mirror of https://github.com/GOSTSec/sgminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
509 lines
14 KiB
509 lines
14 KiB
/*- |
|
* Copyright 2009 Colin Percival, 2011 ArtForz |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* This file was originally written by Colin Percival as part of the Tarsnap |
|
* online backup system. |
|
*/ |
|
|
|
#include "config.h" |
|
#include "miner.h" |
|
|
|
#include <stdlib.h> |
|
#include <stdint.h> |
|
#include <string.h> |
|
|
|
typedef struct SHA256Context { |
|
uint32_t state[8]; |
|
uint32_t buf[16]; |
|
} SHA256_CTX; |
|
|
|
/* |
|
* Encode a length len/4 vector of (uint32_t) into a length len vector of |
|
* (unsigned char) in big-endian form. Assumes len is a multiple of 4. |
|
*/ |
|
static inline void |
|
be32enc_vect(uint32_t *dst, const uint32_t *src, uint32_t len) |
|
{ |
|
uint32_t i; |
|
|
|
for (i = 0; i < len; i++) |
|
dst[i] = htobe32(src[i]); |
|
} |
|
|
|
/* Elementary functions used by SHA256 */ |
|
#define Ch(x, y, z) ((x & (y ^ z)) ^ z) |
|
#define Maj(x, y, z) ((x & (y | z)) | (y & z)) |
|
#define SHR(x, n) (x >> n) |
|
#define ROTR(x, n) ((x >> n) | (x << (32 - n))) |
|
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) |
|
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) |
|
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) |
|
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) |
|
|
|
/* SHA256 round function */ |
|
#define RND(a, b, c, d, e, f, g, h, k) \ |
|
t0 = h + S1(e) + Ch(e, f, g) + k; \ |
|
t1 = S0(a) + Maj(a, b, c); \ |
|
d += t0; \ |
|
h = t0 + t1; |
|
|
|
/* Adjusted round function for rotating state */ |
|
#define RNDr(S, W, i, k) \ |
|
RND(S[(64 - i) % 8], S[(65 - i) % 8], \ |
|
S[(66 - i) % 8], S[(67 - i) % 8], \ |
|
S[(68 - i) % 8], S[(69 - i) % 8], \ |
|
S[(70 - i) % 8], S[(71 - i) % 8], \ |
|
W[i] + k) |
|
|
|
/* |
|
* SHA256 block compression function. The 256-bit state is transformed via |
|
* the 512-bit input block to produce a new state. |
|
*/ |
|
static void |
|
SHA256_Transform(uint32_t * state, const uint32_t block[16], int swap) |
|
{ |
|
uint32_t W[64]; |
|
uint32_t S[8]; |
|
uint32_t t0, t1; |
|
int i; |
|
|
|
/* 1. Prepare message schedule W. */ |
|
if(swap) |
|
for (i = 0; i < 16; i++) |
|
W[i] = htobe32(block[i]); |
|
else |
|
memcpy(W, block, 64); |
|
for (i = 16; i < 64; i += 2) { |
|
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; |
|
W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; |
|
} |
|
|
|
/* 2. Initialize working variables. */ |
|
memcpy(S, state, 32); |
|
|
|
/* 3. Mix. */ |
|
RNDr(S, W, 0, 0x428a2f98); |
|
RNDr(S, W, 1, 0x71374491); |
|
RNDr(S, W, 2, 0xb5c0fbcf); |
|
RNDr(S, W, 3, 0xe9b5dba5); |
|
RNDr(S, W, 4, 0x3956c25b); |
|
RNDr(S, W, 5, 0x59f111f1); |
|
RNDr(S, W, 6, 0x923f82a4); |
|
RNDr(S, W, 7, 0xab1c5ed5); |
|
RNDr(S, W, 8, 0xd807aa98); |
|
RNDr(S, W, 9, 0x12835b01); |
|
RNDr(S, W, 10, 0x243185be); |
|
RNDr(S, W, 11, 0x550c7dc3); |
|
RNDr(S, W, 12, 0x72be5d74); |
|
RNDr(S, W, 13, 0x80deb1fe); |
|
RNDr(S, W, 14, 0x9bdc06a7); |
|
RNDr(S, W, 15, 0xc19bf174); |
|
RNDr(S, W, 16, 0xe49b69c1); |
|
RNDr(S, W, 17, 0xefbe4786); |
|
RNDr(S, W, 18, 0x0fc19dc6); |
|
RNDr(S, W, 19, 0x240ca1cc); |
|
RNDr(S, W, 20, 0x2de92c6f); |
|
RNDr(S, W, 21, 0x4a7484aa); |
|
RNDr(S, W, 22, 0x5cb0a9dc); |
|
RNDr(S, W, 23, 0x76f988da); |
|
RNDr(S, W, 24, 0x983e5152); |
|
RNDr(S, W, 25, 0xa831c66d); |
|
RNDr(S, W, 26, 0xb00327c8); |
|
RNDr(S, W, 27, 0xbf597fc7); |
|
RNDr(S, W, 28, 0xc6e00bf3); |
|
RNDr(S, W, 29, 0xd5a79147); |
|
RNDr(S, W, 30, 0x06ca6351); |
|
RNDr(S, W, 31, 0x14292967); |
|
RNDr(S, W, 32, 0x27b70a85); |
|
RNDr(S, W, 33, 0x2e1b2138); |
|
RNDr(S, W, 34, 0x4d2c6dfc); |
|
RNDr(S, W, 35, 0x53380d13); |
|
RNDr(S, W, 36, 0x650a7354); |
|
RNDr(S, W, 37, 0x766a0abb); |
|
RNDr(S, W, 38, 0x81c2c92e); |
|
RNDr(S, W, 39, 0x92722c85); |
|
RNDr(S, W, 40, 0xa2bfe8a1); |
|
RNDr(S, W, 41, 0xa81a664b); |
|
RNDr(S, W, 42, 0xc24b8b70); |
|
RNDr(S, W, 43, 0xc76c51a3); |
|
RNDr(S, W, 44, 0xd192e819); |
|
RNDr(S, W, 45, 0xd6990624); |
|
RNDr(S, W, 46, 0xf40e3585); |
|
RNDr(S, W, 47, 0x106aa070); |
|
RNDr(S, W, 48, 0x19a4c116); |
|
RNDr(S, W, 49, 0x1e376c08); |
|
RNDr(S, W, 50, 0x2748774c); |
|
RNDr(S, W, 51, 0x34b0bcb5); |
|
RNDr(S, W, 52, 0x391c0cb3); |
|
RNDr(S, W, 53, 0x4ed8aa4a); |
|
RNDr(S, W, 54, 0x5b9cca4f); |
|
RNDr(S, W, 55, 0x682e6ff3); |
|
RNDr(S, W, 56, 0x748f82ee); |
|
RNDr(S, W, 57, 0x78a5636f); |
|
RNDr(S, W, 58, 0x84c87814); |
|
RNDr(S, W, 59, 0x8cc70208); |
|
RNDr(S, W, 60, 0x90befffa); |
|
RNDr(S, W, 61, 0xa4506ceb); |
|
RNDr(S, W, 62, 0xbef9a3f7); |
|
RNDr(S, W, 63, 0xc67178f2); |
|
|
|
/* 4. Mix local working variables into global state */ |
|
for (i = 0; i < 8; i++) |
|
state[i] += S[i]; |
|
} |
|
|
|
static inline void |
|
SHA256_InitState(uint32_t * state) |
|
{ |
|
/* Magic initialization constants */ |
|
state[0] = 0x6A09E667; |
|
state[1] = 0xBB67AE85; |
|
state[2] = 0x3C6EF372; |
|
state[3] = 0xA54FF53A; |
|
state[4] = 0x510E527F; |
|
state[5] = 0x9B05688C; |
|
state[6] = 0x1F83D9AB; |
|
state[7] = 0x5BE0CD19; |
|
} |
|
|
|
static const uint32_t passwdpad[12] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80020000}; |
|
static const uint32_t outerpad[8] = {0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300}; |
|
|
|
/** |
|
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): |
|
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and |
|
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). |
|
*/ |
|
static inline void |
|
PBKDF2_SHA256_80_128(const uint32_t * passwd, uint32_t * buf) |
|
{ |
|
SHA256_CTX PShictx, PShoctx; |
|
uint32_t tstate[8]; |
|
uint32_t ihash[8]; |
|
uint32_t i; |
|
uint32_t pad[16]; |
|
|
|
static const uint32_t innerpad[11] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xa0040000}; |
|
|
|
/* If Klen > 64, the key is really SHA256(K). */ |
|
SHA256_InitState(tstate); |
|
SHA256_Transform(tstate, passwd, 1); |
|
memcpy(pad, passwd+16, 16); |
|
memcpy(pad+4, passwdpad, 48); |
|
SHA256_Transform(tstate, pad, 1); |
|
memcpy(ihash, tstate, 32); |
|
|
|
SHA256_InitState(PShictx.state); |
|
for (i = 0; i < 8; i++) |
|
pad[i] = ihash[i] ^ 0x36363636; |
|
for (; i < 16; i++) |
|
pad[i] = 0x36363636; |
|
SHA256_Transform(PShictx.state, pad, 0); |
|
SHA256_Transform(PShictx.state, passwd, 1); |
|
be32enc_vect(PShictx.buf, passwd+16, 4); |
|
be32enc_vect(PShictx.buf+5, innerpad, 11); |
|
|
|
SHA256_InitState(PShoctx.state); |
|
for (i = 0; i < 8; i++) |
|
pad[i] = ihash[i] ^ 0x5c5c5c5c; |
|
for (; i < 16; i++) |
|
pad[i] = 0x5c5c5c5c; |
|
SHA256_Transform(PShoctx.state, pad, 0); |
|
memcpy(PShoctx.buf+8, outerpad, 32); |
|
|
|
/* Iterate through the blocks. */ |
|
for (i = 0; i < 4; i++) { |
|
uint32_t istate[8]; |
|
uint32_t ostate[8]; |
|
|
|
memcpy(istate, PShictx.state, 32); |
|
PShictx.buf[4] = i + 1; |
|
SHA256_Transform(istate, PShictx.buf, 0); |
|
memcpy(PShoctx.buf, istate, 32); |
|
|
|
memcpy(ostate, PShoctx.state, 32); |
|
SHA256_Transform(ostate, PShoctx.buf, 0); |
|
be32enc_vect(buf+i*8, ostate, 8); |
|
} |
|
} |
|
|
|
|
|
static inline void |
|
PBKDF2_SHA256_80_128_32(const uint32_t * passwd, const uint32_t * salt, uint32_t *ostate) |
|
{ |
|
uint32_t tstate[8]; |
|
uint32_t ihash[8]; |
|
uint32_t i; |
|
|
|
/* Compute HMAC state after processing P and S. */ |
|
uint32_t pad[16]; |
|
|
|
static const uint32_t ihash_finalblk[16] = {0x00000001,0x80000000,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x00000620}; |
|
|
|
/* If Klen > 64, the key is really SHA256(K). */ |
|
SHA256_InitState(tstate); |
|
SHA256_Transform(tstate, passwd, 1); |
|
memcpy(pad, passwd+16, 16); |
|
memcpy(pad+4, passwdpad, 48); |
|
SHA256_Transform(tstate, pad, 1); |
|
memcpy(ihash, tstate, 32); |
|
|
|
SHA256_InitState(ostate); |
|
for (i = 0; i < 8; i++) |
|
pad[i] = ihash[i] ^ 0x5c5c5c5c; |
|
for (; i < 16; i++) |
|
pad[i] = 0x5c5c5c5c; |
|
SHA256_Transform(ostate, pad, 0); |
|
|
|
SHA256_InitState(tstate); |
|
for (i = 0; i < 8; i++) |
|
pad[i] = ihash[i] ^ 0x36363636; |
|
for (; i < 16; i++) |
|
pad[i] = 0x36363636; |
|
SHA256_Transform(tstate, pad, 0); |
|
SHA256_Transform(tstate, salt, 1); |
|
SHA256_Transform(tstate, salt+16, 1); |
|
SHA256_Transform(tstate, ihash_finalblk, 0); |
|
memcpy(pad, tstate, 32); |
|
memcpy(pad+8, outerpad, 32); |
|
|
|
/* Feed the inner hash to the outer SHA256 operation. */ |
|
SHA256_Transform(ostate, pad, 0); |
|
} |
|
|
|
|
|
/** |
|
* salsa20_8(B): |
|
* Apply the salsa20/8 core to the provided block. |
|
*/ |
|
static inline void |
|
salsa20_8(uint32_t B[16], const uint32_t Bx[16]) |
|
{ |
|
uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15; |
|
size_t i; |
|
|
|
x00 = (B[ 0] ^= Bx[ 0]); |
|
x01 = (B[ 1] ^= Bx[ 1]); |
|
x02 = (B[ 2] ^= Bx[ 2]); |
|
x03 = (B[ 3] ^= Bx[ 3]); |
|
x04 = (B[ 4] ^= Bx[ 4]); |
|
x05 = (B[ 5] ^= Bx[ 5]); |
|
x06 = (B[ 6] ^= Bx[ 6]); |
|
x07 = (B[ 7] ^= Bx[ 7]); |
|
x08 = (B[ 8] ^= Bx[ 8]); |
|
x09 = (B[ 9] ^= Bx[ 9]); |
|
x10 = (B[10] ^= Bx[10]); |
|
x11 = (B[11] ^= Bx[11]); |
|
x12 = (B[12] ^= Bx[12]); |
|
x13 = (B[13] ^= Bx[13]); |
|
x14 = (B[14] ^= Bx[14]); |
|
x15 = (B[15] ^= Bx[15]); |
|
for (i = 0; i < 8; i += 2) { |
|
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) |
|
/* Operate on columns. */ |
|
x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7); |
|
x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9); |
|
x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13); |
|
x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18); |
|
|
|
/* Operate on rows. */ |
|
x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7); |
|
x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9); |
|
x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13); |
|
x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18); |
|
#undef R |
|
} |
|
B[ 0] += x00; |
|
B[ 1] += x01; |
|
B[ 2] += x02; |
|
B[ 3] += x03; |
|
B[ 4] += x04; |
|
B[ 5] += x05; |
|
B[ 6] += x06; |
|
B[ 7] += x07; |
|
B[ 8] += x08; |
|
B[ 9] += x09; |
|
B[10] += x10; |
|
B[11] += x11; |
|
B[12] += x12; |
|
B[13] += x13; |
|
B[14] += x14; |
|
B[15] += x15; |
|
} |
|
|
|
/* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output |
|
scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes |
|
*/ |
|
|
|
#define scrypt_1024_1_1_256_sp(input, scratchpad, ostate) scrypt_n_1_1_256_sp(input, scratchpad, ostate, 1024) |
|
|
|
static void scrypt_n_1_1_256_sp(const uint32_t* input, char* scratchpad, uint32_t *ostate, const cl_uint n) |
|
{ |
|
uint32_t * V; |
|
uint32_t X[32]; |
|
uint32_t i; |
|
uint32_t j; |
|
uint32_t k; |
|
uint64_t *p1, *p2; |
|
|
|
p1 = (uint64_t *)X; |
|
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); |
|
|
|
PBKDF2_SHA256_80_128(input, X); |
|
|
|
for (i = 0; i < n; i += 2) { |
|
memcpy(&V[i * 32], X, 128); |
|
|
|
salsa20_8(&X[0], &X[16]); |
|
salsa20_8(&X[16], &X[0]); |
|
|
|
memcpy(&V[(i + 1) * 32], X, 128); |
|
|
|
salsa20_8(&X[0], &X[16]); |
|
salsa20_8(&X[16], &X[0]); |
|
} |
|
for (i = 0; i < n; i += 2) { |
|
j = X[16] & (n-1); |
|
p2 = (uint64_t *)(&V[j * 32]); |
|
for(k = 0; k < 16; k++) |
|
p1[k] ^= p2[k]; |
|
|
|
salsa20_8(&X[0], &X[16]); |
|
salsa20_8(&X[16], &X[0]); |
|
|
|
j = X[16] & (n-1); |
|
p2 = (uint64_t *)(&V[j * 32]); |
|
for(k = 0; k < 16; k++) |
|
p1[k] ^= p2[k]; |
|
|
|
salsa20_8(&X[0], &X[16]); |
|
salsa20_8(&X[16], &X[0]); |
|
} |
|
|
|
PBKDF2_SHA256_80_128_32(input, X, ostate); |
|
} |
|
|
|
/* 131583 rounded up to 4 byte alignment */ |
|
#define SCRATCHBUF_SIZE (131584) |
|
|
|
void scrypt_regenhash(struct work *work) |
|
{ |
|
uint32_t data[20]; |
|
char *scratchbuf; |
|
uint32_t timestamp; |
|
cl_uint nfactor = 10; // scrypt default |
|
uint32_t *nonce = (uint32_t *)(work->data + 76); |
|
uint32_t *ohash = (uint32_t *)(work->hash); |
|
|
|
if (use_nscrypt) { |
|
timestamp = bswap_32(*((uint32_t *)(work->data + 17*4))); |
|
nfactor = vert_GetNfactor(timestamp) + 1; |
|
} |
|
|
|
be32enc_vect(data, (const uint32_t *)work->data, 19); |
|
data[19] = htobe32(*nonce); |
|
|
|
if (use_nscrypt) { |
|
scratchbuf = (char *)alloca((1 << nfactor) * 128 + 512); |
|
scrypt_n_1_1_256_sp(data, scratchbuf, ohash, (1 << nfactor)); |
|
} |
|
else { |
|
scratchbuf = (char *)alloca(SCRATCHBUF_SIZE); |
|
scrypt_1024_1_1_256_sp(data, scratchbuf, ohash, 1024); |
|
} |
|
|
|
flip32(ohash, ohash); |
|
} |
|
|
|
static const uint32_t diff1targ = 0x0000ffff; |
|
|
|
/* Used externally as confirmation of correct OCL code */ |
|
int scrypt_test(unsigned char *pdata, const unsigned char *ptarget, uint32_t nonce) |
|
{ |
|
uint32_t tmp_hash7, Htarg = le32toh(((const uint32_t *)ptarget)[7]); |
|
uint32_t data[20], ohash[8]; |
|
char *scratchbuf; |
|
|
|
be32enc_vect(data, (const uint32_t *)pdata, 19); |
|
data[19] = htobe32(nonce); |
|
scratchbuf = (char *)alloca(SCRATCHBUF_SIZE); |
|
scrypt_1024_1_1_256_sp(data, scratchbuf, ohash); |
|
tmp_hash7 = be32toh(ohash[7]); |
|
|
|
applog(LOG_DEBUG, "htarget %08lx diff1 %08lx hash %08lx", |
|
(long unsigned int)Htarg, |
|
(long unsigned int)diff1targ, |
|
(long unsigned int)tmp_hash7); |
|
if (tmp_hash7 > diff1targ) |
|
return -1; |
|
if (tmp_hash7 > Htarg) |
|
return 0; |
|
return 1; |
|
} |
|
|
|
bool scanhash_scrypt(struct thr_info *thr, const unsigned char __maybe_unused *pmidstate, |
|
unsigned char *pdata, unsigned char __maybe_unused *phash1, |
|
unsigned char __maybe_unused *phash, const unsigned char *ptarget, |
|
uint32_t max_nonce, uint32_t *last_nonce, uint32_t n) |
|
{ |
|
uint32_t *nonce = (uint32_t *)(pdata + 76); |
|
char *scratchbuf; |
|
uint32_t data[20]; |
|
uint32_t tmp_hash7; |
|
uint32_t Htarg = le32toh(((const uint32_t *)ptarget)[7]); |
|
bool ret = false; |
|
|
|
be32enc_vect(data, (const uint32_t *)pdata, 19); |
|
|
|
scratchbuf = (char *)malloc(SCRATCHBUF_SIZE); |
|
if (unlikely(!scratchbuf)) { |
|
applog(LOG_ERR, "Failed to malloc scratchbuf in scanhash_scrypt"); |
|
return ret; |
|
} |
|
|
|
while(1) { |
|
uint32_t ostate[8]; |
|
|
|
*nonce = ++n; |
|
data[19] = htobe32(n); |
|
scrypt_1024_1_1_256_sp(data, scratchbuf, ostate); |
|
tmp_hash7 = be32toh(ostate[7]); |
|
|
|
if (unlikely(tmp_hash7 <= Htarg)) { |
|
((uint32_t *)pdata)[19] = htobe32(n); |
|
*last_nonce = n; |
|
ret = true; |
|
break; |
|
} |
|
|
|
if (unlikely((n >= max_nonce) || thr->work_restart)) { |
|
*last_nonce = n; |
|
break; |
|
} |
|
} |
|
|
|
free(scratchbuf);; |
|
return ret; |
|
}
|
|
|