, result, tmp1);
vp = vp->vp_sibling;
} while (vp && (vp != startp));
}
typedef struct _prefix_case_iter_s {
char ci_prefix[32];
char ci_case_map[32];
char ci_nbits;
int ci_value;
} prefix_case_iter_t;
static const unsigned char b58_case_map[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
};
static int
prefix_case_iter_init(prefix_case_iter_t *cip, const char *pfx)
{
int i;
cip->ci_nbits = 0;
cip->ci_value = 0;
for (i = 0; pfx[i]; i++) {
if (i > sizeof(cip->ci_prefix))
return 0;
if (!b58_case_map[(int)pfx[i]]) {
cip->ci_prefix[i] = pfx[i];
continue;
}
cip->ci_prefix[i] = pfx[i] | 0x20;
cip->ci_case_map[(int)cip->ci_nbits] = i;
cip->ci_nbits++;
}
cip->ci_prefix[i] = '\0';
return 1;
}
static int
prefix_case_iter_next(prefix_case_iter_t *cip)
{
unsigned long val, max, mask;
int i, nbits;
nbits = cip->ci_nbits;
max = (1UL << nbits) - 1;
val = cip->ci_value + 1;
if (val >= max)
return 0;
for (i = 0, mask = 1; i < nbits; i++, mask <<= 1) {
if (val & mask)
cip->ci_prefix[(int)cip->ci_case_map[i]] &= 0xdf;
else
cip->ci_prefix[(int)cip->ci_case_map[i]] |= 0x20;
}
cip->ci_value = val;
return 1;
}
typedef struct _vg_prefix_context_s {
vg_context_t base;
avl_root_t vcp_avlroot;
BIGNUM vcp_difficulty;
int vcp_caseinsensitive;
} vg_prefix_context_t;
static void
vg_prefix_context_free(vg_context_t *vcp)
{
vg_prefix_context_t *vcpp = (vg_prefix_context_t *) vcp;
vg_prefix_t *vp;
unsigned long npfx_left = 0;
while (!avl_root_empty(&vcpp->vcp_avlroot)) {
vp = avl_item_entry(vcpp->vcp_avlroot.ar_root,
vg_prefix_t, vp_item);
vg_prefix_delete(&vcpp->vcp_avlroot, vp);
npfx_left++;
}
assert(npfx_left == vcpp->base.vc_npatterns);
BN_clear_free(&vcpp->vcp_difficulty);
free(vcpp);
}
static void
vg_prefix_context_next_difficulty(vg_prefix_context_t *vcpp,
BIGNUM *bntmp, BIGNUM *bntmp2, BN_CTX *bnctx)
{
char *dbuf;
BN_clear(bntmp);
BN_set_bit(bntmp, 192);
BN_div(bntmp2, NULL, bntmp, &vcpp->vcp_difficulty, bnctx);
dbuf = BN_bn2dec(bntmp2);
if (vcpp->base.vc_verbose > 0) {
if (vcpp->base.vc_npatterns > 1)
fprintf(stderr,
"Next match difficulty: %s (%ld prefixes)\n",
dbuf, vcpp->base.vc_npatterns);
else
fprintf(stderr, "Difficulty: %s\n", dbuf);
}
vcpp->base.vc_chance = atof(dbuf);
OPENSSL_free(dbuf);
}
static int
vg_prefix_context_add_patterns(vg_context_t *vcp,
char ** const patterns, int npatterns)
{
vg_prefix_context_t *vcpp = (vg_prefix_context_t *) vcp;
prefix_case_iter_t caseiter;
vg_prefix_t *vp, *vp2;
BN_CTX *bnctx;
BIGNUM bntmp, bntmp2, bntmp3;
BIGNUM *ranges[4];
int ret = 0;
int i, impossible = 0;
int case_impossible;
unsigned long npfx;
char *dbuf;
bnctx = BN_CTX_new();
BN_init(&bntmp);
BN_init(&bntmp2);
BN_init(&bntmp3);
npfx = 0;
for (i = 0; i < npatterns; i++) {
if (!vcpp->vcp_caseinsensitive) {
vp = NULL;
ret = get_prefix_ranges(vcpp->base.vc_addrtype,
patterns[i],
ranges, bnctx);
if (!ret) {
vp = vg_prefix_add_ranges(&vcpp->vcp_avlroot,
patterns[i],
ranges, NULL);
}
} else {
/* Case-enumerate the prefix */
if (!prefix_case_iter_init(&caseiter, patterns[i])) {
fprintf(stderr,
"Prefix '%s' is too long\n",
patterns[i]);
continue;
}
if (caseiter.ci_nbits > 16) {
fprintf(stderr,
"WARNING: Prefix '%s' has "
"2^%d case-varied derivitives\n",
patterns[i], caseiter.ci_nbits);
}
case_impossible = 0;
vp = NULL;
do {
ret = get_prefix_ranges(vcpp->base.vc_addrtype,
caseiter.ci_prefix,
ranges, bnctx);
if (ret == -2) {
case_impossible++;
ret = 0;
continue;
}
if (ret)
break;
vp2 = vg_prefix_add_ranges(&vcpp->vcp_avlroot,
patterns[i],
ranges,
vp);
if (!vp2) {
ret = -1;
break;
}
if (!vp)
vp = vp2;
} while (prefix_case_iter_next(&caseiter));
if (!vp && case_impossible)
ret = -2;
if (ret && vp) {
vg_prefix_delete(&vcpp->vcp_avlroot, vp);
vp = NULL;
}
}
if (ret == -2) {
fprintf(stderr,
"Prefix '%s' not possible\n", patterns[i]);
impossible++;
}
if (!vp)
continue;
npfx++;
/* Determine the probability of finding a match */
vg_prefix_range_sum(vp, &bntmp, &bntmp2);
BN_add(&bntmp2, &vcpp->vcp_difficulty, &bntmp);
BN_copy(&vcpp->vcp_difficulty, &bntmp2);
if (vcp->vc_verbose > 1) {
BN_clear(&bntmp2);
BN_set_bit(&bntmp2, 192);
BN_div(&bntmp3, NULL, &bntmp2, &bntmp, bnctx);
dbuf = BN_bn2dec(&bntmp3);
fprintf(stderr,
"Prefix difficulty: %20s %s\n",
dbuf, patterns[i]);
OPENSSL_free(dbuf);
}
}
vcpp->base.vc_npatterns += npfx;
vcpp->base.vc_npatterns_start += npfx;
if (!npfx && impossible) {
const char *ats = "bitcoin", *bw = "\"1\"";
switch (vcpp->base.vc_addrtype) {
case 111:
ats = "testnet";
bw = "\"m\" or \"n\"";
break;
case 52:
ats = "namecoin";
bw = "\"M\" or \"N\"";
break;
default:
break;
}
fprintf(stderr,
"Hint: valid %s addresses begin with %s\n", ats, bw);
}
if (npfx)
vg_prefix_context_next_difficulty(vcpp, &bntmp, &bntmp2, bnctx);
ret = (npfx != 0);
BN_clear_free(&bntmp);
BN_clear_free(&bntmp2);
BN_clear_free(&bntmp3);
BN_CTX_free(bnctx);
return ret;
}
static int
vg_prefix_test(vg_exec_context_t *vxcp)
{
vg_prefix_context_t *vcpp = (vg_prefix_context_t *) vxcp->vxc_vc;
vg_prefix_t *vp;
int res = 0;
/*
* We constrain the prefix so that we can check for
* a match without generating the lower four byte
* check code.
*/
BN_bin2bn(vxcp->vxc_binres, 25, &vxcp->vxc_bntarg);
research:
vp = vg_prefix_avl_search(&vcpp->vcp_avlroot, &vxcp->vxc_bntarg);
if (vp) {
if (vg_exec_upgrade_lock(vxcp))
goto research;
vg_exec_context_consolidate_key(vxcp);
vg_output_match(&vcpp->base, vxcp->vxc_key, vp->vp_pattern);
vcpp->base.vc_found++;
if (vcpp->base.vc_remove_on_match) {
/* Subtract the range from the difficulty */
vg_prefix_range_sum(vp,
&vxcp->vxc_bntarg,
&vxcp->vxc_bntmp);
BN_sub(&vxcp->vxc_bntmp,
&vcpp->vcp_difficulty,
&vxcp->vxc_bntarg);
BN_copy(&vcpp->vcp_difficulty, &vxcp->vxc_bntmp);
vg_prefix_delete(&vcpp->vcp_avlroot,vp);
vcpp->base.vc_npatterns--;
if (!avl_root_empty(&vcpp->vcp_avlroot))
vg_prefix_context_next_difficulty(
vcpp, &vxcp->vxc_bntmp,
&vxcp->vxc_bntmp2,
vxcp->vxc_bnctx);
}
res = 1;
}
if (avl_root_empty(&vcpp->vcp_avlroot)) {
return 2;
}
return res;
}
static int
vg_prefix_hash160_sort(vg_context_t *vcp, void *buf)
{
vg_prefix_context_t *vcpp = (vg_prefix_context_t *) vcp;
vg_prefix_t *vp;
unsigned char *cbuf = (unsigned char *) buf;
unsigned char bnbuf[25];
int nbytes, ncopy, nskip, npfx = 0;
/*
* Walk the prefix tree in order, copy the upper and lower bound
* values into the hash160 buffer. Skip the lower four bytes
* and anything above the 24th byte.
*/
for (vp = vg_prefix_first(&vcpp->vcp_avlroot);
vp != NULL;
vp = vg_prefix_next(vp)) {
npfx++;
if (!buf)
continue;
/* Low */
nbytes = BN_bn2bin(vp->vp_low, bnbuf);
ncopy = ((nbytes >= 24) ? 20 :
((nbytes > 4) ? (nbytes - 4) : 0));
nskip = (nbytes >= 24) ? (nbytes - 24) : 0;
if (ncopy < 20)
memset(cbuf, 0, 20 - ncopy);
memcpy(cbuf + (20 - ncopy),
bnbuf + nskip,
ncopy);
cbuf += 20;
/* High */
nbytes = BN_bn2bin(vp->vp_high, bnbuf);
ncopy = ((nbytes >= 24) ? 20 :
((nbytes > 4) ? (nbytes - 4) : 0));
nskip = (nbytes >= 24) ? (nbytes - 24) : 0;
if (ncopy < 20)
memset(cbuf, 0, 20 - ncopy);
memcpy(cbuf + (20 - ncopy),
bnbuf + nskip,
ncopy);
cbuf += 20;
}
return npfx;
}
vg_context_t *
vg_prefix_context_new(int addrtype, int privtype, int caseinsensitive)
{
vg_prefix_context_t *vcpp;
vcpp = (vg_prefix_context_t *) malloc(sizeof(*vcpp));
if (vcpp) {
vcpp->base.vc_addrtype = addrtype;
vcpp->base.vc_privtype = privtype;
vcpp->base.vc_npatterns = 0;
vcpp->base.vc_npatterns_start = 0;
vcpp->base.vc_found = 0;
vcpp->base.vc_chance = 0.0;
vcpp->base.vc_free = vg_prefix_context_free;
vcpp->base.vc_add_patterns = vg_prefix_context_add_patterns;
vcpp->base.vc_test = vg_prefix_test;
vcpp->base.vc_hash160_sort = vg_prefix_hash160_sort;
avl_root_init(&vcpp->vcp_avlroot);
BN_init(&vcpp->vcp_difficulty);
vcpp->vcp_caseinsensitive = caseinsensitive;
}
return &vcpp->base;
}
typedef struct _vg_regex_context_s {
vg_context_t base;
pcre **vcr_regex;
pcre_extra **vcr_regex_extra;
const char **vcr_regex_pat;
unsigned long vcr_nalloc;
} vg_regex_context_t;
static int
vg_regex_context_add_patterns(vg_context_t *vcp,
char ** const patterns, int npatterns)
{
vg_regex_context_t *vcrp = (vg_regex_context_t *) vcp;
const char *pcre_errptr;
int pcre_erroffset;
unsigned long i, nres, count;
void **mem;
if (!npatterns)
return 1;
if (npatterns > (vcrp->vcr_nalloc - vcrp->base.vc_npatterns)) {
count = npatterns + vcrp->base.vc_npatterns;
if (count < (2 * vcrp->vcr_nalloc)) {
count = (2 * vcrp->vcr_nalloc);
}
if (count < 16) {
count = 16;
}
mem = (void **) malloc(3 * count * sizeof(void*));
if (!mem)
return 0;
for (i = 0; i < vcrp->base.vc_npatterns; i++) {
mem[i] = vcrp->vcr_regex[i];
mem[count + i] = vcrp->vcr_regex_extra[i];
mem[(2 * count) + i] = (void *) vcrp->vcr_regex_pat[i];
}
if (vcrp->vcr_nalloc)
free(vcrp->vcr_regex);
vcrp->vcr_regex = (pcre **) mem;
vcrp->vcr_regex_extra = (pcre_extra **) &mem[count];
vcrp->vcr_regex_pat = (const char **) &mem[2 * count];
vcrp->vcr_nalloc = count;
}
nres = vcrp->base.vc_npatterns;
for (i = 0; i < npatterns; i++) {
vcrp->vcr_regex[nres] =
pcre_compile(patterns[i], 0,
&pcre_errptr, &pcre_erroffset, NULL);
if (!vcrp->vcr_regex[nres]) {
const char *spaces = " ";
fprintf(stderr, "%s\n", patterns[i]);
while (pcre_erroffset > 16) {
fprintf(stderr, "%s", spaces);
pcre_erroffset -= 16;
}
if (pcre_erroffset > 0)
fprintf(stderr,
"%s", &spaces[16 - pcre_erroffset]);
fprintf(stderr, "^\nRegex error: %s\n", pcre_errptr);
continue;
}
vcrp->vcr_regex_extra[nres] =
pcre_study(vcrp->vcr_regex[nres], 0, &pcre_errptr);
if (pcre_errptr) {
fprintf(stderr, "Regex error: %s\n", pcre_errptr);
pcre_free(vcrp->vcr_regex[nres]);
continue;
}
vcrp->vcr_regex_pat[nres] = patterns[i];
nres += 1;
}
if (nres == vcrp->base.vc_npatterns)
return 0;
vcrp->base.vc_npatterns_start += (nres - vcrp->base.vc_npatterns);
vcrp->base.vc_npatterns = nres;
return 1;
}
static void
vg_regex_context_free(vg_context_t *vcp)
{
vg_regex_context_t *vcrp = (vg_regex_context_t *) vcp;
int i;
for (i = 0; i < vcrp->base.vc_npatterns; i++) {
if (vcrp->vcr_regex_extra[i])
pcre_free(vcrp->vcr_regex_extra[i]);
pcre_free(vcrp->vcr_regex[i]);
}
if (vcrp->vcr_nalloc)
free(vcrp->vcr_regex);
free(vcrp);
}
static int
vg_regex_test(vg_exec_context_t *vxcp)
{
vg_regex_context_t *vcrp = (vg_regex_context_t *) vxcp->vxc_vc;
unsigned char hash1[32], hash2[32];
int i, zpfx, p, d, nres, re_vec[9];
char b58[40];
BIGNUM bnrem;
BIGNUM *bn, *bndiv, *bnptmp;
int res = 0;
pcre *re;
BN_init(&bnrem);
/* Hash the hash and write the four byte check code */
SHA256(vxcp->vxc_binres, 21, hash1);
SHA256(hash1, sizeof(hash1), hash2);
memcpy(&vxcp->vxc_binres[21], hash2, 4);
bn = &vxcp->vxc_bntmp;
bndiv = &vxcp->vxc_bntmp2;
BN_bin2bn(vxcp->vxc_binres, 25, bn);
/* Compute the complete encoded address */
for (zpfx = 0; zpfx < 25 && vxcp->vxc_binres[zpfx] == 0; zpfx++);
p = sizeof(b58) - 1;
b58[p] = '\0';
while (!BN_is_zero(bn)) {
BN_div(bndiv, &bnrem, bn, &vxcp->vxc_bnbase, vxcp->vxc_bnctx);
bnptmp = bn;
bn = bndiv;
bndiv = bnptmp;
d = BN_get_word(&bnrem);
b58[--p] = vg_b58_alphabet[d];
}
while (zpfx--) {
b58[--p] = vg_b58_alphabet[0];
}
/*
* Run the regular expressions on it
* SLOW, runs in linear time with the number of REs
*/
restart_loop:
nres = vcrp->base.vc_npatterns;
if (!nres) {
res = 2;
goto out;
}
for (i = 0; i < nres; i++) {
d = pcre_exec(vcrp->vcr_regex[i],
vcrp->vcr_regex_extra[i],
&b58[p], (sizeof(b58) - 1) - p, 0,
0,
re_vec, sizeof(re_vec)/sizeof(re_vec[0]));
if (d <= 0) {
if (d != PCRE_ERROR_NOMATCH) {
fprintf(stderr, "PCRE error: %d\n", d);
res = 2;
goto out;
}
continue;
}
re = vcrp->vcr_regex[i];
if (vg_exec_upgrade_lock(vxcp) &&
((i >= vcrp->base.vc_npatterns) ||
(vcrp->vcr_regex[i] != re)))
goto restart_loop;
vg_exec_context_consolidate_key(vxcp);
vg_output_match(&vcrp->base, vxcp->vxc_key,
vcrp->vcr_regex_pat[i]);
vcrp->base.vc_found++;
if (vcrp->base.vc_remove_on_match) {
pcre_free(vcrp->vcr_regex[i]);
if (vcrp->vcr_regex_extra[i])
pcre_free(vcrp->vcr_regex_extra[i]);
nres -= 1;
vcrp->base.vc_npatterns = nres;
if (!nres) {
res = 2;
goto out;
}
vcrp->vcr_regex[i] = vcrp->vcr_regex[nres];
vcrp->vcr_regex_extra[i] =
vcrp->vcr_regex_extra[nres];
vcrp->vcr_regex_pat[i] = vcrp->vcr_regex_pat[nres];
vcrp->base.vc_npatterns = nres;
}
res = 1;
}
out:
BN_clear_free(&bnrem);
return res;
}
vg_context_t *
vg_regex_context_new(int addrtype, int privtype)
{
vg_regex_context_t *vcrp;
vcrp = (vg_regex_context_t *) malloc(sizeof(*vcrp));
if (vcrp) {
vcrp->base.vc_addrtype = addrtype;
vcrp->base.vc_privtype = privtype;
vcrp->base.vc_npatterns = 0;
vcrp->base.vc_npatterns_start = 0;
vcrp->base.vc_found = 0;
vcrp->base.vc_chance = 0.0;
vcrp->base.vc_free = vg_regex_context_free;
vcrp->base.vc_add_patterns = vg_regex_context_add_patterns;
vcrp->base.vc_test = vg_regex_test;
vcrp->base.vc_hash160_sort = NULL;
vcrp->vcr_regex = NULL;
vcrp->vcr_nalloc = 0;
}
return &vcrp->base;
}