OpenCL GPU miner
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

4882 lines
125 KiB

/*
* Copyright 2011 Con Kolivas
* Copyright 2010 Jeff Garzik
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include <curses.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/time.h>
#include <time.h>
#include <math.h>
#include <stdarg.h>
#include <assert.h>
#include <signal.h>
#ifndef WIN32
#include <sys/resource.h>
#endif
#include <ccan/opt/opt.h>
#include <jansson.h>
#include <curl/curl.h>
#include "compat.h"
#include "miner.h"
#include "findnonce.h"
#include "bench_block.h"
#include "ocl.h"
#if defined(unix)
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>
#endif
#define PROGRAM_NAME "cgminer"
#define DEF_RPC_URL "http://127.0.0.1:8332/"
#define DEF_RPC_USERNAME "rpcuser"
#define DEF_RPC_PASSWORD "rpcpass"
#define DEF_RPC_USERPASS DEF_RPC_USERNAME ":" DEF_RPC_PASSWORD
#ifdef __linux /* Linux specific policy and affinity management */
#include <sched.h>
static inline void drop_policy(void)
{
struct sched_param param;
#ifdef SCHED_BATCH
#ifdef SCHED_IDLE
if (unlikely(sched_setscheduler(0, SCHED_IDLE, &param) == -1))
#endif
sched_setscheduler(0, SCHED_BATCH, &param);
#endif
}
static inline void affine_to_cpu(int id, int cpu)
{
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(cpu, &set);
sched_setaffinity(0, sizeof(&set), &set);
applog(LOG_INFO, "Binding cpu mining thread %d to cpu %d", id, cpu);
}
#else
static inline void drop_policy(void)
{
}
static inline void affine_to_cpu(int id, int cpu)
{
}
#endif
enum workio_commands {
WC_GET_WORK,
WC_SUBMIT_WORK,
WC_DIE,
};
struct workio_cmd {
enum workio_commands cmd;
struct thr_info *thr;
union {
struct work *work;
} u;
bool lagging;
};
enum sha256_algos {
ALGO_C, /* plain C */
ALGO_4WAY, /* parallel SSE2 */
ALGO_VIA, /* VIA padlock */
ALGO_CRYPTOPP, /* Crypto++ (C) */
ALGO_CRYPTOPP_ASM32, /* Crypto++ 32-bit assembly */
ALGO_SSE2_64, /* SSE2 for x86_64 */
ALGO_SSE4_64, /* SSE4 for x86_64 */
};
enum pool_strategy {
POOL_FAILOVER,
POOL_ROUNDROBIN,
POOL_ROTATE,
POOL_LOADBALANCE,
};
#define TOP_STRATEGY (POOL_LOADBALANCE)
struct strategies {
const char *s;
} strategies[] = {
{ "Failover" },
{ "Round Robin" },
{ "Rotate" },
{ "Load Balance" },
};
static size_t max_name_len = 0;
static char *name_spaces_pad = NULL;
static const char *algo_names[] = {
[ALGO_C] = "c",
#ifdef WANT_SSE2_4WAY
[ALGO_4WAY] = "4way",
#endif
#ifdef WANT_VIA_PADLOCK
[ALGO_VIA] = "via",
#endif
[ALGO_CRYPTOPP] = "cryptopp",
#ifdef WANT_CRYPTOPP_ASM32
[ALGO_CRYPTOPP_ASM32] = "cryptopp_asm32",
#endif
#ifdef WANT_X8664_SSE2
[ALGO_SSE2_64] = "sse2_64",
#endif
#ifdef WANT_X8664_SSE4
[ALGO_SSE4_64] = "sse4_64",
#endif
};
typedef void (*sha256_func)();
static const sha256_func sha256_funcs[] = {
[ALGO_C] = (sha256_func)scanhash_c,
#ifdef WANT_SSE2_4WAY
[ALGO_4WAY] = (sha256_func)ScanHash_4WaySSE2,
#endif
#ifdef WANT_VIA_PADLOCK
[ALGO_VIA] = (sha256_func)scanhash_via,
#endif
[ALGO_CRYPTOPP] = (sha256_func)scanhash_cryptopp,
#ifdef WANT_CRYPTOPP_ASM32
[ALGO_CRYPTOPP_ASM32] = (sha256_func)scanhash_asm32,
#endif
#ifdef WANT_X8664_SSE2
[ALGO_SSE2_64] = (sha256_func)scanhash_sse2_64,
#endif
#ifdef WANT_X8664_SSE4
[ALGO_SSE4_64] = (sha256_func)scanhash_sse4_64
#endif
};
bool opt_debug = false;
bool opt_protocol = false;
static bool want_longpoll = true;
static bool have_longpoll = false;
static bool want_per_device_stats = false;
bool use_syslog = false;
static bool opt_quiet = false;
static bool opt_realquiet = false;
static bool opt_loginput = false;
static int opt_retries = -1;
static int opt_fail_pause = 5;
static int fail_pause = 5;
static int opt_log_interval = 5;
bool opt_log_output = false;
static bool opt_dynamic = true;
static int opt_queue;
int opt_vectors;
int opt_worksize;
int opt_scantime = 60;
int opt_bench_algo = -1;
static const bool opt_time = true;
#if defined(WANT_X8664_SSE4) && defined(__SSE4_1__)
static enum sha256_algos opt_algo = ALGO_SSE4_64;
#elif defined(WANT_X8664_SSE2) && defined(__SSE2__)
static enum sha256_algos opt_algo = ALGO_SSE2_64;
#else
static enum sha256_algos opt_algo = ALGO_C;
#endif
static int nDevs;
static int opt_g_threads = 2;
static int opt_device;
static int total_devices;
static bool gpu_devices[16];
static int gpu_threads;
static bool forced_n_threads;
static int opt_n_threads;
static int mining_threads;
static int num_processors;
static int scan_intensity;
static bool use_curses = true;
static bool opt_submit_stale;
#define QUIET (opt_quiet || opt_realquiet)
struct thr_info *thr_info;
static int work_thr_id;
int longpoll_thr_id;
static int stage_thr_id;
static int watchdog_thr_id;
static int input_thr_id;
static int gpur_thr_id;
static int cpur_thr_id;
static int total_threads;
struct work_restart *work_restart = NULL;
static pthread_mutex_t hash_lock;
static pthread_mutex_t qd_lock;
static pthread_mutex_t stgd_lock;
static pthread_mutex_t curses_lock;
static double total_mhashes_done;
static struct timeval total_tv_start, total_tv_end;
pthread_mutex_t control_lock;
int hw_errors;
static int total_accepted, total_rejected;
static int total_getworks, total_stale, total_discarded;
static int total_queued, total_staged, lp_staged;
static unsigned int new_blocks;
enum block_change {
BLOCK_NONE,
BLOCK_LP,
BLOCK_DETECT,
BLOCK_FIRST,
};
static enum block_change block_changed = BLOCK_FIRST;
static unsigned int local_work;
static unsigned int total_lo, total_ro;
#define MAX_POOLS (32)
static struct pool *pools[MAX_POOLS];
static struct pool *currentpool = NULL;
static int total_pools;
static enum pool_strategy pool_strategy = POOL_FAILOVER;
static int opt_rotate_period;
static int total_urls, total_users, total_passes, total_userpasses;
static bool curses_active = false;
static char current_block[37];
static char *current_hash;
static char datestamp[40];
static char blocktime[30];
static char *opt_kernel = NULL;
#if defined(unix)
static char *opt_stderr_cmd = NULL;
#endif // defined(unix)
enum cl_kernel chosen_kernel;
static bool ping = true;
struct sigaction termhandler, inthandler;
struct thread_q *getq;
void get_datestamp(char *f, struct timeval *tv)
{
struct tm tm;
localtime_r(&tv->tv_sec, &tm);
sprintf(f, "[%d-%02d-%02d %02d:%02d:%02d]",
tm.tm_year + 1900,
tm.tm_mon + 1,
tm.tm_mday,
tm.tm_hour,
tm.tm_min,
tm.tm_sec);
}
void get_timestamp(char *f, struct timeval *tv)
{
struct tm tm;
localtime_r(&tv->tv_sec, &tm);
sprintf(f, "[%02d:%02d:%02d]",
tm.tm_hour,
tm.tm_min,
tm.tm_sec);
}
static void applog_and_exit(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vapplog(LOG_ERR, fmt, ap);
va_end(ap);
exit(1);
}
static void add_pool(void)
{
struct pool *pool;
pool = calloc(sizeof(struct pool), 1);
if (!pool) {
applog(LOG_ERR, "Failed to malloc pool in add_pool");
exit (1);
}
pool->pool_no = pool->prio = total_pools;
pools[total_pools++] = pool;
if (unlikely(pthread_mutex_init(&pool->pool_lock, NULL))) {
applog(LOG_ERR, "Failed to pthread_mutex_init in add_pool");
exit (1);
}
/* Make sure the pool doesn't think we've been idle since time 0 */
pool->tv_idle.tv_sec = ~0UL;
}
/* Pool variant of test and set */
static bool pool_tset(struct pool *pool, bool *var)
{
bool ret;
mutex_lock(&pool->pool_lock);
ret = *var;
*var = true;
mutex_unlock(&pool->pool_lock);
return ret;
}
static bool pool_tclear(struct pool *pool, bool *var)
{
bool ret;
mutex_lock(&pool->pool_lock);
ret = *var;
*var = false;
mutex_unlock(&pool->pool_lock);
return ret;
}
static struct pool *current_pool(void)
{
struct pool *pool;
mutex_lock(&control_lock);
pool = currentpool;
mutex_unlock(&control_lock);
return pool;
}
// Algo benchmark, crash-prone, system independent stage
static double bench_algo_stage3(
enum sha256_algos algo
)
{
// Use a random work block pulled from a pool
static uint8_t bench_block[] = { CGMINER_BENCHMARK_BLOCK };
struct work work __attribute__((aligned(128)));
size_t bench_size = sizeof(work);
size_t work_size = sizeof(bench_block);
size_t min_size = (work_size < bench_size ? work_size : bench_size);
memset(&work, 0, sizeof(work));
memcpy(&work, &bench_block, min_size);
struct work_restart dummy;
work_restart = &dummy;
struct timeval end;
struct timeval start;
uint32_t max_nonce = (1<<22);
unsigned long hashes_done = 0;
gettimeofday(&start, 0);
#if defined(WANT_VIA_PADLOCK)
// For some reason, the VIA padlock hasher has a different API ...
if (ALGO_VIA==algo) {
(void)scanhash_via(
0,
work.data,
work.target,
max_nonce,
&hashes_done,
work.blk.nonce
);
} else
#endif
{
sha256_func func = sha256_funcs[algo];
(*func)(
0,
work.midstate,
work.data + 64,
work.hash1,
work.hash,
work.target,
max_nonce,
&hashes_done,
work.blk.nonce
);
}
gettimeofday(&end, 0);
work_restart = NULL;
uint64_t usec_end = ((uint64_t)end.tv_sec)*1000*1000 + end.tv_usec;
uint64_t usec_start = ((uint64_t)start.tv_sec)*1000*1000 + start.tv_usec;
uint64_t usec_elapsed = usec_end - usec_start;
double rate = -1.0;
if (0<usec_elapsed) {
rate = (1.0*hashes_done)/usec_elapsed;
}
return rate;
}
#if defined(unix)
// Change non-blocking status on a file descriptor
static void set_non_blocking(
int fd,
int yes
)
{
int flags = fcntl(fd, F_GETFL, 0);
if (flags<0) {
perror("fcntl(GET) failed");
exit(1);
}
flags = yes ? (flags|O_NONBLOCK) : (flags&~O_NONBLOCK);
int r = fcntl(fd, F_SETFL, flags);
if (r<0) {
perror("fcntl(SET) failed");
exit(1);
}
}
#endif // defined(unix)
// Algo benchmark, crash-safe, system-dependent stage
static double bench_algo_stage2(
enum sha256_algos algo
)
{
// Here, the gig is to safely run a piece of code that potentially
// crashes. Unfortunately, the Right Way (tm) to do this is rather
// heavily platform dependent :(
double rate = -1.23457;
#if defined(unix)
// Make a pipe: [readFD, writeFD]
int pfd[2];
int r = pipe(pfd);
if (r<0) {
perror("pipe - failed to create pipe for --algo auto");
exit(1);
}
// Make pipe non blocking
set_non_blocking(pfd[0], 1);
set_non_blocking(pfd[1], 1);
// Don't allow a crashing child to kill the main process
sighandler_t sr0 = signal(SIGPIPE, SIG_IGN);
sighandler_t sr1 = signal(SIGPIPE, SIG_IGN);
if (SIG_ERR==sr0 || SIG_ERR==sr1) {
perror("signal - failed to edit signal mask for --algo auto");
exit(1);
}
// Fork a child to do the actual benchmarking
pid_t child_pid = fork();
if (child_pid<0) {
perror("fork - failed to create a child process for --algo auto");
exit(1);
}
// Do the dangerous work in the child, knowing we might crash
if (0==child_pid) {
// TODO: some umask trickery to prevent coredumps
// Benchmark this algorithm
double r = bench_algo_stage3(algo);
// We survived, send result to parent and bail
int loop_count = 0;
while (1) {
ssize_t bytes_written = write(pfd[1], &r, sizeof(r));
int try_again = (0==bytes_written || (bytes_written<0 && EAGAIN==errno));
int success = (sizeof(r)==(size_t)bytes_written);
if (success)
break;
if (!try_again) {
perror("write - child failed to write benchmark result to pipe");
exit(1);
}
if (5<loop_count) {
applog(LOG_ERR, "child tried %d times to communicate with parent, giving up", loop_count);
exit(1);
}
++loop_count;
sleep(1);
}
exit(0);
}
// Parent waits for a result from child
int loop_count = 0;
while (1) {
// Wait for child to die
int status;
int r = waitpid(child_pid, &status, WNOHANG);
if ((child_pid==r) || (r<0 && ECHILD==errno)) {
// Child died somehow. Grab result and bail
double tmp;
ssize_t bytes_read = read(pfd[0], &tmp, sizeof(tmp));
if (sizeof(tmp)==(size_t)bytes_read)
rate = tmp;
break;
} else if (r<0) {
perror("bench_algo: waitpid failed. giving up.");
exit(1);
}
// Give up on child after a ~60s
if (60<loop_count) {
kill(child_pid, SIGKILL);
waitpid(child_pid, &status, 0);
break;
}
// Wait a bit longer
++loop_count;
sleep(1);
}
// Close pipe
r = close(pfd[0]);
if (r<0) {
perror("close - failed to close read end of pipe for --algo auto");
exit(1);
}
r = close(pfd[1]);
if (r<0) {
perror("close - failed to close read end of pipe for --algo auto");
exit(1);
}
#elif defined(WIN32)
// Get handle to current exe
HINSTANCE module = GetModuleHandle(0);
if (!module) {
applog(LOG_ERR, "failed to retrieve module handle");
exit(1);
}
// Create a unique name
char unique_name[32];
snprintf(
unique_name,
sizeof(unique_name)-1,
"cgminer-%p",
(void*)module
);
// Create and init a chunked of shared memory
HANDLE map_handle = CreateFileMapping(
INVALID_HANDLE_VALUE, // use paging file
NULL, // default security attributes
PAGE_READWRITE, // read/write access
0, // size: high 32-bits
4096, // size: low 32-bits
unique_name // name of map object
);
if (NULL==map_handle) {
applog(LOG_ERR, "could not create shared memory");
exit(1);
}
void *shared_mem = MapViewOfFile(
map_handle, // object to map view of
FILE_MAP_WRITE, // read/write access
0, // high offset: map from
0, // low offset: beginning
0 // default: map entire file
);
if (NULL==shared_mem) {
applog(LOG_ERR, "could not map shared memory");
exit(1);
}
SetEnvironmentVariable("CGMINER_SHARED_MEM", unique_name);
CopyMemory(shared_mem, &rate, sizeof(rate));
// Get path to current exe
char cmd_line[256 + MAX_PATH];
const size_t n = sizeof(cmd_line)-200;
DWORD size = GetModuleFileName(module, cmd_line, n);
if (0==size) {
applog(LOG_ERR, "failed to retrieve module path");
exit(1);
}
// Construct new command line based on that
char *p = strlen(cmd_line) + cmd_line;
sprintf(p, " --bench-algo %d", algo);
SetEnvironmentVariable("CGMINER_BENCH_ALGO", "1");
// Launch a debug copy of cgminer
STARTUPINFO startup_info;
PROCESS_INFORMATION process_info;
ZeroMemory(&startup_info, sizeof(startup_info));
ZeroMemory(&process_info, sizeof(process_info));
startup_info.cb = sizeof(startup_info);
BOOL ok = CreateProcess(
NULL, // No module name (use command line)
cmd_line, // Command line
NULL, // Process handle not inheritable
NULL, // Thread handle not inheritable
FALSE, // Set handle inheritance to FALSE
DEBUG_ONLY_THIS_PROCESS,// We're going to debug the child
NULL, // Use parent's environment block
NULL, // Use parent's starting directory
&startup_info, // Pointer to STARTUPINFO structure
&process_info // Pointer to PROCESS_INFORMATION structure
);
if (!ok) {
applog(LOG_ERR, "CreateProcess failed with error %d\n", GetLastError() );
exit(1);
}
// Debug the child (only clean way to catch exceptions)
while (1) {
// Wait for child to do something
DEBUG_EVENT debug_event;
ZeroMemory(&debug_event, sizeof(debug_event));
BOOL ok = WaitForDebugEvent(&debug_event, 60 * 1000);
if (!ok)
break;
// Decide if event is "normal"
int go_on =
CREATE_PROCESS_DEBUG_EVENT== debug_event.dwDebugEventCode ||
CREATE_THREAD_DEBUG_EVENT == debug_event.dwDebugEventCode ||
EXIT_THREAD_DEBUG_EVENT == debug_event.dwDebugEventCode ||
EXCEPTION_DEBUG_EVENT == debug_event.dwDebugEventCode ||
LOAD_DLL_DEBUG_EVENT == debug_event.dwDebugEventCode ||
OUTPUT_DEBUG_STRING_EVENT == debug_event.dwDebugEventCode ||
UNLOAD_DLL_DEBUG_EVENT == debug_event.dwDebugEventCode;
if (!go_on)
break;
// Some exceptions are also "normal", apparently.
if (EXCEPTION_DEBUG_EVENT== debug_event.dwDebugEventCode) {
int go_on =
EXCEPTION_BREAKPOINT== debug_event.u.Exception.ExceptionRecord.ExceptionCode;
if (!go_on)
break;
}
// If nothing unexpected happened, let child proceed
ContinueDebugEvent(
debug_event.dwProcessId,
debug_event.dwThreadId,
DBG_CONTINUE
);
}
// Clean up child process
TerminateProcess(process_info.hProcess, 1);
CloseHandle(process_info.hProcess);
CloseHandle(process_info.hThread);
// Reap return value and cleanup
CopyMemory(&rate, shared_mem, sizeof(rate));
(void)UnmapViewOfFile(shared_mem);
(void)CloseHandle(map_handle);
#else
// Not linux, not unix, not WIN32 ... do our best
rate = bench_algo_stage3(algo);
#endif // defined(unix)
// Done
return rate;
}
static void bench_algo(
double *best_rate,
enum sha256_algos *best_algo,
enum sha256_algos algo
)
{
size_t n = max_name_len - strlen(algo_names[algo]);
memset(name_spaces_pad, ' ', n);
name_spaces_pad[n] = 0;
applog(
LOG_ERR,
"\"%s\"%s : benchmarking algorithm ...",
algo_names[algo],
name_spaces_pad
);
double rate = bench_algo_stage2(algo);
if (rate<0.0) {
applog(
LOG_ERR,
"\"%s\"%s : algorithm fails on this platform",
algo_names[algo],
name_spaces_pad
);
} else {
applog(
LOG_ERR,
"\"%s\"%s : algorithm runs at %.5f MH/s",
algo_names[algo],
name_spaces_pad,
rate
);
if (*best_rate<rate) {
*best_rate = rate;
*best_algo = algo;
}
}
}
// Figure out the longest algorithm name
static void init_max_name_len()
{
size_t i;
size_t nb_names = sizeof(algo_names)/sizeof(algo_names[0]);
for (i=0; i<nb_names; ++i) {
const char *p = algo_names[i];
size_t name_len = p ? strlen(p) : 0;
if (max_name_len<name_len)
max_name_len = name_len;
}
name_spaces_pad = (char*) malloc(max_name_len+16);
if (0==name_spaces_pad) {
perror("malloc failed");
exit(1);
}
}
// Pick the fastest CPU hasher
static enum sha256_algos pick_fastest_algo()
{
double best_rate = -1.0;
enum sha256_algos best_algo = 0;
applog(LOG_ERR, "benchmarking all sha256 algorithms ...");
bench_algo(&best_rate, &best_algo, ALGO_C);
#if defined(WANT_SSE2_4WAY)
bench_algo(&best_rate, &best_algo, ALGO_4WAY);
#endif
#if defined(WANT_VIA_PADLOCK)
bench_algo(&best_rate, &best_algo, ALGO_VIA);
#endif
bench_algo(&best_rate, &best_algo, ALGO_CRYPTOPP);
#if defined(WANT_CRYPTOPP_ASM32)
bench_algo(&best_rate, &best_algo, ALGO_CRYPTOPP_ASM32);
#endif
#if defined(WANT_X8664_SSE2)
bench_algo(&best_rate, &best_algo, ALGO_SSE2_64);
#endif
#if defined(WANT_X8664_SSE4)
bench_algo(&best_rate, &best_algo, ALGO_SSE4_64);
#endif
size_t n = max_name_len - strlen(algo_names[best_algo]);
memset(name_spaces_pad, ' ', n);
name_spaces_pad[n] = 0;
applog(
LOG_ERR,
"\"%s\"%s : is fastest algorithm at %.5f MH/s",
algo_names[best_algo],
name_spaces_pad,
best_rate
);
return best_algo;
}
/* FIXME: Use asprintf for better errors. */
static char *set_algo(const char *arg, enum sha256_algos *algo)
{
enum sha256_algos i;
if (!strcmp(arg, "auto")) {
*algo = pick_fastest_algo();
return NULL;
}
for (i = 0; i < ARRAY_SIZE(algo_names); i++) {
if (algo_names[i] && !strcmp(arg, algo_names[i])) {
*algo = i;
return NULL;
}
}
return "Unknown algorithm";
}
static void show_algo(char buf[OPT_SHOW_LEN], const enum sha256_algos *algo)
{
strncpy(buf, algo_names[*algo], OPT_SHOW_LEN);
}
static char *set_int_range(const char *arg, int *i, int min, int max)
{
char *err = opt_set_intval(arg, i);
if (err)
return err;
if (*i < min || *i > max)
return "Value out of range";
return NULL;
}
static char *set_int_0_to_9999(const char *arg, int *i)
{
return set_int_range(arg, i, 0, 9999);
}
static char *forced_int_1010(const char *arg, int *i)
{
opt_dynamic = false;
return set_int_range(arg, i, -10, 10);
}
static char *force_nthreads_int(const char *arg, int *i)
{
forced_n_threads = true;
return set_int_range(arg, i, 0, 9999);
}
static char *set_int_0_to_10(const char *arg, int *i)
{
return set_int_range(arg, i, 0, 10);
}
static char *set_devices(const char *arg, int *i)
{
char *err = opt_set_intval(arg, i);
if (err)
return err;
if (*i < 0 || *i > 15)
return "Invalid GPU device number";
total_devices++;
gpu_devices[*i] = true;
return NULL;
}
static char *set_loadbalance(enum pool_strategy *strategy)
{
*strategy = POOL_LOADBALANCE;
return NULL;
}
static char *set_rotate(const char *arg, int *i)
{
pool_strategy = POOL_ROTATE;
return set_int_range(arg, i, 0, 9999);
}
static char *set_rr(enum pool_strategy *strategy)
{
*strategy = POOL_ROUNDROBIN;
return NULL;
}
static char *set_url(char *arg, char **p)
{
struct pool *pool;
total_urls++;
if (total_urls > total_pools)
add_pool();
pool = pools[total_urls - 1];
opt_set_charp(arg, &pool->rpc_url);
if (strncmp(arg, "http://", 7) &&
strncmp(arg, "https://", 8)) {
char *httpinput;
httpinput = malloc(255);
if (!httpinput)
quit(1, "Failed to malloc httpinput");
strcpy(httpinput, "http://");
strncat(httpinput, arg, 248);
pool->rpc_url = httpinput;
}
return NULL;
}
static char *set_user(const char *arg, char **p)
{
struct pool *pool;
if (total_userpasses)
return "Use only user + pass or userpass, but not both";
total_users++;
if (total_users > total_pools)
add_pool();
pool = pools[total_users - 1];
opt_set_charp(arg, &pool->rpc_user);
return NULL;
}
static char *set_pass(const char *arg, char **p)
{
struct pool *pool;
if (total_userpasses)
return "Use only user + pass or userpass, but not both";
total_passes++;
if (total_passes > total_pools)
add_pool();
pool = pools[total_passes - 1];
opt_set_charp(arg, &pool->rpc_pass);
return NULL;
}
static char *set_userpass(const char *arg, char **p)
{
struct pool *pool;
if (total_users || total_passes)
return "Use only user + pass or userpass, but not both";
total_userpasses++;
if (total_userpasses > total_pools)
add_pool();
pool = pools[total_userpasses - 1];
opt_set_charp(arg, &pool->rpc_userpass);
return NULL;
}
static char *set_vector(const char *arg, int *i)
{
char *err = opt_set_intval(arg, i);
if (err)
return err;
if (*i != 1 && *i != 2 && *i != 4)
return "Valid vectors are 1, 2 or 4";
return NULL;
}
static char *enable_debug(bool *flag)
{
*flag = true;
/* Turn out verbose output, too. */
opt_log_output = true;
return NULL;
}
static char *trpc_url;
static char *trpc_userpass;
static char *trpc_user, *trpc_pass;
/* These options are available from config file or commandline */
static struct opt_table opt_config_table[] = {
OPT_WITH_ARG("--algo|-a",
set_algo, show_algo, &opt_algo,
"Specify sha256 implementation for CPU mining:\n"
"\tauto\t\tBenchmark at startup and pick fastest algorithm"
"\n\tc\t\tLinux kernel sha256, implemented in C"
#ifdef WANT_SSE2_4WAY
"\n\t4way\t\ttcatm's 4-way SSE2 implementation"
#endif
#ifdef WANT_VIA_PADLOCK
"\n\tvia\t\tVIA padlock implementation"
#endif
"\n\tcryptopp\tCrypto++ C/C++ implementation"
#ifdef WANT_CRYPTOPP_ASM32
"\n\tcryptopp_asm32\tCrypto++ 32-bit assembler implementation"
#endif
#ifdef WANT_X8664_SSE2
"\n\tsse2_64\t\tSSE2 implementation for x86_64 machines"
#endif
#ifdef WANT_X8664_SSE4
"\n\tsse4_64\t\tSSE4 implementation for x86_64 machines"
#endif
),
OPT_WITH_ARG("--bench-algo|-b",
set_int_0_to_9999, opt_show_intval, &opt_bench_algo,
opt_hidden),
OPT_WITH_ARG("--cpu-threads|-t",
force_nthreads_int, opt_show_intval, &opt_n_threads,
"Number of miner CPU threads"),
OPT_WITHOUT_ARG("--debug|-D",
enable_debug, &opt_debug,
"Enable debug output"),
#ifdef HAVE_OPENCL
OPT_WITH_ARG("--device|-d",
set_devices, NULL, &opt_device,
"Select device to use, (Use repeat -d for multiple devices, default: all)"),
OPT_WITH_ARG("--gpu-threads|-g",
set_int_0_to_10, opt_show_intval, &opt_g_threads,
"Number of threads per GPU (0 - 10)"),
OPT_WITH_ARG("--intensity|-I",
forced_int_1010, opt_show_intval, &scan_intensity,
"Intensity of GPU scanning (-10 -> 10, default: dynamic to maintain desktop interactivity)"),
OPT_WITH_ARG("--kernel|-k",
opt_set_charp, NULL, &opt_kernel,
"Select kernel to use (poclbm or phatk - default: auto)"),
#endif
OPT_WITHOUT_ARG("--load-balance",
set_loadbalance, &pool_strategy,
"Change multipool strategy from failover to even load balance"),
OPT_WITH_ARG("--log|-l",
set_int_0_to_9999, opt_show_intval, &opt_log_interval,
"Interval in seconds between log output"),
#if defined(unix)
OPT_WITH_ARG("--monitor|-m",
opt_set_charp, NULL, &opt_stderr_cmd,
"Use custom pipe cmd for output messages"),
#endif // defined(unix)
OPT_WITHOUT_ARG("--no-longpoll",
opt_set_invbool, &want_longpoll,
"Disable X-Long-Polling support"),
OPT_WITH_ARG("--pass|-p",
set_pass, NULL, &trpc_pass,
"Password for bitcoin JSON-RPC server"),
OPT_WITHOUT_ARG("--per-device-stats",
opt_set_bool, &want_per_device_stats,
"Force verbose mode and output per-device statistics"),
OPT_WITHOUT_ARG("--protocol-dump|-P",
opt_set_bool, &opt_protocol,
"Verbose dump of protocol-level activities"),
OPT_WITH_ARG("--queue|-Q",
set_int_0_to_10, opt_show_intval, &opt_queue,
"Number of extra work items to queue (0 - 10)"),
OPT_WITHOUT_ARG("--quiet|-q",
opt_set_bool, &opt_quiet,
"Disable logging output, display status and errors"),
OPT_WITHOUT_ARG("--real-quiet",
opt_set_bool, &opt_realquiet,
"Disable all output"),
OPT_WITH_ARG("--retries|-r",
opt_set_intval, opt_show_intval, &opt_retries,
"Number of times to retry before giving up, if JSON-RPC call fails (-1 means never)"),
OPT_WITH_ARG("--retry-pause|-R",
set_int_0_to_9999, opt_show_intval, &opt_fail_pause,
"Number of seconds to pause, between retries"),
OPT_WITH_ARG("--rotate",
set_rotate, opt_show_intval, &opt_rotate_period,
"Change multipool strategy from failover to regularly rotate at N minutes"),
OPT_WITHOUT_ARG("--round-robin",
set_rr, &pool_strategy,
"Change multipool strategy from failover to round robin on failure"),
OPT_WITH_ARG("--scan-time|-s",
set_int_0_to_9999, opt_show_intval, &opt_scantime,
"Upper bound on time spent scanning current work, in seconds"),
OPT_WITHOUT_ARG("--submit-stale",
opt_set_bool, &opt_submit_stale,
"Submit shares even if they would normally be considered stale"),
#ifdef HAVE_SYSLOG_H
OPT_WITHOUT_ARG("--syslog",
opt_set_bool, &use_syslog,
"Use system log for output messages (default: standard error)"),
#endif
OPT_WITHOUT_ARG("--text-only|-T",
opt_set_invbool, &use_curses,
"Disable ncurses formatted screen output"),
OPT_WITH_ARG("--url|-o",
set_url, opt_show_charp, &trpc_url,
"URL for bitcoin JSON-RPC server"),
OPT_WITH_ARG("--user|-u",
set_user, NULL, &trpc_user,
"Username for bitcoin JSON-RPC server"),
#ifdef HAVE_OPENCL
OPT_WITH_ARG("--vectors|-v",
set_vector, NULL, &opt_vectors,
"Override detected optimal vector width (1, 2 or 4)"),
#endif
OPT_WITHOUT_ARG("--verbose",
opt_set_bool, &opt_log_output,
"Log verbose output to stderr as well as status output"),
#ifdef HAVE_OPENCL
OPT_WITH_ARG("--worksize|-w",
set_int_0_to_9999, opt_show_intval, &opt_worksize,
"Override detected optimal worksize"),
#endif
OPT_WITH_ARG("--userpass|-O",
set_userpass, NULL, &trpc_userpass,
"Username:Password pair for bitcoin JSON-RPC server"),
OPT_ENDTABLE
};
static char *parse_config(json_t *config)
{
static char err_buf[200];
json_t *val;
struct opt_table *opt;
for (opt = opt_config_table; opt->type != OPT_END; opt++) {
char *p, *name;
/* We don't handle subtables. */
assert(!(opt->type & OPT_SUBTABLE));
/* Pull apart the option name(s). */
name = strdup(opt->names);
for (p = strtok(name, "|"); p; p = strtok(NULL, "|")) {
char *err;
/* Ignore short options. */
if (p[1] != '-')
continue;
val = json_object_get(config, p+2);
if (!val)
continue;
if ((opt->type & OPT_HASARG) && json_is_string(val)) {
err = opt->cb_arg(json_string_value(val),
opt->u.arg);
} else if ((opt->type&OPT_NOARG) && json_is_true(val)) {
err = opt->cb(opt->u.arg);
} else {
err = "Invalid value";
}
if (err) {
sprintf(err_buf, "Parsing JSON option %s: %s",
p, err);
return err_buf;
}
}
free(name);
}
return NULL;
}
static char *load_config(const char *arg, void *unused)
{
json_error_t err;
json_t *config;
config = json_load_file(arg, 0, &err);
if (!json_is_object(config))
return "JSON decode of file failed";
/* Parse the config now, so we can override it. That can keep pointers
* so don't free config object. */
return parse_config(config);
}
#ifdef HAVE_OPENCL
static char *print_ndevs_and_exit(int *ndevs)
{
printf("%i GPU devices detected\n", *ndevs);
fflush(stdout);
exit(*ndevs);
}
#endif
/* These options are available from commandline only */
static struct opt_table opt_cmdline_table[] = {
OPT_WITH_ARG("--config|-c",
load_config, NULL, NULL,
"Load a JSON-format configuration file\n"
"See example-cfg.json for an example configuration."),
OPT_WITHOUT_ARG("--help|-h",
opt_usage_and_exit,
#ifdef HAVE_OPENCL
"\nBuilt with CPU and GPU mining support.\n",
#else
"\nBuilt with CPU mining support only.\n",
#endif
"Print this message"),
#ifdef HAVE_OPENCL
OPT_WITHOUT_ARG("--ndevs|-n",
print_ndevs_and_exit, &nDevs,
"Enumerate number of detected GPUs and exit"),
#endif
OPT_ENDTABLE
};
static bool jobj_binary(const json_t *obj, const char *key,
void *buf, size_t buflen)
{
const char *hexstr;
json_t *tmp;
tmp = json_object_get(obj, key);
if (unlikely(!tmp)) {
applog(LOG_ERR, "JSON key '%s' not found", key);
return false;
}
hexstr = json_string_value(tmp);
if (unlikely(!hexstr)) {
applog(LOG_ERR, "JSON key '%s' is not a string", key);
return false;
}
if (!hex2bin(buf, hexstr, buflen))
return false;
return true;
}
static bool work_decode(const json_t *val, struct work *work)
{
if (unlikely(!jobj_binary(val, "midstate",
work->midstate, sizeof(work->midstate)))) {
applog(LOG_ERR, "JSON inval midstate");
goto err_out;
}
if (unlikely(!jobj_binary(val, "data", work->data, sizeof(work->data)))) {
applog(LOG_ERR, "JSON inval data");
goto err_out;
}
if (unlikely(!jobj_binary(val, "hash1", work->hash1, sizeof(work->hash1)))) {
applog(LOG_ERR, "JSON inval hash1");
goto err_out;
}
if (unlikely(!jobj_binary(val, "target", work->target, sizeof(work->target)))) {
applog(LOG_ERR, "JSON inval target");
goto err_out;
}
memset(work->hash, 0, sizeof(work->hash));
gettimeofday(&work->tv_staged, NULL);
return true;
err_out:
return false;
}
static inline int dev_from_id(int thr_id)
{
return thr_info[thr_id].cgpu->cpu_gpu;
}
/* Simulate a rolling average by faking an exponential decay over 5 * log */
static inline void decay_time(double *f, double fadd)
{
*f = (fadd + *f * 0.9) / 1.9;
}
static WINDOW *mainwin, *statuswin, *logwin;
static double total_secs = 0.1;
static char statusline[256];
static int cpucursor, gpucursor, logstart, logcursor;
static struct cgpu_info *gpus, *cpus;
static void text_print_status(int thr_id)
{
struct cgpu_info *cgpu = thr_info[thr_id].cgpu;
printf(" %sPU %d: [%.1f / %.1f Mh/s] [Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m]\n",
cgpu->is_gpu ? "G" : "C", cgpu->cpu_gpu, cgpu->rolling,
cgpu->total_mhashes / total_secs, cgpu->getworks,
cgpu->accepted, cgpu->rejected, cgpu->hw_errors,
cgpu->efficiency, cgpu->utility);
}
/* Must be called with curses mutex lock held and curses_active */
static void curses_print_status(int thr_id)
{
struct pool *pool = current_pool();
wmove(statuswin, 0, 0);
wattron(statuswin, A_BOLD);
wprintw(statuswin, " " PROGRAM_NAME " version " VERSION " - Started: %s", datestamp);
if (opt_n_threads)
wprintw(statuswin, " CPU Algo: %s", algo_names[opt_algo]);
wattroff(statuswin, A_BOLD);
wmove(statuswin, 1, 0);
whline(statuswin, '-', 80);
wmove(statuswin, 2,0);
wprintw(statuswin, " %s", statusline);
wclrtoeol(statuswin);
wmove(statuswin, 3,0);
wprintw(statuswin, " TQ: %d ST: %d LS: %d SS: %d DW: %d NB: %d LW: %d LO: %d RF: %d I: %d",
total_queued, total_staged, lp_staged, total_stale, total_discarded, new_blocks,
local_work, total_lo, total_ro, scan_intensity);
wclrtoeol(statuswin);
wmove(statuswin, 4, 0);
if (pool_strategy == POOL_LOADBALANCE && total_pools > 1)
wprintw(statuswin, " Connected to multiple pools with%s LP",
have_longpoll ? "": "out");
else
wprintw(statuswin, " Connected to %s with%s LP as user %s",
pool->rpc_url, have_longpoll ? "": "out", pool->rpc_user);
wclrtoeol(statuswin);
wmove(statuswin, 5, 0);
wprintw(statuswin, " Block: %s... Started: %s", current_hash, blocktime);
wmove(statuswin, 6, 0);
whline(statuswin, '-', 80);
wmove(statuswin, logstart - 1, 0);
whline(statuswin, '-', 80);
mvwprintw(statuswin, gpucursor - 1, 1, "[P]ool management %s[S]ettings [D]isplay options [Q]uit",
opt_g_threads ? "[G]PU management " : "");
if (thr_id >= 0 && thr_id < gpu_threads) {
int gpu = dev_from_id(thr_id);
struct cgpu_info *cgpu = &gpus[gpu];
cgpu->utility = cgpu->accepted / ( total_secs ? total_secs : 1 ) * 60;
cgpu->efficiency = cgpu->getworks ? cgpu->accepted * 100.0 / cgpu->getworks : 0.0;
wmove(statuswin, gpucursor + gpu, 0);
wprintw(statuswin, " GPU %d: ", gpu);
if (cgpu->status == LIFE_DEAD)
wprintw(statuswin, "[DEAD ");
else if (cgpu->status == LIFE_SICK)
wprintw(statuswin, "[SICK ");
else if (!gpu_devices[gpu])
wprintw(statuswin, "[DISABLED ");
else
wprintw(statuswin, "[%.1f ", cgpu->rolling);
wprintw(statuswin, "/ %.1f Mh/s] [Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m]",
cgpu->total_mhashes / total_secs,
cgpu->getworks, cgpu->accepted, cgpu->rejected, cgpu->hw_errors,
cgpu->efficiency, cgpu->utility);
wclrtoeol(statuswin);
} else if (thr_id >= gpu_threads) {
int cpu = dev_from_id(thr_id);
struct cgpu_info *cgpu = &cpus[cpu];
cgpu->utility = cgpu->accepted / ( total_secs ? total_secs : 1 ) * 60;
cgpu->efficiency = cgpu->getworks ? cgpu->accepted * 100.0 / cgpu->getworks : 0.0;
wmove(statuswin, cpucursor + cpu, 0);
wprintw(statuswin, " CPU %d: [%.1f / %.1f Mh/s] [Q:%d A:%d R:%d E:%.0f%% U:%.2f/m]",
cpu, cgpu->rolling, cgpu->total_mhashes / total_secs,
cgpu->getworks, cgpu->accepted, cgpu->rejected,
cgpu->efficiency, cgpu->utility);
wclrtoeol(statuswin);
}
wrefresh(statuswin);
}
static void print_status(int thr_id)
{
if (!curses_active)
text_print_status(thr_id);
else {
mutex_lock(&curses_lock);
curses_print_status(thr_id);
mutex_unlock(&curses_lock);
}
}
/* Check for window resize. Called with curses mutex locked */
static inline void check_logwinsize(void)
{
int x, y, logx, logy;
getmaxyx(mainwin, y, x);
getmaxyx(logwin, logy, logx);
y -= logcursor;
/* Detect screen size change */
if ((x != logx || y != logy) && x >= 80 && y >= 25)
wresize(logwin, y, x);
}
/* For mandatory printing when mutex is already locked */
static void wlog(const char *f, ...)
{
va_list ap;
va_start(ap, f);
vw_printw(logwin, f, ap);
va_end(ap);
}
/* Mandatory printing */
static void wlogprint(const char *f, ...)
{
va_list ap;
mutex_lock(&curses_lock);
va_start(ap, f);
vw_printw(logwin, f, ap);
va_end(ap);
wrefresh(logwin);
mutex_unlock(&curses_lock);
}
void log_curses(int prio, const char *f, va_list ap)
{
if (opt_quiet && prio != LOG_ERR)
return;
if (curses_active) {
if (!opt_loginput) {
mutex_lock(&curses_lock);
vw_printw(logwin, f, ap);
wrefresh(logwin);
mutex_unlock(&curses_lock);
}
} else
vprintf(f, ap);
}
static void clear_logwin(void)
{
mutex_lock(&curses_lock);
wclear(logwin);
wrefresh(logwin);
mutex_unlock(&curses_lock);
}
static bool submit_upstream_work(const struct work *work)
{
char *hexstr = NULL;
json_t *val, *res;
char s[345], sd[345];
bool rc = false;
int thr_id = work->thr_id;
struct cgpu_info *cgpu = thr_info[thr_id].cgpu;
CURL *curl = curl_easy_init();
struct pool *pool = work->pool;
bool rolltime;
if (unlikely(!curl)) {
applog(LOG_ERR, "CURL initialisation failed");
return rc;
}
/* build hex string */
hexstr = bin2hex(work->data, sizeof(work->data));
if (unlikely(!hexstr)) {
applog(LOG_ERR, "submit_upstream_work OOM");
goto out_nofree;
}
/* build JSON-RPC request */
sprintf(s,
"{\"method\": \"getwork\", \"params\": [ \"%s\" ], \"id\":1}\r\n",
hexstr);
sprintf(sd,
"{\"method\": \"getwork\", \"params\": [ \"%s\" ], \"id\":1}",
hexstr);
if (opt_debug)
applog(LOG_DEBUG, "DBG: sending %s submit RPC call: %s", pool->rpc_url, sd);
/* issue JSON-RPC request */
val = json_rpc_call(curl, pool->rpc_url, pool->rpc_userpass, s, false, false, &rolltime, pool);
if (unlikely(!val)) {
applog(LOG_INFO, "submit_upstream_work json_rpc_call failed");
if (!pool_tset(pool, &pool->submit_fail)) {
total_ro++;
pool->remotefail_occasions++;
applog(LOG_WARNING, "Pool %d communication failure, caching submissions", pool->pool_no);
}
goto out;
} else if (pool_tclear(pool, &pool->submit_fail))
applog(LOG_WARNING, "Pool %d communication resumed, submitting work", pool->pool_no);
res = json_object_get(val, "result");
/* Theoretically threads could race when modifying accepted and
* rejected values but the chance of two submits completing at the
* same time is zero so there is no point adding extra locking */
if (json_is_true(res)) {
cgpu->accepted++;
total_accepted++;
pool->accepted++;
if (opt_debug)
applog(LOG_DEBUG, "PROOF OF WORK RESULT: true (yay!!!)");
if (!QUIET) {
if (total_pools > 1)
applog(LOG_WARNING, "Accepted %.8s %sPU %d thread %d pool %d",
hexstr + 152, cgpu->is_gpu? "G" : "C", cgpu->cpu_gpu, thr_id, work->pool->pool_no);
else
applog(LOG_WARNING, "Accepted %.8s %sPU %d thread %d",
hexstr + 152, cgpu->is_gpu? "G" : "C", cgpu->cpu_gpu, thr_id);
}
} else {
cgpu->rejected++;
total_rejected++;
pool->rejected++;
if (opt_debug)
applog(LOG_DEBUG, "PROOF OF WORK RESULT: false (booooo)");
if (!QUIET) {
if (total_pools > 1)
applog(LOG_WARNING, "Rejected %.8s %sPU %d thread %d pool %d",
hexstr + 152, cgpu->is_gpu? "G" : "C", cgpu->cpu_gpu, thr_id, work->pool->pool_no);
else
applog(LOG_WARNING, "Rejected %.8s %sPU %d thread %d",
hexstr + 152, cgpu->is_gpu? "G" : "C", cgpu->cpu_gpu, thr_id);
}
}
cgpu->utility = cgpu->accepted / ( total_secs ? total_secs : 1 ) * 60;
cgpu->efficiency = cgpu->getworks ? cgpu->accepted * 100.0 / cgpu->getworks : 0.0;
if (!opt_realquiet)
print_status(thr_id);
if (!want_per_device_stats)
applog(LOG_INFO, "%sPU %d Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m",
cgpu->is_gpu? "G" : "C", cgpu->cpu_gpu, cgpu->getworks, cgpu->accepted,
cgpu->rejected, cgpu->hw_errors, cgpu->efficiency, cgpu->utility);
json_decref(val);
rc = true;
out:
free(hexstr);
out_nofree:
curl_easy_cleanup(curl);
return rc;
}
static const char *rpc_req =
"{\"method\": \"getwork\", \"params\": [], \"id\":0}\r\n";
/* Select any active pool in a rotating fashion when loadbalance is chosen */
static inline struct pool *select_pool(bool lagging)
{
static int rotating_pool = 0;
struct pool *pool, *cp;
cp = current_pool();
if (pool_strategy != POOL_LOADBALANCE && !lagging)
pool = cp;
else
pool = NULL;
while (!pool) {
if (++rotating_pool >= total_pools)
rotating_pool = 0;
pool = pools[rotating_pool];
if ((!pool->idle && pool->enabled) || pool == cp)
break;
pool = NULL;
}
return pool;
}
static bool get_upstream_work(struct work *work, bool lagging)
{
struct pool *pool;
json_t *val;
bool rc = false;
CURL *curl;
curl = curl_easy_init();
if (unlikely(!curl)) {
applog(LOG_ERR, "CURL initialisation failed");
return rc;
}
pool = select_pool(lagging);
if (opt_debug)
applog(LOG_DEBUG, "DBG: sending %s get RPC call: %s", pool->rpc_url, rpc_req);
val = json_rpc_call(curl, pool->rpc_url, pool->rpc_userpass, rpc_req,
false, false, &work->rolltime, pool);
if (unlikely(!val)) {
applog(LOG_DEBUG, "Failed json_rpc_call in get_upstream_work");
goto out;
}
rc = work_decode(json_object_get(val, "result"), work);
work->pool = pool;
total_getworks++;
pool->getwork_requested++;
if (work->thr)
work->thr->cgpu->getworks++;
json_decref(val);
out:
curl_easy_cleanup(curl);
return rc;
}
static struct work *make_work(void)
{
struct work *work = calloc(1, sizeof(struct work));
if (unlikely(!work))
quit(1, "Failed to calloc work in make_work");
return work;
}
static void free_work(struct work *work)
{
free(work);
}
static void workio_cmd_free(struct workio_cmd *wc)
{
if (!wc)
return;
switch (wc->cmd) {
case WC_SUBMIT_WORK:
free_work(wc->u.work);
break;
default: /* do nothing */
break;
}
memset(wc, 0, sizeof(*wc)); /* poison */
free(wc);
}
static void disable_curses(void)
{
if (test_and_clear(&curses_active)) {
leaveok(logwin, false);
leaveok(statuswin, false);
leaveok(mainwin, false);
nocbreak();
echo();
delwin(logwin);
delwin(statuswin);
delwin(mainwin);
endwin();
refresh();
#ifdef WIN32
// Move the cursor to after curses output.
HANDLE hout = GetStdHandle(STD_OUTPUT_HANDLE);
CONSOLE_SCREEN_BUFFER_INFO csbi;
COORD coord;
if (GetConsoleScreenBufferInfo(hout, &csbi)) {
coord.X = 0;
coord.Y = csbi.dwSize.Y - 1;
SetConsoleCursorPosition(hout, coord);
}
#endif
}
}
void kill_work(void)
{
struct workio_cmd *wc;
struct thr_info *thr;
unsigned int i;
disable_curses();
applog(LOG_INFO, "Received kill message");
/* Kill the watchdog thread */
thr = &thr_info[watchdog_thr_id];
pthread_cancel(*thr->pth);
/* Stop the mining threads*/
for (i = 0; i < mining_threads; i++) {
thr = &thr_info[i];
if (!thr->pth)
continue;
tq_freeze(thr->q);
/* No need to check if this succeeds or not */
pthread_cancel(*thr->pth);
}
/* Stop the others */
thr = &thr_info[stage_thr_id];
pthread_cancel(*thr->pth);
thr = &thr_info[longpoll_thr_id];
pthread_cancel(*thr->pth);
wc = calloc(1, sizeof(*wc));
if (unlikely(!wc)) {
applog(LOG_ERR, "Failed to calloc wc in kill_work");
/* We're just trying to die anyway, so forget graceful */
exit (1);
}
wc->cmd = WC_DIE;
wc->thr = 0;
if (opt_debug)
applog(LOG_DEBUG, "Pushing die request to work thread");
if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) {
applog(LOG_ERR, "Failed to tq_push work in kill_work");
exit (1);
}
}
static void sighandler(int sig)
{
/* Restore signal handlers so we can still quit if kill_work fails */
sigaction(SIGTERM, &termhandler, NULL);
sigaction(SIGINT, &inthandler, NULL);
kill_work();
}
static void *get_work_thread(void *userdata)
{
struct workio_cmd *wc = (struct workio_cmd *)userdata;
struct work *ret_work;
int failures = 0;
pthread_detach(pthread_self());
ret_work = make_work();
if (wc->thr)
ret_work->thr = wc->thr;
else
ret_work->thr = NULL;
/* obtain new work from bitcoin via JSON-RPC */
while (!get_upstream_work(ret_work, wc->lagging)) {
if (unlikely((opt_retries >= 0) && (++failures > opt_retries))) {
applog(LOG_ERR, "json_rpc_call failed, terminating workio thread");
free_work(ret_work);
kill_work();
goto out;
}
/* pause, then restart work-request loop */
applog(LOG_DEBUG, "json_rpc_call failed on get work, retry after %d seconds",
fail_pause);
sleep(fail_pause);
fail_pause += opt_fail_pause;
}
fail_pause = opt_fail_pause;
if (opt_debug)
applog(LOG_DEBUG, "Pushing work to requesting thread");
/* send work to requesting thread */
if (unlikely(!tq_push(thr_info[stage_thr_id].q, ret_work))) {
applog(LOG_ERR, "Failed to tq_push work in workio_get_work");
kill_work();
free_work(ret_work);
}
out:
workio_cmd_free(wc);
return NULL;
}
static bool workio_get_work(struct workio_cmd *wc)
{
pthread_t get_thread;
if (unlikely(pthread_create(&get_thread, NULL, get_work_thread, (void *)wc))) {
applog(LOG_ERR, "Failed to create get_work_thread");
return false;
}
return true;
}
static bool stale_work(struct work *work)
{
struct timeval now;
bool ret = false;
char *hexstr;
gettimeofday(&now, NULL);
if ((now.tv_sec - work->tv_staged.tv_sec) >= opt_scantime)
return true;
/* Only use the primary pool for determination as the work may
* interleave at times of new blocks */
if (work->pool != current_pool())
return ret;
hexstr = bin2hex(work->data, 36);
if (unlikely(!hexstr)) {
applog(LOG_ERR, "submit_work_thread OOM");
return ret;
}
if (strncmp(hexstr, current_block, 36))
ret = true;
free(hexstr);
return ret;
}
static void *submit_work_thread(void *userdata)
{
struct workio_cmd *wc = (struct workio_cmd *)userdata;
struct work *work = wc->u.work;
struct pool *pool = work->pool;
int failures = 0;
pthread_detach(pthread_self());
if (!opt_submit_stale && stale_work(work)) {
applog(LOG_WARNING, "Stale share detected, discarding");
total_stale++;
pool->stale_shares++;
goto out;
}
/* submit solution to bitcoin via JSON-RPC */
while (!submit_upstream_work(work)) {
if (!opt_submit_stale && stale_work(work)) {
applog(LOG_WARNING, "Stale share detected, discarding");
total_stale++;
pool->stale_shares++;
break;
}
if (unlikely((opt_retries >= 0) && (++failures > opt_retries))) {
applog(LOG_ERR, "Failed %d retries ...terminating workio thread", opt_retries);
kill_work();
break;
}
/* pause, then restart work-request loop */
applog(LOG_INFO, "json_rpc_call failed on submit_work, retry after %d seconds",
fail_pause);
sleep(fail_pause);
fail_pause += opt_fail_pause;
}
fail_pause = opt_fail_pause;
out:
workio_cmd_free(wc);
return NULL;
}
static bool workio_submit_work(struct workio_cmd *wc)
{
pthread_t submit_thread;
if (unlikely(pthread_create(&submit_thread, NULL, submit_work_thread, (void *)wc))) {
applog(LOG_ERR, "Failed to create submit_work_thread");
return false;
}
return true;
}
static void inc_staged(struct pool *pool, int inc, bool lp)
{
mutex_lock(&stgd_lock);
if (lp) {
lp_staged += inc;
total_staged += inc;
} else if (lp_staged)
--lp_staged;
else
total_staged += inc;
mutex_unlock(&stgd_lock);
}
static void dec_staged(int inc)
{
mutex_lock(&stgd_lock);
total_staged -= inc;
mutex_unlock(&stgd_lock);
}
static int requests_staged(void)
{
int ret;
mutex_lock(&stgd_lock);
ret = total_staged;
mutex_unlock(&stgd_lock);
return ret;
}
static int real_staged(void)
{
int ret;
mutex_lock(&stgd_lock);
ret = total_staged - lp_staged;
mutex_unlock(&stgd_lock);
return ret;
}
/* Find the pool that currently has the highest priority */
static struct pool *priority_pool(int choice)
{
struct pool *ret = NULL;
int i;
for (i = 0; i < total_pools; i++) {
struct pool *pool = pools[i];
if (pool->prio == choice) {
ret = pool;
break;
}
}
if (unlikely(!ret)) {
applog(LOG_ERR, "WTF No pool %d found!", choice);
return pools[choice];
}
return ret;
}
static void restart_longpoll(void);
static void switch_pools(struct pool *selected)
{
struct pool *pool, *last_pool;
int i, pool_no;
mutex_lock(&control_lock);
last_pool = currentpool;
pool_no = currentpool->pool_no;
/* Switch selected to pool number 0 and move the rest down */
if (selected) {
if (selected->prio != 0) {
for (i = 0; i < total_pools; i++) {
pool = pools[i];
if (pool->prio < selected->prio)
pool->prio++;
}
selected->prio = 0;
}
}
switch (pool_strategy) {
/* Both of these set to the master pool */
case POOL_FAILOVER:
case POOL_LOADBALANCE:
for (i = 0; i < total_pools; i++) {
pool = priority_pool(i);
if (!pool->idle && pool->enabled) {
pool_no = pool->pool_no;
break;
}
}
break;
/* Both of these simply increment and cycle */
case POOL_ROUNDROBIN:
case POOL_ROTATE:
if (selected) {
pool_no = selected->pool_no;
break;
}
pool_no++;
if (pool_no >= total_pools)
pool_no = 0;
break;
default:
break;
}
currentpool = pools[pool_no];
pool = currentpool;
mutex_unlock(&control_lock);
if (pool != last_pool) {
applog(LOG_WARNING, "Switching to %s", pool->rpc_url);
/* Only switch longpoll if the new pool also supports LP */
if (pool->hdr_path)
restart_longpoll();
}
/* Reset the queued amount to allow more to be queued for the new pool */
mutex_lock(&qd_lock);
total_queued = 0;
mutex_unlock(&qd_lock);
inc_staged(pool, 1, true);
}
static void set_curblock(char *hexstr, unsigned char *hash)
{
unsigned char hash_swap[32];
char *old_hash = NULL;
struct timeval tv_now;
/* Don't free current_hash directly to avoid dereferencing it when
* we might be accessing its data elsewhere */
if (current_hash)
old_hash = current_hash;
memcpy(current_block, hexstr, 36);
gettimeofday(&tv_now, NULL);
get_timestamp(blocktime, &tv_now);
swap256(hash_swap, hash);
current_hash = bin2hex(hash_swap, 16);
if (unlikely(!current_hash))
quit (1, "set_curblock OOM");
if (old_hash)
free(old_hash);
}
static void test_work_current(struct work *work)
{
char *hexstr;
/* Only use the primary pool for determination */
if (work->pool != current_pool() || work->cloned || work->rolls || work->clone)
return;
hexstr = bin2hex(work->data, 36);
if (unlikely(!hexstr)) {
applog(LOG_ERR, "stage_thread OOM");
return;
}
/* current_block is blanked out on successful longpoll */
if (unlikely(strncmp(hexstr, current_block, 36))) {
if (block_changed != BLOCK_LP && block_changed != BLOCK_FIRST) {
block_changed = BLOCK_DETECT;
new_blocks++;
if (have_longpoll)
applog(LOG_WARNING, "New block detected on network before longpoll, waiting on fresh work");
else
applog(LOG_WARNING, "New block detected on network, waiting on fresh work");
/* As we can't flush the work from here, signal the
* wakeup thread to restart all the threads */
work_restart[watchdog_thr_id].restart = 1;
} else
block_changed = BLOCK_NONE;
set_curblock(hexstr, work->data);
}
free(hexstr);
}
static void *stage_thread(void *userdata)
{
struct thr_info *mythr = userdata;
bool ok = true;
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
while (ok) {
struct work *work = NULL;
if (opt_debug)
applog(LOG_DEBUG, "Popping work to stage thread");
work = tq_pop(mythr->q, NULL);
if (unlikely(!work)) {
applog(LOG_ERR, "Failed to tq_pop in stage_thread");
ok = false;
break;
}
test_work_current(work);
if (opt_debug)
applog(LOG_DEBUG, "Pushing work to getwork queue");
if (unlikely(!tq_push(getq, work))) {
applog(LOG_ERR, "Failed to tq_push work in stage_thread");
ok = false;
break;
}
inc_staged(work->pool, 1, false);
}
tq_freeze(mythr->q);
return NULL;
}
static char *curses_input(const char *query);
static int curses_int(const char *query)
{
int ret;
char *cvar;
cvar = curses_input(query);
ret = atoi(cvar);
free(cvar);
return ret;
}
static bool input_pool(bool live);
static int active_pools(void)
{
int ret = 0;
int i;
for (i = 0; i < total_pools; i++) {
if ((pools[i])->enabled)
ret++;
}
return ret;
}
static void display_pool_summary(struct pool *pool)
{
double efficiency = 0.0;
mutex_lock(&curses_lock);
wlog("Pool: %s\n", pool->rpc_url);
wlog("%s long-poll support\n", pool->hdr_path ? "Has" : "Does not have");
wlog(" Queued work requests: %d\n", pool->getwork_requested);
wlog(" Share submissions: %d\n", pool->accepted + pool->rejected);
wlog(" Accepted shares: %d\n", pool->accepted);
wlog(" Rejected shares: %d\n", pool->rejected);
if (pool->accepted || pool->rejected)
wlog(" Reject ratio: %.1f\n", (double)(pool->rejected * 100) / (double)(pool->accepted + pool->rejected));
efficiency = pool->getwork_requested ? pool->accepted * 100.0 / pool->getwork_requested : 0.0;
wlog(" Efficiency (accepted / queued): %.0f%%\n", efficiency);
wlog(" Discarded work due to new blocks: %d\n", pool->discarded_work);
wlog(" Stale submissions discarded due to new blocks: %d\n", pool->stale_shares);
wlog(" Unable to get work from server occasions: %d\n", pool->localgen_occasions);
wlog(" Submitting work remotely delay occasions: %d\n\n", pool->remotefail_occasions);
wrefresh(logwin);
mutex_unlock(&curses_lock);
}
/* We can't remove the memory used for this struct pool because there may
* still be work referencing it. We just remove it from the pools list */
static void remove_pool(struct pool *pool)
{
int i, last_pool = total_pools - 1;
struct pool *other;
/* Boost priority of any lower prio than this one */
for (i = 0; i < total_pools; i++) {
other = pools[i];
if (other->prio > pool->prio)
other->prio--;
}
if (pool->pool_no < last_pool) {
/* Swap the last pool for this one */
(pools[last_pool])->pool_no = pool->pool_no;
pools[pool->pool_no] = pools[last_pool];
}
/* Give it an invalid number */
pool->pool_no = total_pools;
total_pools--;
}
static void display_pools(void)
{
struct pool *pool;
int selected, i;
char input;
opt_loginput = true;
immedok(logwin, true);
updated:
clear_logwin();
for (i = 0; i < total_pools; i++) {
pool = pools[i];
if (pool == current_pool())
wattron(logwin, A_BOLD);
if (!pool->enabled)
wattron(logwin, A_DIM);
wlogprint("%d: %s %s Priority %d: %s User:%s\n",
pool->pool_no,
pool->enabled? "Enabled" : "Disabled",
pool->idle? "Dead" : "Alive",
pool->prio,
pool->rpc_url, pool->rpc_user);
wattroff(logwin, A_BOLD | A_DIM);
}
retry:
wlogprint("\nCurrent pool management strategy: %s\n",
strategies[pool_strategy]);
if (pool_strategy == POOL_ROTATE)
wlogprint("Set to rotate every %d minutes\n", opt_rotate_period);
wlogprint("[A]dd pool [R]emove pool [D]isable pool [E]nable pool\n");
wlogprint("[C]hange management strategy [S]witch pool [I]nformation\n");
wlogprint("Or press any other key to continue\n");
input = getch();
if (!strncasecmp(&input, "a", 1)) {
input_pool(true);
goto updated;
} else if (!strncasecmp(&input, "r", 1)) {
if (total_pools <= 1) {
wlogprint("Cannot remove last pool");
goto retry;
}
selected = curses_int("Select pool number");
if (selected < 0 || selected >= total_pools) {
wlogprint("Invalid selection\n");
goto retry;
}
pool = pools[selected];
if (pool == current_pool())
switch_pools(NULL);
if (pool == current_pool()) {
wlogprint("Unable to remove pool due to activity\n");
goto retry;
}
pool->enabled = false;
remove_pool(pool);
goto updated;
} else if (!strncasecmp(&input, "s", 1)) {
selected = curses_int("Select pool number");
if (selected < 0 || selected >= total_pools) {
wlogprint("Invalid selection\n");
goto retry;
}
pool = pools[selected];
pool->enabled = true;
switch_pools(pool);
goto updated;
} else if (!strncasecmp(&input, "d", 1)) {
if (active_pools() <= 1) {
wlogprint("Cannot disable last pool");
goto retry;
}
selected = curses_int("Select pool number");
if (selected < 0 || selected >= total_pools) {
wlogprint("Invalid selection\n");
goto retry;
}
pool = pools[selected];
pool->enabled = false;
if (pool == current_pool())
switch_pools(NULL);
goto updated;
} else if (!strncasecmp(&input, "e", 1)) {
selected = curses_int("Select pool number");
if (selected < 0 || selected >= total_pools) {
wlogprint("Invalid selection\n");
goto retry;
}
pool = pools[selected];
pool->enabled = true;
if (pool->prio < current_pool()->prio)
switch_pools(pool);
goto updated;
} else if (!strncasecmp(&input, "c", 1)) {
for (i = 0; i <= TOP_STRATEGY; i++)
wlogprint("%d: %s\n", i, strategies[i]);
selected = curses_int("Select strategy number type");
if (selected < 0 || selected > TOP_STRATEGY) {
wlogprint("Invalid selection\n");
goto retry;
}
if (selected == POOL_ROTATE) {
opt_rotate_period = curses_int("Select interval in minutes");
if (opt_rotate_period < 0 || opt_rotate_period > 9999) {
opt_rotate_period = 0;
wlogprint("Invalid selection\n");
goto retry;
}
}
pool_strategy = selected;
switch_pools(NULL);
goto updated;
} else if (!strncasecmp(&input, "i", 1)) {
selected = curses_int("Select pool number");
if (selected < 0 || selected >= total_pools) {
wlogprint("Invalid selection\n");
goto retry;
}
pool = pools[selected];
display_pool_summary(pool);
goto retry;
}
clear_logwin();
immedok(logwin, false);
opt_loginput = false;
}
static void display_options(void)
{
int selected;
char input;
opt_loginput = true;
immedok(logwin, true);
retry:
clear_logwin();
wlogprint("[N]ormal [C]lear [S]ilent mode (disable all output)\n");
wlogprint("[D]ebug:%s\n[P]er-device:%s\n[Q]uiet:%s\n[V]erbose:%s\n[R]PC debug:%s\n[L]og interval:%d\n",
opt_debug ? "on" : "off",
want_per_device_stats? "on" : "off",
opt_quiet ? "on" : "off",
opt_log_output ? "on" : "off",
opt_protocol ? "on" : "off",
opt_log_interval);
wlogprint("Select an option or any other key to return\n");
input = getch();
if (!strncasecmp(&input, "q", 1)) {
opt_quiet ^= true;
clear_logwin();
wlogprint("Quiet mode %s\n", opt_quiet ? "enabled" : "disabled");
} else if (!strncasecmp(&input, "v", 1)) {
opt_log_output ^= true;
if (opt_log_output)
opt_quiet = false;
clear_logwin();
wlogprint("Verbose mode %s\n", opt_log_output ? "enabled" : "disabled");
} else if (!strncasecmp(&input, "n", 1)) {
opt_log_output = false;
opt_debug = false;
opt_quiet = false;
opt_protocol = false;
want_per_device_stats = false;
clear_logwin();
wlogprint("Output mode reset to normal\n");
} else if (!strncasecmp(&input, "d", 1)) {
opt_debug ^= true;
opt_log_output = opt_debug;
if (opt_debug)
opt_quiet = false;
clear_logwin();
wlogprint("Debug mode %s\n", opt_debug ? "enabled" : "disabled");
} else if (!strncasecmp(&input, "p", 1)) {
want_per_device_stats ^= true;
opt_log_output = want_per_device_stats;
clear_logwin();
wlogprint("Per-device stats %s\n", want_per_device_stats ? "enabled" : "disabled");
} else if (!strncasecmp(&input, "r", 1)) {
opt_protocol ^= true;
if (opt_protocol)
opt_quiet = false;
clear_logwin();
wlogprint("RPC protocol debugging %s\n", opt_protocol ? "enabled" : "disabled");
} else if (!strncasecmp(&input, "c", 1))
clear_logwin();
else if (!strncasecmp(&input, "l", 1)) {
selected = curses_int("Interval in seconds");
if (selected < 0 || selected > 9999) {
wlogprint("Invalid selection\n");
goto retry;
}
opt_log_interval = selected;
clear_logwin();
wlogprint("Log interval set to %d seconds\n", opt_log_interval);
} else if (!strncasecmp(&input, "s", 1)) {
opt_realquiet = true;
clear_logwin();
} else clear_logwin();
immedok(logwin, false);
opt_loginput = false;
}
static void set_options(void)
{
int selected;
char input;
opt_loginput = true;
immedok(logwin, true);
retry:
clear_logwin();
wlogprint("\n[D]ynamic mode: %s\n[L]ongpoll: %s\n",
opt_dynamic ? "On" : "Off", want_longpoll ? "On" : "Off");
if (opt_dynamic)
wlogprint("[I]ntensity: Dynamic\n");
else
wlogprint("[I]ntensity: %d\n", scan_intensity);
wlogprint("[Q]ueue: %d\n[S]cantime: %d\n[R]etries: %d\n[P]ause: %d\n",
opt_queue, opt_scantime, opt_retries, opt_fail_pause);
wlogprint("Select an option or any other key to return\n");
input = getch();
if (!strncasecmp(&input, "q", 1)) {
selected = curses_int("Extra work items to queue");
if (selected < 0 || selected > 9999) {
wlogprint("Invalid selection\n");
goto retry;
}
opt_queue = selected;
goto retry;
} else if (!strncasecmp(&input, "d", 1)) {
opt_dynamic ^= true;
goto retry;
} else if (!strncasecmp(&input, "l", 1)) {
want_longpoll ^= true;
applog(LOG_WARNING, "Longpoll %s", want_longpoll ? "enabled" : "disabled");
restart_longpoll();
goto retry;
} else if (!strncasecmp(&input, "i", 1)) {
selected = curses_int("Set GPU scan intensity (-10 -> 10)");
if (selected < -10 || selected > 10) {
wlogprint("Invalid selection\n");
goto retry;
}
opt_dynamic = false;
scan_intensity = selected;
goto retry;
} else if (!strncasecmp(&input, "s", 1)) {
selected = curses_int("Set scantime in seconds");
if (selected < 0 || selected > 9999) {
wlogprint("Invalid selection\n");
goto retry;
}
opt_scantime = selected;
goto retry;
} else if (!strncasecmp(&input, "r", 1)) {
selected = curses_int("Retries before failing (-1 infinite)");
if (selected < -1 || selected > 9999) {
wlogprint("Invalid selection\n");
goto retry;
}
opt_retries = selected;
goto retry;
} else if (!strncasecmp(&input, "p", 1)) {
selected = curses_int("Seconds to pause before network retries");
if (selected < 1 || selected > 9999) {
wlogprint("Invalid selection\n");
goto retry;
}
opt_fail_pause = selected;
goto retry;
}
clear_logwin();
immedok(logwin, false);
opt_loginput = false;
}
#ifdef HAVE_OPENCL
static void reinit_device(struct cgpu_info *cgpu);
static void manage_gpu(void)
{
struct thr_info *thr;
int selected, gpu, i;
char checkin[40];
char input;
if (!opt_g_threads)
return;
opt_loginput = true;
immedok(logwin, true);
clear_logwin();
retry:
for (gpu = 0; gpu < nDevs; gpu++) {
struct cgpu_info *cgpu = &gpus[gpu];
wlog("GPU %d: [%.1f / %.1f Mh/s] [Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m]\n",
gpu, cgpu->rolling, cgpu->total_mhashes / total_secs,
cgpu->getworks, cgpu->accepted, cgpu->rejected, cgpu->hw_errors,
cgpu->efficiency, cgpu->utility);
wlog("Last initialised: %s\n", cgpu->init);
for (i = 0; i < mining_threads; i++) {
thr = &thr_info[i];
if (thr->cgpu != cgpu)
continue;
get_datestamp(checkin, &thr->last);
wlog("Thread %d: %.1f Mh/s %s ", i, thr->rolling, gpu_devices[gpu] ? "Enabled" : "Disabled");
switch (cgpu->status) {
default:
case LIFE_WELL:
wlog("ALIVE");
break;
case LIFE_SICK:
wlog("SICK reported in %s", checkin);
break;
case LIFE_DEAD:
wlog("DEAD reported in %s", checkin);
break;
}
wlog("\n");
}
wlog("\n");
}
wlogprint("[E]nable [D]isable [R]estart GPU\n");
wlogprint("Or press any other key to continue\n");
input = getch();
if (!strncasecmp(&input, "e", 1)) {
selected = curses_int("Select GPU to enable");
if (selected < 0 || selected >= nDevs) {
wlogprint("Invalid selection\n");
goto retry;
}
if (gpu_devices[selected]) {
wlogprint("Device already enabled\n");
goto retry;
}
gpu_devices[selected] = true;
for (i = 0; i < gpu_threads; i++) {
if (dev_from_id(i) != selected)
continue;
thr = &thr_info[i];
if (opt_debug)
applog(LOG_DEBUG, "Pushing ping to thread %d", thr->id);
tq_push(thr->q, &ping);
}
} if (!strncasecmp(&input, "d", 1)) {
selected = curses_int("Select GPU to disable");
if (selected < 0 || selected >= nDevs) {
wlogprint("Invalid selection\n");
goto retry;
}
if (!gpu_devices[selected]) {
wlogprint("Device already disabled\n");
goto retry;
}
gpu_devices[selected] = false;
} else if (!strncasecmp(&input, "r", 1)) {
selected = curses_int("Select GPU to attempt to restart");
if (selected < 0 || selected >= nDevs) {
wlogprint("Invalid selection\n");
goto retry;
}
wlogprint("Attempting to restart threads of GPU %d\n", selected);
reinit_device(&gpus[selected]);
}
clear_logwin();
immedok(logwin, false);
opt_loginput = false;
}
#else
static void manage_gpu(void)
{
}
#endif
static void *input_thread(void *userdata)
{
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
if (!curses_active)
return NULL;
while (1) {
char input;
input = getch();
if (!strncasecmp(&input, "q", 1)) {
kill_work();
return NULL;
} else if (!strncasecmp(&input, "d", 1))
display_options();
else if (!strncasecmp(&input, "p", 1))
display_pools();
else if (!strncasecmp(&input, "s", 1))
set_options();
else if (!strncasecmp(&input, "g", 1))
manage_gpu();
if (opt_realquiet) {
disable_curses();
break;
}
}
return NULL;
}
static void *workio_thread(void *userdata)
{
struct thr_info *mythr = userdata;
bool ok = true;
while (ok) {
struct workio_cmd *wc;
if (opt_debug)
applog(LOG_DEBUG, "Popping work to work thread");
/* wait for workio_cmd sent to us, on our queue */
wc = tq_pop(mythr->q, NULL);
if (unlikely(!wc)) {
applog(LOG_ERR, "Failed to tq_pop in workio_thread");
ok = false;
break;
}
/* process workio_cmd */
switch (wc->cmd) {
case WC_GET_WORK:
ok = workio_get_work(wc);
break;
case WC_SUBMIT_WORK:
ok = workio_submit_work(wc);
break;
case WC_DIE:
default:
ok = false;
break;
}
}
tq_freeze(mythr->q);
return NULL;
}
static void thread_reportin(struct thr_info *thr)
{
gettimeofday(&thr->last, NULL);
thr->cgpu->status = LIFE_WELL;
thr->getwork = false;
}
static inline void thread_reportout(struct thr_info *thr)
{
thr->getwork = true;
}
static void hashmeter(int thr_id, struct timeval *diff,
unsigned long hashes_done)
{
struct timeval temp_tv_end, total_diff;
double secs;
double local_secs;
double utility, efficiency = 0.0;
static double local_mhashes_done = 0;
static double rolling = 0;
double local_mhashes = (double)hashes_done / 1000000.0;
struct cgpu_info *cgpu = thr_info[thr_id].cgpu;
bool showlog = false;
/* Update the last time this thread reported in */
if (thr_id >= 0)
gettimeofday(&thr_info[thr_id].last, NULL);
/* Don't bother calculating anything if we're not displaying it */
if (opt_realquiet || !opt_log_interval)
return;
secs = (double)diff->tv_sec + ((double)diff->tv_usec / 1000000.0);
/* So we can call hashmeter from a non worker thread */
if (thr_id >= 0) {
struct thr_info *thr = &thr_info[thr_id];
double thread_rolling = 0.0;
int i;
if (opt_debug)
applog(LOG_DEBUG, "[thread %d: %lu hashes, %.0f khash/sec]",
thr_id, hashes_done, hashes_done / secs);
/* Rolling average for each thread and each device */
decay_time(&thr->rolling, local_mhashes / secs);
for (i = 0; i < mining_threads; i++) {
struct thr_info *th = &thr_info[i];
if (th->cgpu == cgpu)
thread_rolling += th->rolling;
}
decay_time(&cgpu->rolling, thread_rolling);
cgpu->total_mhashes += local_mhashes;
// If needed, output detailed, per-device stats
if (want_per_device_stats) {
struct timeval now;
struct timeval elapsed;
gettimeofday(&now, NULL);
timeval_subtract(&elapsed, &now, &thr->cgpu->last_message_tv);
if (opt_log_interval <= elapsed.tv_sec) {
thr->cgpu->last_message_tv = now;
sprintf(
statusline,
"[%sPU%d (%ds):%.1f (avg):%.1f Mh/s] [Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m]",
thr->cgpu->is_gpu ? "G" : "C",
thr->cgpu->cpu_gpu,
opt_log_interval,
thr->cgpu->rolling,
thr->cgpu->total_mhashes / total_secs,
thr->cgpu->getworks,
thr->cgpu->accepted,
thr->cgpu->rejected,
thr->cgpu->hw_errors,
thr->cgpu->efficiency,
thr->cgpu->utility
);
if (!curses_active) {
printf("%s \r", statusline);
fflush(stdout);
} else
applog(LOG_INFO, "%s", statusline);
}
}
}
/* Totals are updated by all threads so can race without locking */
mutex_lock(&hash_lock);
gettimeofday(&temp_tv_end, NULL);
timeval_subtract(&total_diff, &temp_tv_end, &total_tv_end);
total_mhashes_done += local_mhashes;
local_mhashes_done += local_mhashes;
if (total_diff.tv_sec < opt_log_interval)
/* Only update the total every opt_log_interval seconds */
goto out_unlock;
showlog = true;
gettimeofday(&total_tv_end, NULL);
local_secs = (double)total_diff.tv_sec + ((double)total_diff.tv_usec / 1000000.0);
decay_time(&rolling, local_mhashes_done / local_secs);
timeval_subtract(&total_diff, &total_tv_end, &total_tv_start);
total_secs = (double)total_diff.tv_sec +
((double)total_diff.tv_usec / 1000000.0);
utility = total_accepted / ( total_secs ? total_secs : 1 ) * 60;
efficiency = total_getworks ? total_accepted * 100.0 / total_getworks : 0.0;
sprintf(statusline, "[%s(%ds):%.1f (avg):%.1f Mh/s] [Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m]",
want_per_device_stats ? "ALL " : "",
opt_log_interval, rolling, total_mhashes_done / total_secs,
total_getworks, total_accepted, total_rejected, hw_errors, efficiency, utility);
local_mhashes_done = 0;
out_unlock:
mutex_unlock(&hash_lock);
if (showlog) {
if (!curses_active) {
printf("%s \r", statusline);
fflush(stdout);
} else
applog(LOG_INFO, "%s", statusline);
}
}
/* This is overkill, but at least we'll know accurately how much work is
* queued to prevent ever being left without work */
static void inc_queued(void)
{
mutex_lock(&qd_lock);
total_queued++;
mutex_unlock(&qd_lock);
}
static void dec_queued(void)
{
mutex_lock(&qd_lock);
if (total_queued > 0)
total_queued--;
mutex_unlock(&qd_lock);
dec_staged(1);
}
static int requests_queued(void)
{
int ret;
mutex_lock(&qd_lock);
ret = total_queued;
mutex_unlock(&qd_lock);
return ret;
}
static bool pool_active(struct pool *pool, bool pinging)
{
bool ret = false;
json_t *val;
CURL *curl;
bool rolltime;
curl = curl_easy_init();
if (unlikely(!curl)) {
applog(LOG_ERR, "CURL initialisation failed");
return false;
}
applog(LOG_INFO, "Testing pool %s", pool->rpc_url);
val = json_rpc_call(curl, pool->rpc_url, pool->rpc_userpass, rpc_req,
true, false, &rolltime, pool);
if (val) {
struct work *work = make_work();
bool rc;
rc = work_decode(json_object_get(val, "result"), work);
if (rc) {
applog(LOG_DEBUG, "Successfully retrieved and deciphered work from pool %u %s",
pool->pool_no, pool->rpc_url);
work->pool = pool;
work->rolltime = rolltime;
if (opt_debug)
applog(LOG_DEBUG, "Pushing pooltest work to base pool");
tq_push(thr_info[stage_thr_id].q, work);
total_getworks++;
pool->getwork_requested++;
inc_queued();
ret = true;
gettimeofday(&pool->tv_idle, NULL);
} else {
applog(LOG_DEBUG, "Successfully retrieved but FAILED to decipher work from pool %u %s",
pool->pool_no, pool->rpc_url);
free_work(work);
}
json_decref(val);
} else {
applog(LOG_DEBUG, "FAILED to retrieve work from pool %u %s",
pool->pool_no, pool->rpc_url);
if (!pinging)
applog(LOG_WARNING, "Pool down, URL or credentials invalid");
}
curl_easy_cleanup(curl);
return ret;
}
static void pool_died(struct pool *pool)
{
if (!pool_tset(pool, &pool->idle)) {
applog(LOG_WARNING, "Pool %d %s not responding!", pool->pool_no, pool->rpc_url);
gettimeofday(&pool->tv_idle, NULL);
switch_pools(NULL);
}
}
static void pool_resus(struct pool *pool)
{
applog(LOG_WARNING, "Pool %d %s recovered", pool->pool_no, pool->rpc_url);
if (pool->prio < current_pool()->prio && pool_strategy == POOL_FAILOVER)
switch_pools(NULL);
}
static bool queue_request(struct thr_info *thr, bool needed)
{
int maxq = opt_queue + mining_threads;
struct workio_cmd *wc;
int rq, rs;
rq = requests_queued();
rs = real_staged();
/* If we've been generating lots of local work we may already have
* enough in the queue */
if (rq >= maxq || rs >= maxq)
return true;
/* fill out work request message */
wc = calloc(1, sizeof(*wc));
if (unlikely(!wc)) {
applog(LOG_ERR, "Failed to calloc wc in queue_request");
return false;
}
wc->cmd = WC_GET_WORK;
if (thr)
wc->thr = thr;
else
wc->thr = NULL;
/* If we're queueing work faster than we can stage it, consider the
* system lagging and allow work to be gathered from another pool if
* possible */
if (!rs && rq && needed)
wc->lagging = true;
if (opt_debug)
applog(LOG_DEBUG, "Queueing getwork request to work thread");
/* send work request to workio thread */
if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) {
applog(LOG_ERR, "Failed to tq_push in queue_request");
workio_cmd_free(wc);
return false;
}
inc_queued();
return true;
}
static void discard_work(struct work *work)
{
if (!work->clone && !work->rolls && !work->mined) {
if (work->pool)
work->pool->discarded_work++;
total_discarded++;
if (opt_debug)
applog(LOG_DEBUG, "Discarded work");
} else if (opt_debug)
applog(LOG_DEBUG, "Discarded cloned or rolled work");
free_work(work);
}
static void discard_staged(void)
{
struct timespec abstime = {};
struct timeval now;
struct work *work_heap;
/* Just in case we fell in a hole and missed a queue filling */
if (unlikely(!requests_staged()))
return;
gettimeofday(&now, NULL);
abstime.tv_sec = now.tv_sec + 60;
if (opt_debug)
applog(LOG_DEBUG, "Popping work to discard staged");
work_heap = tq_pop(getq, &abstime);
if (unlikely(!work_heap))
return;
discard_work(work_heap);
dec_queued();
}
static void flush_requests(void)
{
struct pool *pool = current_pool();
int i, stale;
/* We should have one fresh work item staged from the block change. */
stale = requests_staged() - 1;
/* Temporarily increase the staged count so that get_work thinks there
* is work available instead of making threads reuse existing work */
inc_staged(pool, mining_threads, true);
for (i = 0; i < stale; i++) {
/* Queue a whole batch of new requests */
if (unlikely(!queue_request(NULL, true))) {
applog(LOG_ERR, "Failed to queue requests in flush_requests");
kill_work();
break;
}
/* Pop off the old requests. Cancelling the requests would be better
* but is tricky */
discard_staged();
}
}
static inline bool should_roll(struct work *work)
{
int rs;
rs = real_staged();
if (rs >= opt_queue + mining_threads)
return false;
if (work->pool == current_pool() || pool_strategy == POOL_LOADBALANCE || !rs)
return true;
return false;
}
static inline bool can_roll(struct work *work)
{
return (work->pool && !stale_work(work) && work->rolltime &&
work->rolls < 11 && !work->clone);
}
static void roll_work(struct work *work)
{
uint32_t *work_ntime;
uint32_t ntime;
work_ntime = (uint32_t *)(work->data + 68);
ntime = be32toh(*work_ntime);
ntime++;
*work_ntime = htobe32(ntime);
local_work++;
work->rolls++;
work->blk.nonce = 0;
if (opt_debug)
applog(LOG_DEBUG, "Successfully rolled work");
}
/* Recycle the work at a higher starting res_nonce if we know the thread we're
* giving it to will not finish scanning it. We keep the master copy to be
* recycled more rapidly and discard the clone to avoid repeating work */
static bool divide_work(struct timeval *now, struct work *work, uint32_t hash_div)
{
uint64_t hash_inc;
if (work->clone)
return false;
hash_inc = MAXTHREADS / hash_div * 2;
if ((uint64_t)work->blk.nonce + hash_inc < MAXTHREADS) {
/* Okay we can divide it up */
work->blk.nonce += hash_inc;
work->cloned = true;
local_work++;
if (opt_debug)
applog(LOG_DEBUG, "Successfully divided work");
return true;
} else if (can_roll(work) && should_roll(work)) {
roll_work(work);
return true;
}
return false;
}
static bool get_work(struct work *work, bool requested, struct thr_info *thr,
const int thr_id, uint32_t hash_div)
{
struct timespec abstime = {};
struct timeval now;
struct work *work_heap;
struct pool *pool;
bool ret = false;
int failures = 0;
/* Tell the watchdog thread this thread is waiting on getwork and
* should not be restarted */
thread_reportout(thr);
retry:
pool = current_pool();
if (unlikely(!requested && !queue_request(thr, true))) {
applog(LOG_WARNING, "Failed to queue_request in get_work");
goto out;
}
if (!requests_staged()) {
if (requested && !pool_tset(pool, &pool->lagging)) {
applog(LOG_WARNING, "Pool %d not providing work fast enough",
pool->pool_no);
pool->localgen_occasions++;
total_lo++;
}
if (can_roll(work)) {
roll_work(work);
ret = true;
goto out;
}
}
requested = false;
gettimeofday(&now, NULL);
abstime.tv_sec = now.tv_sec + 60;
if (opt_debug)
applog(LOG_DEBUG, "Popping work from get queue to get work");
/* wait for 1st response, or get cached response */
work_heap = tq_pop(getq, &abstime);
if (unlikely(!work_heap)) {
/* Attempt to switch pools if this one times out */
pool_died(pool);
goto retry;
}
if (stale_work(work_heap)) {
dec_queued();
discard_work(work_heap);
goto retry;
}
pool = work_heap->pool;
/* If we make it here we have succeeded in getting fresh work */
if (!work_heap->mined) {
pool_tclear(pool, &pool->lagging);
if (pool_tclear(pool, &pool->idle))
pool_resus(pool);
}
memcpy(work, work_heap, sizeof(*work));
/* Copy the res nonce back so we know to start at a higher baseline
* should we divide the same work up again. Make the work we're
* handing out be clone */
if (divide_work(&now, work_heap, hash_div)) {
if (opt_debug)
applog(LOG_DEBUG, "Pushing divided work to get queue head");
tq_push_head(getq, work_heap);
work->clone = true;
} else {
dec_queued();
free_work(work_heap);
}
ret = true;
out:
if (unlikely(ret == false)) {
if ((opt_retries >= 0) && (++failures > opt_retries)) {
applog(LOG_ERR, "Failed %d times to get_work");
return ret;
}
applog(LOG_DEBUG, "Retrying after %d seconds", fail_pause);
sleep(fail_pause);
fail_pause += opt_fail_pause;
goto retry;
}
fail_pause = opt_fail_pause;
work->thr_id = thr_id;
thread_reportin(thr);
if (ret)
work->mined = true;
return ret;
}
static bool submit_work_sync(struct thr_info *thr, const struct work *work_in)
{
struct workio_cmd *wc;
/* fill out work request message */
wc = calloc(1, sizeof(*wc));
if (unlikely(!wc)) {
applog(LOG_ERR, "Failed to calloc wc in submit_work_sync");
return false;
}
wc->u.work = make_work();
wc->cmd = WC_SUBMIT_WORK;
wc->thr = thr;
memcpy(wc->u.work, work_in, sizeof(*work_in));
if (opt_debug)
applog(LOG_DEBUG, "Pushing submit work to work thread");
/* send solution to workio thread */
if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) {
applog(LOG_ERR, "Failed to tq_push work in submit_work_sync");
goto err_out;
}
return true;
err_out:
workio_cmd_free(wc);
return false;
}
struct swa {
struct thr_info *thr;
const struct work *work_in;
};
static void *swasync_thread(void *userdata)
{
struct swa *swa = (struct swa *)userdata;
/* Return value ignored */
submit_work_sync(swa->thr, swa->work_in);
free(swa);
return NULL;
}
static bool submit_work_async(struct thr_info *thr, const struct work *work_in)
{
pthread_t sw_thread;
struct swa *swa;
swa = malloc(sizeof(struct swa));
if (unlikely(!swa)) {
applog(LOG_ERR, "Failed to malloc swa in submit_work_async");
return false;
}
swa->thr = thr;
swa->work_in = work_in;
if (unlikely(pthread_create(&sw_thread, NULL, swasync_thread, (void *)swa))) {
applog(LOG_ERR, "Failed to create swasync_thread");
return false;
}
return true;
}
bool submit_nonce(struct thr_info *thr, struct work *work, uint32_t nonce)
{
work->data[64+12+0] = (nonce>>0) & 0xff;
work->data[64+12+1] = (nonce>>8) & 0xff;
work->data[64+12+2] = (nonce>>16) & 0xff;
work->data[64+12+3] = (nonce>>24) & 0xff;
/* Do one last check before attempting to submit the work */
if (!fulltest(work->data + 64, work->target))
return true;
return submit_work_sync(thr, work);
}
static void *miner_thread(void *userdata)
{
struct work *work = make_work();
struct thr_info *mythr = userdata;
const int thr_id = mythr->id;
uint32_t max_nonce = 0xffffff, total_hashes = 0;
unsigned long hashes_done = max_nonce;
bool needs_work = true;
/* Try to cycle approximately 5 times before each log update */
const unsigned long cycle = opt_log_interval / 5 ? : 1;
int request_interval;
bool requested = false;
uint32_t nonce_inc = max_nonce, hash_div = 1;
double hash_divfloat = 1.0;
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
/* Request the next work item just before the end of the scantime. We
* don't want the work lying around too long since the CPU will always
* spend the full scantime */
request_interval = opt_scantime - 5;
if (request_interval < 1)
request_interval = 1;
/* Set worker threads to nice 19 and then preferentially to SCHED_IDLE
* and if that fails, then SCHED_BATCH. No need for this to be an
* error if it fails */
setpriority(PRIO_PROCESS, 0, 19);
drop_policy();
/* Cpu affinity only makes sense if the number of threads is a multiple
* of the number of CPUs */
if (!(opt_n_threads % num_processors))
affine_to_cpu(thr_id - gpu_threads, dev_from_id(thr_id));
/* Invalidate pool so it fails can_roll() test */
work->pool = NULL;
while (1) {
struct timeval tv_workstart, tv_start, tv_end, diff;
uint64_t max64;
bool rc;
if (needs_work) {
gettimeofday(&tv_workstart, NULL);
/* obtain new work from internal workio thread */
if (unlikely(!get_work(work, requested, mythr, thr_id, hash_div))) {
applog(LOG_ERR, "work retrieval failed, exiting "
"mining thread %d", thr_id);
goto out;
}
needs_work = requested = false;
total_hashes = 0;
max_nonce = work->blk.nonce + hashes_done;
}
hashes_done = 0;
gettimeofday(&tv_start, NULL);
/* scan nonces for a proof-of-work hash */
switch (opt_algo) {
case ALGO_C:
rc = scanhash_c(thr_id, work->midstate, work->data + 64,
work->hash1, work->hash, work->target,
max_nonce, &hashes_done,
work->blk.nonce);
break;
#ifdef WANT_X8664_SSE2
case ALGO_SSE2_64: {
unsigned int rc5 =
scanhash_sse2_64(thr_id, work->midstate, work->data + 64,
work->hash1, work->hash,
work->target,
max_nonce, &hashes_done,
work->blk.nonce);
rc = (rc5 == -1) ? false : true;
}
break;
#endif
#ifdef WANT_X8664_SSE4
case ALGO_SSE4_64: {
unsigned int rc5 =
scanhash_sse4_64(thr_id, work->midstate, work->data + 64,
work->hash1, work->hash,
work->target,
max_nonce, &hashes_done,
work->blk.nonce);
rc = (rc5 == -1) ? false : true;
}
break;
#endif
#ifdef WANT_SSE2_4WAY
case ALGO_4WAY: {
unsigned int rc4 =
ScanHash_4WaySSE2(thr_id, work->midstate, work->data + 64,
work->hash1, work->hash,
work->target,
max_nonce, &hashes_done,
work->blk.nonce);
rc = (rc4 == -1) ? false : true;
}
break;
#endif
#ifdef WANT_VIA_PADLOCK
case ALGO_VIA:
rc = scanhash_via(thr_id, work->data, work->target,
max_nonce, &hashes_done,
work->blk.nonce);
break;
#endif
case ALGO_CRYPTOPP:
rc = scanhash_cryptopp(thr_id, work->midstate, work->data + 64,
work->hash1, work->hash, work->target,
max_nonce, &hashes_done,
work->blk.nonce);
break;
#ifdef WANT_CRYPTOPP_ASM32
case ALGO_CRYPTOPP_ASM32:
rc = scanhash_asm32(thr_id, work->midstate, work->data + 64,
work->hash1, work->hash, work->target,
max_nonce, &hashes_done,
work->blk.nonce);
break;
#endif
default:
/* should never happen */
goto out;
}
/* record scanhash elapsed time */
gettimeofday(&tv_end, NULL);
timeval_subtract(&diff, &tv_end, &tv_start);
hashes_done -= work->blk.nonce;
hashmeter(thr_id, &diff, hashes_done);
total_hashes += hashes_done;
work->blk.nonce += hashes_done;
/* adjust max_nonce to meet target cycle time */
if (diff.tv_usec > 500000)
diff.tv_sec++;
if (diff.tv_sec && diff.tv_sec != cycle) {
uint64_t next_inc = ((uint64_t)hashes_done * (uint64_t)cycle) / (uint64_t)diff.tv_sec;
if (next_inc > (uint64_t)nonce_inc / 2 * 3)
next_inc = nonce_inc / 2 * 3;
nonce_inc = next_inc;
} else if (!diff.tv_sec)
nonce_inc = hashes_done * 2;
max64 = work->blk.nonce + nonce_inc;
if (max64 > 0xfffffffaULL)
max64 = 0xfffffffaULL;
max_nonce = max64;
/* if nonce found, submit work */
if (unlikely(rc)) {
if (opt_debug)
applog(LOG_DEBUG, "CPU %d found something?", dev_from_id(thr_id));
if (unlikely(!submit_work_async(mythr, work))) {
applog(LOG_ERR, "Failed to submit_work_sync in miner_thread %d", thr_id);
break;
}
work->blk.nonce += 4;
}
timeval_subtract(&diff, &tv_end, &tv_workstart);
if (!requested && (diff.tv_sec >= request_interval)) {
thread_reportout(mythr);
if (unlikely(!queue_request(mythr, false))) {
applog(LOG_ERR, "Failed to queue_request in miner_thread %d", thr_id);
goto out;
}
thread_reportin(mythr);
requested = true;
}
if (diff.tv_sec > opt_scantime) {
decay_time(&hash_divfloat , (double)((MAXTHREADS / total_hashes) ? : 1));
hash_div = hash_divfloat;
needs_work = true;
} else if (work_restart[thr_id].restart || stale_work(work) ||
work->blk.nonce >= MAXTHREADS - hashes_done)
needs_work = true;
}
out:
thread_reportin(mythr);
applog(LOG_ERR, "Thread %d failure, exiting", thr_id);
tq_freeze(mythr->q);
return NULL;
}
enum {
STAT_SLEEP_INTERVAL = 1,
STAT_CTR_INTERVAL = 10000000,
FAILURE_INTERVAL = 30,
};
#ifdef HAVE_OPENCL
static _clState *clStates[16];
static cl_int queue_poclbm_kernel(_clState *clState, dev_blk_ctx *blk)
{
cl_kernel *kernel = &clState->kernel;
cl_int status = 0;
int num = 0;
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_a);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_b);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_c);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_d);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_e);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_f);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_g);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_h);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_b);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_c);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_d);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_f);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_g);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_h);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->nonce);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW0);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW1);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW2);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW3);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW15);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW01r);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fcty_e);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fcty_e2);
status |= clSetKernelArg(*kernel, num++, sizeof(clState->outputBuffer),
(void *)&clState->outputBuffer);
return status;
}
static cl_int queue_phatk_kernel(_clState *clState, dev_blk_ctx *blk)
{
cl_uint vwidth = clState->preferred_vwidth;
cl_kernel *kernel = &clState->kernel;
cl_int status = 0;
int i, num = 0;
uint *nonces;
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_a);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_b);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_c);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_d);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_e);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_f);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_g);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_h);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_b);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_c);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_d);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_f);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_g);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_h);
nonces = alloca(sizeof(uint) * vwidth);
for (i = 0; i < vwidth; i++)
nonces[i] = blk->nonce + i;
status |= clSetKernelArg(*kernel, num++, vwidth * sizeof(uint), (void *)nonces);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W16);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W17);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->PreVal4_2);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->PreVal0);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->PreW18);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->PreW19);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->PreW31);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->PreW32);
status |= clSetKernelArg(*kernel, num++, sizeof(clState->outputBuffer),
(void *)&clState->outputBuffer);
return status;
}
static void set_threads_hashes(unsigned int vectors, unsigned int *threads,
unsigned int *hashes, size_t *globalThreads,
unsigned int minthreads)
{
*threads = 1 << (15 + scan_intensity);
if (*threads < minthreads)
*threads = minthreads;
*globalThreads = *threads;
*hashes = *threads * vectors;
}
static void *gpuminer_thread(void *userdata)
{
cl_int (*queue_kernel_parameters)(_clState *, dev_blk_ctx *);
const unsigned long cycle = opt_log_interval / 5 ? : 1;
struct timeval tv_start, tv_end, diff, tv_workstart;
struct thr_info *mythr = userdata;
const int thr_id = mythr->id;
uint32_t *res, *blank_res;
double gpu_ms_average = 7;
int gpu = dev_from_id(thr_id);
size_t globalThreads[1];
size_t localThreads[1];
cl_int status;
_clState *clState = clStates[thr_id];
const cl_kernel *kernel = &clState->kernel;
struct work *work = make_work();
unsigned int threads;
unsigned const int vectors = clState->preferred_vwidth;
unsigned int hashes;
unsigned int hashes_done = 0;
/* Request the next work item at 2/3 of the scantime */
unsigned const int request_interval = opt_scantime * 2 / 3 ? : 1;
unsigned const long request_nonce = MAXTHREADS / 3 * 2;
bool requested = false;
uint32_t total_hashes = 0, hash_div = 1;
switch (chosen_kernel) {
case KL_POCLBM:
queue_kernel_parameters = &queue_poclbm_kernel;
break;
case KL_PHATK:
default:
queue_kernel_parameters = &queue_phatk_kernel;
break;
}
if (opt_dynamic) {
/* Minimise impact on desktop if we want dynamic mode */
setpriority(PRIO_PROCESS, 0, 19);
drop_policy();
}
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
res = calloc(BUFFERSIZE, 1);
blank_res = calloc(BUFFERSIZE, 1);
if (!res || !blank_res) {
applog(LOG_ERR, "Failed to calloc in gpuminer_thread");
goto out;
}
gettimeofday(&tv_start, NULL);
localThreads[0] = clState->work_size;
set_threads_hashes(vectors, &threads, &hashes, &globalThreads[0],
localThreads[0]);
diff.tv_sec = 0;
gettimeofday(&tv_end, NULL);
work->pool = NULL;
status = clEnqueueWriteBuffer(clState->commandQueue, clState->outputBuffer, CL_TRUE, 0,
BUFFERSIZE, blank_res, 0, NULL, NULL);
if (unlikely(status != CL_SUCCESS))
{ applog(LOG_ERR, "Error: clEnqueueWriteBuffer failed."); goto out; }
mythr->cgpu->status = LIFE_WELL;
if (opt_debug)
applog(LOG_DEBUG, "Popping ping in gpuminer thread");
tq_pop(mythr->q, NULL); /* Wait for a ping to start */
gettimeofday(&tv_workstart, NULL);
/* obtain new work from internal workio thread */
if (unlikely(!get_work(work, requested, mythr, thr_id, hash_div))) {
applog(LOG_ERR, "work retrieval failed, exiting "
"gpu mining thread %d", thr_id);
goto out;
}
requested = false;
precalc_hash(&work->blk, (uint32_t *)(work->midstate), (uint32_t *)(work->data + 64));
work->blk.nonce = 0;
while (1) {
struct timeval tv_gpustart, tv_gpuend;
suseconds_t gpu_us;
gettimeofday(&tv_gpustart, NULL);
timeval_subtract(&diff, &tv_gpustart, &tv_gpuend);
/* This finish flushes the readbuffer set with CL_FALSE later */
clFinish(clState->commandQueue);
gettimeofday(&tv_gpuend, NULL);
timeval_subtract(&diff, &tv_gpuend, &tv_gpustart);
gpu_us = diff.tv_sec * 1000000 + diff.tv_usec;
decay_time(&gpu_ms_average, gpu_us / 1000);
if (opt_dynamic) {
/* Try to not let the GPU be out for longer than 6ms, but
* increase intensity when the system is idle, unless
* dynamic is disabled. */
if (gpu_ms_average > 7) {
if (scan_intensity > -10)
scan_intensity--;
} else if (gpu_ms_average < 3) {
if (scan_intensity < 10)
scan_intensity++;
}
}
set_threads_hashes(vectors, &threads, &hashes, globalThreads, localThreads[0]);
if (diff.tv_sec > opt_scantime ||
work->blk.nonce >= MAXTHREADS - hashes ||
work_restart[thr_id].restart ||
stale_work(work)) {
/* Ignore any reads since we're getting new work and queue a clean buffer */
status = clEnqueueWriteBuffer(clState->commandQueue, clState->outputBuffer, CL_FALSE, 0,
BUFFERSIZE, blank_res, 0, NULL, NULL);
if (unlikely(status != CL_SUCCESS))
{ applog(LOG_ERR, "Error: clEnqueueWriteBuffer failed."); goto out; }
memset(res, 0, BUFFERSIZE);
gettimeofday(&tv_workstart, NULL);
if (opt_debug)
applog(LOG_DEBUG, "getwork thread %d", thr_id);
/* obtain new work from internal workio thread */
if (unlikely(!get_work(work, requested, mythr, thr_id, hash_div))) {
applog(LOG_ERR, "work retrieval failed, exiting "
"gpu mining thread %d", thr_id);
goto out;
}
requested = false;
precalc_hash(&work->blk, (uint32_t *)(work->midstate), (uint32_t *)(work->data + 64));
work_restart[thr_id].restart = 0;
/* Flushes the writebuffer set with CL_FALSE above */
clFinish(clState->commandQueue);
}
status = queue_kernel_parameters(clState, &work->blk);
if (unlikely(status != CL_SUCCESS))
{ applog(LOG_ERR, "Error: clSetKernelArg of all params failed."); goto out; }
/* MAXBUFFERS entry is used as a flag to say nonces exist */
if (res[FOUND]) {
/* Clear the buffer again */
status = clEnqueueWriteBuffer(clState->commandQueue, clState->outputBuffer, CL_FALSE, 0,
BUFFERSIZE, blank_res, 0, NULL, NULL);
if (unlikely(status != CL_SUCCESS))
{ applog(LOG_ERR, "Error: clEnqueueWriteBuffer failed."); goto out; }
if (opt_debug)
applog(LOG_DEBUG, "GPU %d found something?", gpu);
postcalc_hash_async(mythr, work, res);
memset(res, 0, BUFFERSIZE);
clFinish(clState->commandQueue);
}
status = clEnqueueNDRangeKernel(clState->commandQueue, *kernel, 1, NULL,
globalThreads, localThreads, 0, NULL, NULL);
if (unlikely(status != CL_SUCCESS))
{ applog(LOG_ERR, "Error: Enqueueing kernel onto command queue. (clEnqueueNDRangeKernel)"); goto out; }
status = clEnqueueReadBuffer(clState->commandQueue, clState->outputBuffer, CL_FALSE, 0,
BUFFERSIZE, res, 0, NULL, NULL);
if (unlikely(status != CL_SUCCESS))
{ applog(LOG_ERR, "Error: clEnqueueReadBuffer failed. (clEnqueueReadBuffer)"); goto out;}
gettimeofday(&tv_end, NULL);
timeval_subtract(&diff, &tv_end, &tv_start);
hashes_done += hashes;
total_hashes += hashes;
work->blk.nonce += hashes;
if (diff.tv_sec >= cycle) {
hashmeter(thr_id, &diff, hashes_done);
gettimeofday(&tv_start, NULL);
hashes_done = 0;
}
timeval_subtract(&diff, &tv_end, &tv_workstart);
if (!requested) {
#if 0
if (diff.tv_sec > request_interval)
hash_div = (MAXTHREADS / total_hashes) ? : 1;
#endif
if (diff.tv_sec > request_interval || work->blk.nonce > request_nonce) {
thread_reportout(mythr);
if (unlikely(!queue_request(mythr, false))) {
applog(LOG_ERR, "Failed to queue_request in gpuminer_thread %d", thr_id);
goto out;
}
thread_reportin(mythr);
requested = true;
}
}
if (unlikely(!gpu_devices[gpu])) {
applog(LOG_WARNING, "Thread %d being disabled", thr_id);
mythr->rolling = mythr->cgpu->rolling = 0;
if (opt_debug)
applog(LOG_DEBUG, "Popping wakeup ping in gpuminer thread");
tq_pop(mythr->q, NULL); /* Ignore ping that's popped */
applog(LOG_WARNING, "Thread %d being re-enabled", thr_id);
}
}
out:
clReleaseCommandQueue(clState->commandQueue);
clReleaseKernel(clState->kernel);
clReleaseProgram(clState->program);
clReleaseContext(clState->context);
thread_reportin(mythr);
applog(LOG_ERR, "Thread %d failure, exiting", thr_id);
tq_freeze(mythr->q);
return NULL;
}
#endif /* HAVE_OPENCL */
static void restart_threads(void)
{
int i;
if (block_changed == BLOCK_DETECT)
block_changed = BLOCK_NONE;
/* Discard old queued requests and get new ones */
flush_requests();
for (i = 0; i < mining_threads; i++)
work_restart[i].restart = 1;
}
/* Stage another work item from the work returned in a longpoll */
static void convert_to_work(json_t *val, bool rolltime)
{
struct work *work;
bool rc;
work = make_work();
rc= work_decode(json_object_get(val, "result"), work);
if (unlikely(!rc)) {
applog(LOG_ERR, "Could not convert longpoll data to work");
return;
}
work->pool = current_pool();
work->rolltime = rolltime;
if (opt_debug)
applog(LOG_DEBUG, "Pushing converted work to stage thread");
if (unlikely(!tq_push(thr_info[stage_thr_id].q, work)))
applog(LOG_ERR, "Could not tq_push work in convert_to_work");
else if (opt_debug)
applog(LOG_DEBUG, "Converted longpoll data to work");
}
static void *longpoll_thread(void *userdata)
{
struct thr_info *mythr = userdata;
CURL *curl = NULL;
char *copy_start, *hdr_path, *lp_url = NULL;
bool need_slash = false;
int failures = 0;
struct pool *pool = current_pool();
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
curl = curl_easy_init();
if (unlikely(!curl)) {
applog(LOG_ERR, "CURL initialisation failed");
goto out;
}
tq_pop(mythr->q, NULL);
if (!pool->hdr_path) {
applog(LOG_WARNING, "No long-poll found on this server");
goto out;
}
hdr_path = pool->hdr_path;
/* full URL */
if (strstr(hdr_path, "://")) {
lp_url = hdr_path;
hdr_path = NULL;
}
/* absolute path, on current server */
else {
copy_start = (*hdr_path == '/') ? (hdr_path + 1) : hdr_path;
if (pool->rpc_url[strlen(pool->rpc_url) - 1] != '/')
need_slash = true;
lp_url = malloc(strlen(pool->rpc_url) + strlen(copy_start) + 2);
if (!lp_url)
goto out;
sprintf(lp_url, "%s%s%s", pool->rpc_url, need_slash ? "/" : "", copy_start);
}
have_longpoll = true;
applog(LOG_WARNING, "Long-polling activated for %s", lp_url);
while (1) {
struct timeval start, end;
bool rolltime;
json_t *val;
gettimeofday(&start, NULL);
val = json_rpc_call(curl, lp_url, pool->rpc_userpass, rpc_req,
false, true, &rolltime, pool);
if (likely(val)) {
/* Keep track of who ordered a restart_threads to make
* sure it's only done once per new block */
if (block_changed != BLOCK_DETECT) {
block_changed = BLOCK_LP;
new_blocks++;
applog(LOG_WARNING, "LONGPOLL detected new block on network, waiting on fresh work");
restart_threads();
} else {
applog(LOG_WARNING, "LONGPOLL received after new block already detected");
block_changed = BLOCK_NONE;
}
convert_to_work(val, rolltime);
failures = 0;
json_decref(val);
} else {
/* Some pools regularly drop the longpoll request so
* only see this as longpoll failure if it happens
* immediately and just restart it the rest of the
* time. */
gettimeofday(&end, NULL);
if (end.tv_sec - start.tv_sec > 30)
continue;
if (failures++ < 10) {
sleep(30);
applog(LOG_WARNING,
"longpoll failed for %s, sleeping for 30s", lp_url);
} else {
applog(LOG_ERR,
"longpoll failed for %s, ending thread", lp_url);
goto out;
}
}
}
out:
have_longpoll = false;
tq_freeze(mythr->q);
if (curl)
curl_easy_cleanup(curl);
return NULL;
}
static void stop_longpoll(void)
{
struct thr_info *thr = &thr_info[longpoll_thr_id];
tq_freeze(thr->q);
pthread_cancel(*thr->pth);
have_longpoll = false;
}
static void start_longpoll(void)
{
struct thr_info *thr = &thr_info[longpoll_thr_id];
tq_thaw(thr->q);
if (unlikely(thr_info_create(thr, NULL, longpoll_thread, thr)))
quit(1, "longpoll thread create failed");
pthread_detach(*thr->pth);
if (opt_debug)
applog(LOG_DEBUG, "Pushing ping to longpoll thread");
tq_push(thr_info[longpoll_thr_id].q, &ping);
}
static void restart_longpoll(void)
{
stop_longpoll();
if (want_longpoll)
start_longpoll();
}
static void *reinit_cpu(void *userdata)
{
pthread_detach(pthread_self());
#if 0
struct cgpu_info *cgpu = (struct cgpu_info *)userdata;
int cpu = cgpu->cpu_gpu;
long thr_id = ....(long)userdata;
struct thr_info *thr = &thr_info[thr_id];
int cpu = dev_from_id(thr_id);
cpus[cpu].alive = false;
thr->rolling = thr->cgpu->rolling = 0;
tq_freeze(thr->q);
if (!pthread_cancel(*thr->pth))
pthread_join(*thr->pth, NULL);
free(thr->q);
thr->q = tq_new();
if (!thr->q)
quit(1, "Failed to tq_new in reinit_cputhread");
applog(LOG_INFO, "Reinit CPU thread %d", thr_id);
if (unlikely(thr_info_create(thr, NULL, miner_thread, thr))) {
applog(LOG_ERR, "thread %d create failed", thr_id);
return NULL;
}
tq_push(thr->q, &ping);
applog(LOG_WARNING, "Thread %d restarted", thr_id);
#endif
return NULL;
}
#ifdef HAVE_OPENCL
/* We have only one thread that ever re-initialises GPUs, thus if any GPU
* init command fails due to a completely wedged GPU, the thread will never
* return, unable to harm other GPUs. If it does return, it means we only had
* a soft failure and then the reinit_gpu thread is ready to tackle another
* GPU */
static void *reinit_gpu(void *userdata)
{
struct thr_info *mythr = userdata;
struct cgpu_info *cgpu;
struct thr_info *thr;
struct timeval now;
char name[256];
int thr_id;
int gpu;
pthread_detach(pthread_self());
select_cgpu:
cgpu = tq_pop(mythr->q, NULL);
if (!cgpu)
goto out;
if (clDevicesNum() != nDevs) {
applog(LOG_WARNING, "Hardware not reporting same number of active devices, will not attempt to restart GPU");
goto out;
}
gpu = cgpu->cpu_gpu;
gpu_devices[gpu] = false;
for (thr_id = 0; thr_id < gpu_threads; thr_id ++) {
if (dev_from_id(thr_id) != gpu)
continue;
thr = &thr_info[thr_id];
thr->rolling = thr->cgpu->rolling = 0;
/* Reports the last time we tried to revive a sick GPU */
gettimeofday(&thr->sick, NULL);
if (!pthread_cancel(*thr->pth)) {
applog(LOG_WARNING, "Thread %d still exists, killing it off", thr_id);
} else
applog(LOG_WARNING, "Thread %d no longer exists", thr_id);
}
gpu_devices[gpu] = true;
for (thr_id = 0; thr_id < gpu_threads; thr_id ++) {
if (dev_from_id(thr_id) != gpu)
continue;
thr = &thr_info[thr_id];
/* Lose this ram cause we may get stuck here! */
//tq_freeze(thr->q);
thr->q = tq_new();
if (!thr->q)
quit(1, "Failed to tq_new in reinit_gpu");
/* Lose this ram cause we may dereference in the dying thread! */
//free(clState);
applog(LOG_INFO, "Reinit GPU thread %d", thr_id);
clStates[thr_id] = initCl(gpu, name, sizeof(name));
if (!clStates[thr_id]) {
applog(LOG_ERR, "Failed to reinit GPU thread %d", thr_id);
goto select_cgpu;
}
applog(LOG_INFO, "initCl() finished. Found %s", name);
if (unlikely(thr_info_create(thr, NULL, gpuminer_thread, thr))) {
applog(LOG_ERR, "thread %d create failed", thr_id);
return NULL;
}
applog(LOG_WARNING, "Thread %d restarted", thr_id);
}
gettimeofday(&now, NULL);
get_datestamp(cgpu->init, &now);
for (thr_id = 0; thr_id < gpu_threads; thr_id ++) {
if (dev_from_id(thr_id) != gpu)
continue;
thr = &thr_info[thr_id];
tq_push(thr->q, &ping);
}
goto select_cgpu;
out:
return NULL;
}
#else
static void *reinit_gpu(void *userdata)
{
}
#endif
static void reinit_device(struct cgpu_info *cgpu)
{
if (cgpu->is_gpu)
tq_push(thr_info[gpur_thr_id].q, cgpu);
else
tq_push(thr_info[cpur_thr_id].q, cgpu);
}
/* Determine which are the first threads belonging to a device and if they're
* active */
static bool active_device(int thr_id)
{
if (thr_id < gpu_threads) {
if (thr_id >= total_devices)
return false;
if (!gpu_devices[dev_from_id(thr_id)])
return false;
} else if (thr_id > gpu_threads + num_processors)
return false;
return true;
}
/* Makes sure the hashmeter keeps going even if mining threads stall, updates
* the screen at regular intervals, and restarts threads if they appear to have
* died. */
static void *watchdog_thread(void *userdata)
{
const unsigned int interval = opt_log_interval / 2 ? : 1;
static struct timeval rotate_tv;
struct timeval zero_tv;
bool statwin = false;
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
memset(&zero_tv, 0, sizeof(struct timeval));
gettimeofday(&rotate_tv, NULL);
while (1) {
int i;
struct timeval now;
sleep(interval);
if (requests_queued() < opt_queue)
queue_request(NULL, false);
hashmeter(-1, &zero_tv, 0);
if (curses_active) {
statwin ^= true;
mutex_lock(&curses_lock);
for (i = 0; i < mining_threads; i++)
curses_print_status(i);
if (statwin)
redrawwin(statuswin);
else {
check_logwinsize();
redrawwin(logwin);
}
mutex_unlock(&curses_lock);
}
if (unlikely(work_restart[watchdog_thr_id].restart)) {
restart_threads();
work_restart[watchdog_thr_id].restart = 0;
}
gettimeofday(&now, NULL);
for (i = 0; i < total_pools; i++) {
struct pool *pool = pools[i];
if (!pool->enabled)
continue;
/* Test pool is idle once every minute */
if (pool->idle && now.tv_sec - pool->tv_idle.tv_sec > 60) {
gettimeofday(&pool->tv_idle, NULL);
if (pool_active(pool, true) && pool_tclear(pool, &pool->idle))
pool_resus(pool);
}
}
if (pool_strategy == POOL_ROTATE && now.tv_sec - rotate_tv.tv_sec > 60 * opt_rotate_period) {
gettimeofday(&rotate_tv, NULL);
switch_pools(NULL);
}
//for (i = 0; i < mining_threads; i++) {
for (i = 0; i < gpu_threads; i++) {
struct thr_info *thr;
int gpu;
/* Use only one thread per device to determine if the GPU is healthy */
if (i >= nDevs)
break;
thr = &thr_info[i];
gpu = thr->cgpu->cpu_gpu;
/* Thread is waiting on getwork or disabled */
if (thr->getwork || !gpu_devices[gpu])
continue;
if (gpus[gpu].status != LIFE_WELL && now.tv_sec - thr->last.tv_sec < 60) {
applog(LOG_ERR, "Thread %d recovered, GPU %d declared WELL!", i, gpu);
gpus[gpu].status = LIFE_WELL;
} else if (now.tv_sec - thr->last.tv_sec > 60 && gpus[gpu].status == LIFE_WELL) {
thr->rolling = thr->cgpu->rolling = 0;
gpus[gpu].status = LIFE_SICK;
applog(LOG_ERR, "Thread %d idle for more than 60 seconds, GPU %d declared SICK!", i, gpu);
applog(LOG_ERR, "Attempting to restart GPU");
gettimeofday(&thr->sick, NULL);
reinit_device(thr->cgpu);
} else if (now.tv_sec - thr->sick.tv_sec > 600 && gpus[i].status == LIFE_SICK) {
gpus[gpu].status = LIFE_DEAD;
applog(LOG_ERR, "Thread %d not responding for more than 10 minutes, GPU %d declared DEAD!", i, gpu);
} else if (now.tv_sec - thr->sick.tv_sec > 60 && gpus[i].status == LIFE_SICK) {
/* Attempt to restart a GPU once every minute */
gettimeofday(&thr->sick, NULL);
reinit_device(thr->cgpu);
}
}
}
return NULL;
}
static void log_print_status(int thr_id)
{
struct cgpu_info *cgpu;
cgpu = thr_info[thr_id].cgpu;
applog(LOG_WARNING, " %sPU %d: [%.1f / %.1f Mh/s] [Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m]",
cgpu->is_gpu ? "G" : "C", cgpu->cpu_gpu, cgpu->rolling,
cgpu->total_mhashes / total_secs, cgpu->getworks,
cgpu->accepted, cgpu->rejected, cgpu->hw_errors,
cgpu->efficiency, cgpu->utility);
}
static void print_summary(void)
{
struct timeval diff;
int hours, mins, secs, i;
double utility, efficiency = 0.0;
timeval_subtract(&diff, &total_tv_end, &total_tv_start);
hours = diff.tv_sec / 3600;
mins = (diff.tv_sec % 3600) / 60;
secs = diff.tv_sec % 60;
utility = total_accepted / ( total_secs ? total_secs : 1 ) * 60;
efficiency = total_getworks ? total_accepted * 100.0 / total_getworks : 0.0;
applog(LOG_WARNING, "\nSummary of runtime statistics:\n");
applog(LOG_WARNING, "Started at %s", datestamp);
if (opt_n_threads)
applog(LOG_WARNING, "CPU hasher algorithm used: %s", algo_names[opt_algo]);
applog(LOG_WARNING, "Runtime: %d hrs : %d mins : %d secs", hours, mins, secs);
if (total_secs)
applog(LOG_WARNING, "Average hashrate: %.1f Megahash/s", total_mhashes_done / total_secs);
applog(LOG_WARNING, "Queued work requests: %d", total_getworks);
applog(LOG_WARNING, "Share submissions: %d", total_accepted + total_rejected);
applog(LOG_WARNING, "Accepted shares: %d", total_accepted);
applog(LOG_WARNING, "Rejected shares: %d", total_rejected);
if (total_accepted || total_rejected)
applog(LOG_WARNING, "Reject ratio: %.1f", (double)(total_rejected * 100) / (double)(total_accepted + total_rejected));
applog(LOG_WARNING, "Hardware errors: %d", hw_errors);
applog(LOG_WARNING, "Efficiency (accepted / queued): %.0f%%", efficiency);
applog(LOG_WARNING, "Utility (accepted shares / min): %.2f/min\n", utility);
applog(LOG_WARNING, "Discarded work due to new blocks: %d", total_discarded);
applog(LOG_WARNING, "Stale submissions discarded due to new blocks: %d", total_stale);
applog(LOG_WARNING, "Unable to get work from server occasions: %d", total_lo);
applog(LOG_WARNING, "Work items generated locally: %d", local_work);
applog(LOG_WARNING, "Submitting work remotely delay occasions: %d", total_ro);
applog(LOG_WARNING, "New blocks detected on network: %d\n", new_blocks);
if (total_pools > 1) {
for (i = 0; i < total_pools; i++) {
struct pool *pool = pools[i];
applog(LOG_WARNING, "Pool: %s", pool->rpc_url);
applog(LOG_WARNING, " Queued work requests: %d", pool->getwork_requested);
applog(LOG_WARNING, " Share submissions: %d", pool->accepted + pool->rejected);
applog(LOG_WARNING, " Accepted shares: %d", pool->accepted);
applog(LOG_WARNING, " Rejected shares: %d", pool->rejected);
if (pool->accepted || pool->rejected)
applog(LOG_WARNING, " Reject ratio: %.1f", (double)(pool->rejected * 100) / (double)(pool->accepted + pool->rejected));
efficiency = pool->getwork_requested ? pool->accepted * 100.0 / pool->getwork_requested : 0.0;
applog(LOG_WARNING, " Efficiency (accepted / queued): %.0f%%", efficiency);
applog(LOG_WARNING, " Discarded work due to new blocks: %d", pool->discarded_work);
applog(LOG_WARNING, " Stale submissions discarded due to new blocks: %d", pool->stale_shares);
applog(LOG_WARNING, " Unable to get work from server occasions: %d", pool->localgen_occasions);
applog(LOG_WARNING, " Submitting work remotely delay occasions: %d\n", pool->remotefail_occasions);
}
}
applog(LOG_WARNING, "Summary of per device statistics:\n");
for (i = 0; i < mining_threads; i++) {
if (active_device(i))
log_print_status(i);
}
fflush(stdout);
fflush(stderr);
}
void quit(int status, const char *format, ...)
{
va_list ap;
disable_curses();
if (format) {
va_start(ap, format);
vfprintf(stderr, format, ap);
va_end(ap);
}
fprintf(stderr, "\n");
fflush(stderr);
exit(status);
}
static char *curses_input(const char *query)
{
char *input;
echo();
input = malloc(255);
if (!input)
quit(1, "Failed to malloc input");
leaveok(logwin, false);
wlogprint("%s: ", query);
wgetnstr(logwin, input, 255);
leaveok(logwin, true);
noecho();
return input;
}
static bool input_pool(bool live)
{
char *url = NULL, *user = NULL, *pass = NULL;
struct pool *pool = NULL;
bool ret = false;
immedok(logwin, true);
if (total_pools == MAX_POOLS) {
wlogprint("Reached maximum number of pools.\n");
goto out;
}
wlogprint("Input server details.\n");
url = curses_input("URL");
if (!url)
goto out;
if (strncmp(url, "http://", 7) &&
strncmp(url, "https://", 8)) {
char *httpinput;
httpinput = malloc(255);
if (!httpinput)
quit(1, "Failed to malloc httpinput");
strcpy(httpinput, "http://");
strncat(httpinput, url, 248);
free(url);
url = httpinput;
}
user = curses_input("Username");
if (!user)
goto out;
pass = curses_input("Password");
if (!pass)
goto out;
pool = calloc(sizeof(struct pool), 1);
if (!pool)
quit(1, "Failed to realloc pools in input_pool");
pool->pool_no = total_pools;
pool->prio = total_pools;
if (unlikely(pthread_mutex_init(&pool->pool_lock, NULL)))
quit (1, "Failed to pthread_mutex_init in input_pool");
pool->rpc_url = url;
pool->rpc_user = user;
pool->rpc_pass = pass;
pool->rpc_userpass = malloc(strlen(pool->rpc_user) + strlen(pool->rpc_pass) + 2);
if (!pool->rpc_userpass)
quit(1, "Failed to malloc userpass");
sprintf(pool->rpc_userpass, "%s:%s", pool->rpc_user, pool->rpc_pass);
pool->tv_idle.tv_sec = ~0UL;
/* Test the pool is not idle if we're live running, otherwise
* it will be tested separately */
ret = true;
pool->enabled = true;
if (live && !pool_active(pool, false))
pool->idle = true;
pools[total_pools++] = pool;
out:
immedok(logwin, false);
if (!ret) {
if (url)
free(url);
if (user)
free(user);
if (pass)
free(pass);
if (pool)
free(pool);
}
return ret;
}
#if defined(unix)
static void fork_monitor()
{
// Make a pipe: [readFD, writeFD]
int pfd[2];
int r = pipe(pfd);
if (r<0) {
perror("pipe - failed to create pipe for --monitor");
exit(1);
}
// Make stderr write end of pipe
fflush(stderr);
r = dup2(pfd[1], 2);
if (r<0) {
perror("dup2 - failed to alias stderr to write end of pipe for --monitor");
exit(1);
}
r = close(pfd[1]);
if (r<0) {
perror("close - failed to close write end of pipe for --monitor");
exit(1);
}
// Don't allow a dying monitor to kill the main process
sighandler_t sr0 = signal(SIGPIPE, SIG_IGN);
sighandler_t sr1 = signal(SIGPIPE, SIG_IGN);
if (SIG_ERR==sr0 || SIG_ERR==sr1) {
perror("signal - failed to edit signal mask for --monitor");
exit(1);
}
// Fork a child process
r = fork();
if (r<0) {
perror("fork - failed to fork child process for --monitor");
exit(1);
}
// Child: launch monitor command
if (0==r) {
// Make stdin read end of pipe
r = dup2(pfd[0], 0);
if (r<0) {
perror("dup2 - in child, failed to alias read end of pipe to stdin for --monitor");
exit(1);
}
close(pfd[0]);
if (r<0) {
perror("close - in child, failed to close read end of pipe for --monitor");
exit(1);
}
// Launch user specified command
execl("/bin/bash", "/bin/bash", "-c", opt_stderr_cmd, (char*)NULL);
perror("execl - in child failed to exec user specified command for --monitor");
exit(1);
}
// Parent: clean up unused fds and bail
r = close(pfd[0]);
if (r<0) {
perror("close - failed to close read end of pipe for --monitor");
exit(1);
}
}
#endif // defined(unix)
int main (int argc, char *argv[])
{
unsigned int i, x, y, pools_active = 0;
struct sigaction handler;
struct thr_info *thr;
char name[256];
/* This dangerous functions tramples random dynamically allocated
* variables so do it before anything at all */
if (unlikely(curl_global_init(CURL_GLOBAL_ALL)))
quit(1, "Failed to curl_global_init");
if (unlikely(pthread_mutex_init(&hash_lock, NULL)))
quit(1, "Failed to pthread_mutex_init");
if (unlikely(pthread_mutex_init(&qd_lock, NULL)))
quit(1, "Failed to pthread_mutex_init");
if (unlikely(pthread_mutex_init(&stgd_lock, NULL)))
quit(1, "Failed to pthread_mutex_init");
if (unlikely(pthread_mutex_init(&curses_lock, NULL)))
quit(1, "Failed to pthread_mutex_init");
if (unlikely(pthread_mutex_init(&control_lock, NULL)))
quit(1, "Failed to pthread_mutex_init");
init_max_name_len();
handler.sa_handler = &sighandler;
sigaction(SIGTERM, &handler, &termhandler);
sigaction(SIGINT, &handler, &inthandler);
gettimeofday(&total_tv_start, NULL);
gettimeofday(&total_tv_end, NULL);
get_datestamp(datestamp, &total_tv_start);
// Hack to make cgminer silent when called recursively on WIN32
int skip_to_bench = 0;
#if defined(WIN32)
char buf[32];
if (GetEnvironmentVariable("CGMINER_BENCH_ALGO", buf, 16))
skip_to_bench = 1;
#endif // defined(WIN32)
for (i = 0; i < 36; i++)
strcat(current_block, "0");
current_hash = calloc(sizeof(current_hash), 1);
if (unlikely(!current_hash))
quit (1, "main OOM");
// Reckon number of cores in the box
#if defined(WIN32)
DWORD system_am;
DWORD process_am;
BOOL ok = GetProcessAffinityMask(
GetCurrentProcess(),
&system_am,
&process_am
);
if (!ok) {
applog(LOG_ERR, "couldn't figure out number of processors :(");
num_processors = 1;
} else {
size_t n = 32;
num_processors = 0;
while (n--)
if (process_am & (1<<n))
++num_processors;
}
#else
num_processors = sysconf(_SC_NPROCESSORS_ONLN);
#endif /* !WIN32 */
opt_n_threads = num_processors;
#ifdef HAVE_OPENCL
if (!skip_to_bench) {
for (i = 0; i < 16; i++)
gpu_devices[i] = false;
nDevs = clDevicesNum();
if (nDevs < 0) {
applog(LOG_ERR, "clDevicesNum returned error, none usable");
nDevs = 0;
}
}
#endif
if (nDevs)
opt_n_threads = 0;
trpc_url = strdup(DEF_RPC_URL);
/* parse command line */
opt_register_table(opt_config_table,
"Options for both config file and command line");
opt_register_table(opt_cmdline_table,
"Options for command line only");
opt_parse(&argc, argv, applog_and_exit);
if (argc != 1)
quit(1, "Unexpected extra commandline arguments");
if (want_per_device_stats)
opt_log_output = true;
if (0<=opt_bench_algo) {
double rate = bench_algo_stage3(opt_bench_algo);
if (!skip_to_bench) {
printf("%.5f (%s)\n", rate, algo_names[opt_bench_algo]);
} else {
// Write result to shared memory for parent
#if defined(WIN32)
char unique_name[64];
if (GetEnvironmentVariable("CGMINER_SHARED_MEM", unique_name, 32)) {
HANDLE map_handle = CreateFileMapping(
INVALID_HANDLE_VALUE, // use paging file
NULL, // default security attributes
PAGE_READWRITE, // read/write access
0, // size: high 32-bits
4096, // size: low 32-bits
unique_name // name of map object
);
if (NULL!=map_handle) {
void *shared_mem = MapViewOfFile(
map_handle, // object to map view of
FILE_MAP_WRITE, // read/write access
0, // high offset: map from
0, // low offset: beginning
0 // default: map entire file
);
if (NULL!=shared_mem)
CopyMemory(shared_mem, &rate, sizeof(rate));
(void)UnmapViewOfFile(shared_mem);
}
(void)CloseHandle(map_handle);
}
#endif
}
exit(0);
}
if (opt_kernel) {
if (strcmp(opt_kernel, "poclbm") && strcmp(opt_kernel, "phatk"))
quit(1, "Invalid kernel name specified - must be poclbm or phatk");
if (!strcmp(opt_kernel, "poclbm"))
chosen_kernel = KL_POCLBM;
else
chosen_kernel = KL_PHATK;
} else
chosen_kernel = KL_NONE;
gpu_threads = nDevs * opt_g_threads;
if (total_devices) {
if (total_devices > nDevs)
quit(1, "More devices specified than exist");
for (i = 0; i < 16; i++)
if (gpu_devices[i] && i + 1 > nDevs)
quit (1, "Command line options set a device that doesn't exist");
} else {
for (i = 0; i < nDevs; i++)
gpu_devices[i] = true;
total_devices = nDevs;
}
if (!gpu_threads && !forced_n_threads) {
/* Maybe they turned GPU off; restore default CPU threads. */
opt_n_threads = num_processors;
}
logcursor = 8;
gpucursor = logcursor;
cpucursor = gpucursor + nDevs;
logstart = cpucursor + (opt_n_threads ? num_processors : 0) + 1;
logcursor = logstart + 1;
/* Set up the ncurses interface */
if (!opt_realquiet && use_curses) {
mainwin = initscr();
getmaxyx(mainwin, y, x);
statuswin = newwin(logstart, x, 0, 0);
leaveok(statuswin, true);
logwin = newwin(y - logcursor, 0, logcursor, 0);
idlok(logwin, true);
scrollok(logwin, true);
leaveok(logwin, true);
cbreak();
noecho();
test_and_set(&curses_active);
}
if (!total_pools) {
if (curses_active) {
if (!input_pool(false))
quit(1, "Pool setup failed");
} else
quit(1, "No server specified");
}
for (i = 0; i < total_pools; i++) {
struct pool *pool = pools[i];
if (!pool->rpc_userpass) {
if (!pool->rpc_user || !pool->rpc_pass)
quit(1, "No login credentials supplied for pool %u %s", i, pool->rpc_url);
pool->rpc_userpass = malloc(strlen(pool->rpc_user) + strlen(pool->rpc_pass) + 2);
if (!pool->rpc_userpass)
quit(1, "Failed to malloc userpass");
sprintf(pool->rpc_userpass, "%s:%s", pool->rpc_user, pool->rpc_pass);
} else {
pool->rpc_user = malloc(strlen(pool->rpc_userpass));
if (!pool->rpc_user)
quit(1, "Failed to malloc user");
strcpy(pool->rpc_user, pool->rpc_userpass);
pool->rpc_user = strtok(pool->rpc_user, ":");
if (!pool->rpc_user)
quit(1, "Failed to find colon delimiter in userpass");
}
}
/* Set the currentpool to pool 0 */
currentpool = pools[0];
#ifdef HAVE_SYSLOG_H
if (use_syslog)
openlog(PROGRAM_NAME, LOG_PID, LOG_USER);
#endif
#if defined(unix)
if (opt_stderr_cmd)
fork_monitor();
#endif // defined(unix)
mining_threads = opt_n_threads + gpu_threads;
total_threads = mining_threads + 7;
work_restart = calloc(total_threads, sizeof(*work_restart));
if (!work_restart)
quit(1, "Failed to calloc work_restart");
thr_info = calloc(total_threads, sizeof(*thr));
if (!thr_info)
quit(1, "Failed to calloc thr_info");
/* init workio thread info */
work_thr_id = mining_threads;
thr = &thr_info[work_thr_id];
thr->id = work_thr_id;
thr->q = tq_new();
if (!thr->q)
quit(1, "Failed to tq_new");
/* start work I/O thread */
if (thr_info_create(thr, NULL, workio_thread, thr))
quit(1, "workio thread create failed");
/* init longpoll thread info */
longpoll_thr_id = mining_threads + 1;
thr = &thr_info[longpoll_thr_id];
thr->id = longpoll_thr_id;
thr->q = tq_new();
if (!thr->q)
quit(1, "Failed to tq_new");
if (opt_n_threads ) {
cpus = calloc(num_processors, sizeof(struct cgpu_info));
if (unlikely(!cpus))
quit(1, "Failed to calloc cpus");
}
if (gpu_threads) {
gpus = calloc(nDevs, sizeof(struct cgpu_info));
if (unlikely(!gpus))
quit(1, "Failed to calloc gpus");
}
stage_thr_id = mining_threads + 3;
thr = &thr_info[stage_thr_id];
thr->q = tq_new();
if (!thr->q)
quit(1, "Failed to tq_new");
/* start stage thread */
if (thr_info_create(thr, NULL, stage_thread, thr))
quit(1, "stage thread create failed");
pthread_detach(*thr->pth);
/* Create a unique get work queue */
getq = tq_new();
if (!getq)
quit(1, "Failed to create getq");
/* Test each pool to see if we can retrieve and use work and for what
* it supports */
for (i = 0; i < total_pools; i++) {
struct pool *pool;
pool = pools[i];
pool->enabled = true;
if (pool_active(pool, false)) {
if (!currentpool)
currentpool = pool;
applog(LOG_INFO, "Pool %d %s active", pool->pool_no, pool->rpc_url);
pools_active++;
} else {
if (pool == currentpool)
currentpool = NULL;
applog(LOG_WARNING, "Unable to get work from pool %d %s", pool->pool_no, pool->rpc_url);
pool->idle = true;
}
}
if (!pools_active)
quit(0, "No pools active! Exiting.");
/* If we want longpoll, enable it for the chosen default pool, or, if
* the pool does not support longpoll, find the first one that does
* and use its longpoll support */
if (want_longpoll) {
if (currentpool->hdr_path)
start_longpoll();
else {
for (i = 0; i < total_pools; i++) {
struct pool *pool;
pool = pools[i];
if (pool->hdr_path) {
struct pool *temp = currentpool;
currentpool = pool;
start_longpoll();
/* Not real blocking, but good enough */
sleep(1);
currentpool = temp;
break;
}
}
}
}
#ifdef HAVE_OPENCL
/* start GPU mining threads */
for (i = 0; i < nDevs * opt_g_threads; i++) {
int gpu = i % nDevs;
struct cgpu_info *cgpu;
struct timeval now;
gpus[gpu].is_gpu = 1;
gpus[gpu].cpu_gpu = gpu;
thr = &thr_info[i];
thr->id = i;
cgpu = thr->cgpu = &gpus[gpu];
thr->q = tq_new();
if (!thr->q)
quit(1, "tq_new failed in starting gpu mining threads");
/* Enable threads for devices set not to mine but disable
* their queue in case we wish to enable them later*/
if (gpu_devices[gpu]) {
if (opt_debug)
applog(LOG_DEBUG, "Pushing ping to thread %d", thr->id);
tq_push(thr->q, &ping);
}
applog(LOG_INFO, "Init GPU thread %i", i);
clStates[i] = initCl(gpu, name, sizeof(name));
if (!clStates[i]) {
applog(LOG_ERR, "Failed to init GPU thread %d", i);
gpu_devices[i] = false;
continue;
}
applog(LOG_INFO, "initCl() finished. Found %s", name);
gettimeofday(&now, NULL);
get_datestamp(cgpu->init, &now);
if (unlikely(thr_info_create(thr, NULL, gpuminer_thread, thr)))
quit(1, "thread %d create failed", i);
}
applog(LOG_INFO, "%d gpu miner threads started", gpu_threads);
#else
opt_g_threads = 0;
#endif
/* start CPU mining threads */
for (i = gpu_threads; i < mining_threads; i++) {
int cpu = (i - gpu_threads) % num_processors;
thr = &thr_info[i];
thr->id = i;
cpus[cpu].cpu_gpu = cpu;
thr->cgpu = &cpus[cpu];
thr->q = tq_new();
if (!thr->q)
quit(1, "tq_new failed in starting cpu mining threads");
thread_reportin(thr);
if (unlikely(thr_info_create(thr, NULL, miner_thread, thr)))
quit(1, "thread %d create failed", i);
}
applog(LOG_INFO, "%d cpu miner threads started, "
"using SHA256 '%s' algorithm.",
opt_n_threads,
algo_names[opt_algo]);
watchdog_thr_id = mining_threads + 2;
thr = &thr_info[watchdog_thr_id];
/* start wakeup thread */
if (thr_info_create(thr, NULL, watchdog_thread, NULL))
quit(1, "wakeup thread create failed");
/* Create curses input thread for keyboard input */
input_thr_id = mining_threads + 4;
thr = &thr_info[input_thr_id];
if (thr_info_create(thr, NULL, input_thread, thr))
quit(1, "input thread create failed");
pthread_detach(*thr->pth);
/* Create reinit cpu thread */
cpur_thr_id = mining_threads + 5;
thr = &thr_info[cpur_thr_id];
thr->q = tq_new();
if (!thr->q)
quit(1, "tq_new failed for cpur_thr_id");
if (thr_info_create(thr, NULL, reinit_cpu, thr))
quit(1, "reinit_cpu thread create failed");
/* Create reinit gpu thread */
gpur_thr_id = mining_threads + 6;
thr = &thr_info[gpur_thr_id];
thr->q = tq_new();
if (!thr->q)
quit(1, "tq_new failed for gpur_thr_id");
if (thr_info_create(thr, NULL, reinit_gpu, thr))
quit(1, "reinit_gpu thread create failed");
/* main loop - simply wait for workio thread to exit */
pthread_join(*thr_info[work_thr_id].pth, NULL);
applog(LOG_INFO, "workio thread dead, exiting.");
gettimeofday(&total_tv_end, NULL);
disable_curses();
if (!opt_realquiet && successful_connect)
print_summary();
if (gpu_threads)
free(gpus);
if (opt_n_threads)
free(cpus);
curl_global_cleanup();
return 0;
}