mirror of https://github.com/GOSTSec/sgminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
640 lines
30 KiB
640 lines
30 KiB
typedef uint z; |
|
|
|
#define BITALIGN |
|
|
|
#ifdef BITALIGN |
|
#pragma OPENCL EXTENSION cl_amd_media_ops : enable |
|
#define rotr(a, b) amd_bitalign((z)a, (z)a, (z)b) |
|
#define Ch(a, b, c) amd_bytealign(a, b, c) |
|
#define Ma(a, b, c) amd_bytealign((b), (a | c), (c & a)) |
|
#else |
|
#define rotr(a, b) rotate((z)a, (z)(32 - b)) |
|
#define Ch(a, b, c) (c ^ (a & (b ^ c))) |
|
#define Ma(a, b, c) ((b & c) | (a & (b | c))) |
|
#endif |
|
|
|
#define WGS __attribute__((reqd_work_group_size(128, 1, 1))) |
|
|
|
__constant uint K[64] = { |
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
|
}; |
|
|
|
typedef struct { |
|
uint ctx_a; |
|
uint ctx_b; |
|
uint ctx_c; |
|
uint ctx_d; |
|
uint ctx_e; |
|
uint ctx_f; |
|
uint ctx_g; |
|
uint ctx_h; |
|
uint cty_a; |
|
uint cty_b; |
|
uint cty_c; |
|
uint cty_d; |
|
uint cty_e; |
|
uint cty_f; |
|
uint cty_g; |
|
uint cty_h; |
|
uint merkle; |
|
uint ntime; |
|
uint nbits; |
|
uint nonce; |
|
uint fW0; |
|
uint fW1; |
|
uint fW2; |
|
uint fW3; |
|
uint fW15; |
|
uint fW01r; |
|
uint fcty_e; |
|
uint fcty_e2; |
|
} dev_blk_ctx; |
|
|
|
__kernel __attribute__((vec_type_hint(uint))) WGS void oclminer( |
|
__constant dev_blk_ctx *ctx, __global uint *output) |
|
{ |
|
const uint fW0 = ctx->fW0; |
|
const uint fW1 = ctx->fW1; |
|
const uint fW2 = ctx->fW2; |
|
const uint fW3 = ctx->fW3; |
|
const uint fW15 = ctx->fW15; |
|
const uint fW01r = ctx->fW01r; |
|
const uint fcty_e = ctx->fcty_e; |
|
const uint fcty_e2 = ctx->fcty_e2; |
|
const uint state0 = ctx->ctx_a; |
|
const uint state1 = ctx->ctx_b; |
|
const uint state2 = ctx->ctx_c; |
|
const uint state3 = ctx->ctx_d; |
|
const uint state4 = ctx->ctx_e; |
|
const uint state5 = ctx->ctx_f; |
|
const uint state6 = ctx->ctx_g; |
|
const uint state7 = ctx->ctx_h; |
|
const uint B1 = ctx->cty_b; |
|
const uint C1 = ctx->cty_c; |
|
const uint D1 = ctx->cty_d; |
|
const uint F1 = ctx->cty_f; |
|
const uint G1 = ctx->cty_g; |
|
const uint H1 = ctx->cty_h; |
|
|
|
uint A, B, C, D, E, F, G, H; |
|
uint W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15; |
|
uint it; |
|
const uint myid = get_global_id(0); |
|
|
|
const uint tnonce = ctx->nonce + myid; |
|
|
|
W3 = 0 ^ tnonce; |
|
E = fcty_e + W3; |
|
A = state0 + E; |
|
E = E + fcty_e2; |
|
D = D1 + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B1, C1) + K[ 4] + 0x80000000; |
|
H = H1 + D; |
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G1, E, F1); |
|
C = C1 + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B1) + K[ 5]; |
|
G = G1 + C; |
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F1, D, E); |
|
B = B1 + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6]; |
|
F = F1 + B; |
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7]; |
|
E = E + A; |
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8]; |
|
D = D + H; |
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9]; |
|
C = C + G; |
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10]; |
|
B = B + F; |
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11]; |
|
A = A + E; |
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12]; |
|
H = H + D; |
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13]; |
|
G = G + C; |
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14]; |
|
F = F + B; |
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000280; |
|
E = E + A; |
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + fW0; |
|
D = D + H; |
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + fW1; |
|
C = C + G; |
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
W2 = (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + fW2; |
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W2; |
|
B = B + F; |
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
W3 = W3 + fW3; |
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W3; |
|
A = A + E; |
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
W4 = (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)) + 0x80000000; |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W4; |
|
H = H + D; |
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
W5 = (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W5; |
|
G = G + C; |
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
W6 = (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)) + 0x00000280; |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W6; |
|
F = F + B; |
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
W7 = (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)) + fW0; |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W7; |
|
E = E + A; |
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
W8 = (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)) + fW1; |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W8; |
|
D = D + H; |
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W9; |
|
C = C + G; |
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10; |
|
B = B + F; |
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11; |
|
A = A + E; |
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12; |
|
H = H + D; |
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13; |
|
G = G + C; |
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
W14 = 0x00a00055 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14; |
|
F = F + B; |
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
W15 = fW15 + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15; |
|
E = E + A; |
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
W0 = fW01r + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); |
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W0; |
|
D = D + H; |
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
W1 = fW1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); |
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W1; |
|
C = C + G; |
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W2; |
|
B = B + F; |
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W3; |
|
A = A + E; |
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W4; |
|
H = H + D; |
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W5; |
|
G = G + C; |
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W6; |
|
F = F + B; |
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W7; |
|
E = E + A; |
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W8; |
|
D = D + H; |
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W9; |
|
C = C + G; |
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10; |
|
B = B + F; |
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11; |
|
A = A + E; |
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12; |
|
H = H + D; |
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13; |
|
G = G + C; |
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14; |
|
F = F + B; |
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15; |
|
E = E + A; |
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); |
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W0; |
|
D = D + H; |
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); |
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W1; |
|
C = C + G; |
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W2; |
|
B = B + F; |
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W3; |
|
A = A + E; |
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W4; |
|
H = H + D; |
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W5; |
|
G = G + C; |
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W6; |
|
F = F + B; |
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W7; |
|
E = E + A; |
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W8; |
|
D = D + H; |
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W9; |
|
C = C + G; |
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W10; |
|
B = B + F; |
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W11; |
|
A = A + E; |
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W12; |
|
H = H + D; |
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[61] + W13; |
|
G = G + C; |
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[62] + W14; |
|
F = F + B; |
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[63] + W15; |
|
E = E + A; |
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
W0 = A + state0; |
|
W1 = B + state1; |
|
W2 = C + state2; |
|
W3 = D + state3; |
|
W4 = E + state4; |
|
W5 = F + state5; |
|
W6 = G + state6; |
|
W7 = H + state7; |
|
H = 0xb0edbdd0 + K[ 0] + W0; |
|
D = 0xa54ff53a + H; |
|
H = H + 0x08909ae5; |
|
G = 0x1f83d9ab + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (0x9b05688c ^ (D & 0xca0b3af3)) + K[ 1] + W1; |
|
C = 0x3c6ef372 + G; |
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(0xbb67ae85, H, 0x6a09e667); |
|
F = 0x9b05688c + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, 0x510e527f) + K[ 2] + W2; |
|
B = 0xbb67ae85 + F; |
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(0x6a09e667, G, H); |
|
E = 0x510e527f + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[ 3] + W3; |
|
A = 0x6a09e667 + E; |
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[ 4] + W4; |
|
H = H + D; |
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[ 5] + W5; |
|
G = G + C; |
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6] + W6; |
|
F = F + B; |
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7] + W7; |
|
E = E + A; |
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8] + 0x80000000; |
|
D = D + H; |
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9]; |
|
C = C + G; |
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10]; |
|
B = B + F; |
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11]; |
|
A = A + E; |
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12]; |
|
H = H + D; |
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13]; |
|
G = G + C; |
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14]; |
|
F = F + B; |
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000100; |
|
E = E + A; |
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)); |
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + W0; |
|
D = D + H; |
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + 0x00a00000; |
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + W1; |
|
C = C + G; |
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W2; |
|
B = B + F; |
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W3; |
|
A = A + E; |
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W4; |
|
H = H + D; |
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W5; |
|
G = G + C; |
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + 0x00000100 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W6; |
|
F = F + B; |
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
W7 = W7 + 0x11002000 + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W7; |
|
E = E + A; |
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
W8 = 0x80000000 + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W8; |
|
D = D + H; |
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W9; |
|
C = C + G; |
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10; |
|
B = B + F; |
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11; |
|
A = A + E; |
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12; |
|
H = H + D; |
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13; |
|
G = G + C; |
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
W14 = 0x00400022 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14; |
|
F = F + B; |
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
W15 = 0x00000100 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15; |
|
E = E + A; |
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); |
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W0; |
|
D = D + H; |
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); |
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W1; |
|
C = C + G; |
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W2; |
|
B = B + F; |
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W3; |
|
A = A + E; |
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W4; |
|
H = H + D; |
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W5; |
|
G = G + C; |
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W6; |
|
F = F + B; |
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W7; |
|
E = E + A; |
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W8; |
|
D = D + H; |
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W9; |
|
C = C + G; |
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10; |
|
B = B + F; |
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11; |
|
A = A + E; |
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12; |
|
H = H + D; |
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13; |
|
G = G + C; |
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14; |
|
F = F + B; |
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15; |
|
E = E + A; |
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); |
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W0; |
|
D = D + H; |
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); |
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W1; |
|
C = C + G; |
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W2; |
|
B = B + F; |
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W3; |
|
A = A + E; |
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W4; |
|
H = H + D; |
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W5; |
|
G = G + C; |
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W6; |
|
F = F + B; |
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W7; |
|
E = E + A; |
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W8; |
|
D = D + H; |
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W9; |
|
C = C + G; |
|
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W10; |
|
B = B + F; |
|
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W11; |
|
A = A + E; |
|
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W12; |
|
H = H + D; |
|
|
|
if (H==0xa41f32e7) { |
|
for (it = 0; it != 127; it++) { |
|
if (!output[it]) { |
|
output[it] = tnonce; |
|
output[127] = 1; |
|
break; |
|
} |
|
} |
|
} |
|
}
|
|
|