mirror of
https://github.com/GOSTSec/sgminer
synced 2025-01-23 21:14:18 +00:00
746 lines
20 KiB
C
746 lines
20 KiB
C
/*
|
|
* poll_windows: poll compatibility wrapper for Windows
|
|
* Copyright (C) 2009-2010 Pete Batard <pbatard@gmail.com>
|
|
* With contributions from Michael Plante, Orin Eman et al.
|
|
* Parts of poll implementation from libusb-win32, by Stephan Meyer et al.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* poll() and pipe() Windows compatibility layer for libusb 1.0
|
|
*
|
|
* The way this layer works is by using OVERLAPPED with async I/O transfers, as
|
|
* OVERLAPPED have an associated event which is flagged for I/O completion.
|
|
*
|
|
* For USB pollable async I/O, you would typically:
|
|
* - obtain a Windows HANDLE to a file or device that has been opened in
|
|
* OVERLAPPED mode
|
|
* - call usbi_create_fd with this handle to obtain a custom fd.
|
|
* Note that if you need simultaneous R/W access, you need to call create_fd
|
|
* twice, once in _O_RDONLY and once in _O_WRONLY mode to obtain 2 separate
|
|
* pollable fds
|
|
* - leave the core functions call the poll routine and flag POLLIN/POLLOUT
|
|
*
|
|
* The pipe pollable synchronous I/O works using the overlapped event associated
|
|
* with a fake pipe. The read/write functions are only meant to be used in that
|
|
* context.
|
|
*/
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <io.h>
|
|
|
|
#include <libusbi.h>
|
|
|
|
// Uncomment to debug the polling layer
|
|
//#define DEBUG_POLL_WINDOWS
|
|
#if defined(DEBUG_POLL_WINDOWS)
|
|
#define poll_dbg usbi_dbg
|
|
#else
|
|
// MSVC++ < 2005 cannot use a variadic argument and non MSVC
|
|
// compilers produce warnings if parenthesis are omitted.
|
|
#if defined(_MSC_VER) && _MSC_VER < 1400
|
|
#define poll_dbg
|
|
#else
|
|
#define poll_dbg(...)
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(_PREFAST_)
|
|
#pragma warning(disable:28719)
|
|
#endif
|
|
|
|
#if defined(__CYGWIN__)
|
|
// cygwin produces a warning unless these prototypes are defined
|
|
extern int _open(char* name, int flags);
|
|
extern int _close(int fd);
|
|
extern int _snprintf(char *buffer, size_t count, const char *format, ...);
|
|
#define NUL_DEVICE "/dev/null"
|
|
#else
|
|
#define NUL_DEVICE "NUL"
|
|
#endif
|
|
|
|
#define CHECK_INIT_POLLING do {if(!is_polling_set) init_polling();} while(0)
|
|
|
|
// public fd data
|
|
const struct winfd INVALID_WINFD = {-1, INVALID_HANDLE_VALUE, NULL, RW_NONE};
|
|
struct winfd poll_fd[MAX_FDS];
|
|
// internal fd data
|
|
struct {
|
|
CRITICAL_SECTION mutex; // lock for fds
|
|
// Additional variables for XP CancelIoEx partial emulation
|
|
HANDLE original_handle;
|
|
DWORD thread_id;
|
|
} _poll_fd[MAX_FDS];
|
|
|
|
// globals
|
|
BOOLEAN is_polling_set = FALSE;
|
|
LONG pipe_number = 0;
|
|
static volatile LONG compat_spinlock = 0;
|
|
|
|
// CancelIoEx, available on Vista and later only, provides the ability to cancel
|
|
// a single transfer (OVERLAPPED) when used. As it may not be part of any of the
|
|
// platform headers, we hook into the Kernel32 system DLL directly to seek it.
|
|
static BOOL (__stdcall *pCancelIoEx)(HANDLE, LPOVERLAPPED) = NULL;
|
|
#define CancelIoEx_Available (pCancelIoEx != NULL)
|
|
static __inline BOOL cancel_io(int _index)
|
|
{
|
|
if ((_index < 0) || (_index >= MAX_FDS)) {
|
|
return FALSE;
|
|
}
|
|
|
|
if ( (poll_fd[_index].fd < 0) || (poll_fd[_index].handle == INVALID_HANDLE_VALUE)
|
|
|| (poll_fd[_index].handle == 0) || (poll_fd[_index].overlapped == NULL) ) {
|
|
return TRUE;
|
|
}
|
|
if (CancelIoEx_Available) {
|
|
return (*pCancelIoEx)(poll_fd[_index].handle, poll_fd[_index].overlapped);
|
|
}
|
|
if (_poll_fd[_index].thread_id == GetCurrentThreadId()) {
|
|
return CancelIo(poll_fd[_index].handle);
|
|
}
|
|
usbi_warn(NULL, "Unable to cancel I/O that was started from another thread");
|
|
return FALSE;
|
|
}
|
|
|
|
// Init
|
|
void init_polling(void)
|
|
{
|
|
int i;
|
|
|
|
while (InterlockedExchange((LONG *)&compat_spinlock, 1) == 1) {
|
|
SleepEx(0, TRUE);
|
|
}
|
|
if (!is_polling_set) {
|
|
pCancelIoEx = (BOOL (__stdcall *)(HANDLE,LPOVERLAPPED))
|
|
GetProcAddress(GetModuleHandleA("KERNEL32"), "CancelIoEx");
|
|
usbi_dbg("Will use CancelIo%s for I/O cancellation",
|
|
CancelIoEx_Available?"Ex":"");
|
|
for (i=0; i<MAX_FDS; i++) {
|
|
poll_fd[i] = INVALID_WINFD;
|
|
_poll_fd[i].original_handle = INVALID_HANDLE_VALUE;
|
|
_poll_fd[i].thread_id = 0;
|
|
InitializeCriticalSection(&_poll_fd[i].mutex);
|
|
}
|
|
is_polling_set = TRUE;
|
|
}
|
|
compat_spinlock = 0;
|
|
}
|
|
|
|
// Internal function to retrieve the table index (and lock the fd mutex)
|
|
int _fd_to_index_and_lock(int fd)
|
|
{
|
|
int i;
|
|
|
|
if (fd <= 0)
|
|
return -1;
|
|
|
|
for (i=0; i<MAX_FDS; i++) {
|
|
if (poll_fd[i].fd == fd) {
|
|
EnterCriticalSection(&_poll_fd[i].mutex);
|
|
// fd might have changed before we got to critical
|
|
if (poll_fd[i].fd != fd) {
|
|
LeaveCriticalSection(&_poll_fd[i].mutex);
|
|
continue;
|
|
}
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
OVERLAPPED *create_overlapped(void)
|
|
{
|
|
OVERLAPPED *overlapped = (OVERLAPPED*) calloc(1, sizeof(OVERLAPPED));
|
|
if (overlapped == NULL) {
|
|
return NULL;
|
|
}
|
|
overlapped->hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
|
|
if(overlapped->hEvent == NULL) {
|
|
free (overlapped);
|
|
return NULL;
|
|
}
|
|
return overlapped;
|
|
}
|
|
|
|
void free_overlapped(OVERLAPPED *overlapped)
|
|
{
|
|
if (overlapped == NULL)
|
|
return;
|
|
|
|
if ( (overlapped->hEvent != 0)
|
|
&& (overlapped->hEvent != INVALID_HANDLE_VALUE) ) {
|
|
CloseHandle(overlapped->hEvent);
|
|
}
|
|
free(overlapped);
|
|
}
|
|
|
|
void reset_overlapped(OVERLAPPED *overlapped)
|
|
{
|
|
HANDLE event_handle;
|
|
if (overlapped == NULL)
|
|
return;
|
|
|
|
event_handle = overlapped->hEvent;
|
|
if (event_handle != NULL) {
|
|
ResetEvent(event_handle);
|
|
}
|
|
memset(overlapped, 0, sizeof(OVERLAPPED));
|
|
overlapped->hEvent = event_handle;
|
|
}
|
|
|
|
void exit_polling(void)
|
|
{
|
|
int i;
|
|
|
|
while (InterlockedExchange((LONG *)&compat_spinlock, 1) == 1) {
|
|
SleepEx(0, TRUE);
|
|
}
|
|
if (is_polling_set) {
|
|
is_polling_set = FALSE;
|
|
|
|
for (i=0; i<MAX_FDS; i++) {
|
|
// Cancel any async I/O (handle can be invalid)
|
|
cancel_io(i);
|
|
// If anything was pending on that I/O, it should be
|
|
// terminating, and we should be able to access the fd
|
|
// mutex lock before too long
|
|
EnterCriticalSection(&_poll_fd[i].mutex);
|
|
if ( (poll_fd[i].fd > 0) && (poll_fd[i].handle != INVALID_HANDLE_VALUE) && (poll_fd[i].handle != 0)
|
|
&& (GetFileType(poll_fd[i].handle) == FILE_TYPE_UNKNOWN) ) {
|
|
_close(poll_fd[i].fd);
|
|
}
|
|
free_overlapped(poll_fd[i].overlapped);
|
|
if (!CancelIoEx_Available) {
|
|
// Close duplicate handle
|
|
if (_poll_fd[i].original_handle != INVALID_HANDLE_VALUE) {
|
|
CloseHandle(poll_fd[i].handle);
|
|
}
|
|
}
|
|
poll_fd[i] = INVALID_WINFD;
|
|
LeaveCriticalSection(&_poll_fd[i].mutex);
|
|
DeleteCriticalSection(&_poll_fd[i].mutex);
|
|
}
|
|
}
|
|
compat_spinlock = 0;
|
|
}
|
|
|
|
/*
|
|
* Create a fake pipe.
|
|
* As libusb only uses pipes for signaling, all we need from a pipe is an
|
|
* event. To that extent, we create a single wfd and overlapped as a means
|
|
* to access that event.
|
|
*/
|
|
int usbi_pipe(int filedes[2])
|
|
{
|
|
int i;
|
|
OVERLAPPED* overlapped;
|
|
|
|
CHECK_INIT_POLLING;
|
|
|
|
overlapped = (OVERLAPPED*) calloc(1, sizeof(OVERLAPPED));
|
|
if (overlapped == NULL) {
|
|
return -1;
|
|
}
|
|
// The overlapped must have status pending for signaling to work in poll
|
|
overlapped->Internal = STATUS_PENDING;
|
|
overlapped->InternalHigh = 0;
|
|
|
|
// Read end of the "pipe"
|
|
filedes[0] = _open(NUL_DEVICE, _O_WRONLY);
|
|
if (filedes[0] < 0) {
|
|
usbi_err(NULL, "could not create pipe: errno %d", errno);
|
|
goto out1;
|
|
}
|
|
// We can use the same handle for both ends
|
|
filedes[1] = filedes[0];
|
|
poll_dbg("pipe filedes = %d", filedes[0]);
|
|
|
|
// Note: manual reset must be true (second param) as the reset occurs in read
|
|
overlapped->hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
|
|
if(!overlapped->hEvent) {
|
|
goto out2;
|
|
}
|
|
|
|
for (i=0; i<MAX_FDS; i++) {
|
|
if (poll_fd[i].fd < 0) {
|
|
EnterCriticalSection(&_poll_fd[i].mutex);
|
|
// fd might have been allocated before we got to critical
|
|
if (poll_fd[i].fd >= 0) {
|
|
LeaveCriticalSection(&_poll_fd[i].mutex);
|
|
continue;
|
|
}
|
|
|
|
poll_fd[i].fd = filedes[0];
|
|
poll_fd[i].handle = DUMMY_HANDLE;
|
|
poll_fd[i].overlapped = overlapped;
|
|
// There's no polling on the write end, so we just use READ for our needs
|
|
poll_fd[i].rw = RW_READ;
|
|
_poll_fd[i].original_handle = INVALID_HANDLE_VALUE;
|
|
LeaveCriticalSection(&_poll_fd[i].mutex);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
CloseHandle(overlapped->hEvent);
|
|
out2:
|
|
_close(filedes[0]);
|
|
out1:
|
|
free(overlapped);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Create both an fd and an OVERLAPPED from an open Windows handle, so that
|
|
* it can be used with our polling function
|
|
* The handle MUST support overlapped transfers (usually requires CreateFile
|
|
* with FILE_FLAG_OVERLAPPED)
|
|
* Return a pollable file descriptor struct, or INVALID_WINFD on error
|
|
*
|
|
* Note that the fd returned by this function is a per-transfer fd, rather
|
|
* than a per-session fd and cannot be used for anything else but our
|
|
* custom functions (the fd itself points to the NUL: device)
|
|
* if you plan to do R/W on the same handle, you MUST create 2 fds: one for
|
|
* read and one for write. Using a single R/W fd is unsupported and will
|
|
* produce unexpected results
|
|
*/
|
|
struct winfd usbi_create_fd(HANDLE handle, int access_mode)
|
|
{
|
|
int i, fd;
|
|
struct winfd wfd = INVALID_WINFD;
|
|
OVERLAPPED* overlapped = NULL;
|
|
|
|
CHECK_INIT_POLLING;
|
|
|
|
if ((handle == 0) || (handle == INVALID_HANDLE_VALUE)) {
|
|
return INVALID_WINFD;
|
|
}
|
|
|
|
if ((access_mode != _O_RDONLY) && (access_mode != _O_WRONLY)) {
|
|
usbi_warn(NULL, "only one of _O_RDONLY or _O_WRONLY are supported.\n"
|
|
"If you want to poll for R/W simultaneously, create multiple fds from the same handle.");
|
|
return INVALID_WINFD;
|
|
}
|
|
if (access_mode == _O_RDONLY) {
|
|
wfd.rw = RW_READ;
|
|
} else {
|
|
wfd.rw = RW_WRITE;
|
|
}
|
|
|
|
// Ensure that we get a non system conflicting unique fd, using
|
|
// the same fd attribution system as the pipe ends
|
|
fd = _open(NUL_DEVICE, _O_WRONLY);
|
|
if (fd < 0) {
|
|
return INVALID_WINFD;
|
|
}
|
|
|
|
overlapped = create_overlapped();
|
|
if(overlapped == NULL) {
|
|
_close(fd);
|
|
return INVALID_WINFD;
|
|
}
|
|
|
|
for (i=0; i<MAX_FDS; i++) {
|
|
if (poll_fd[i].fd < 0) {
|
|
EnterCriticalSection(&_poll_fd[i].mutex);
|
|
// fd might have been removed before we got to critical
|
|
if (poll_fd[i].fd >= 0) {
|
|
LeaveCriticalSection(&_poll_fd[i].mutex);
|
|
continue;
|
|
}
|
|
wfd.fd = fd;
|
|
// Attempt to emulate some of the CancelIoEx behaviour on platforms
|
|
// that don't have it
|
|
if (!CancelIoEx_Available) {
|
|
_poll_fd[i].thread_id = GetCurrentThreadId();
|
|
if (!DuplicateHandle(GetCurrentProcess(), handle, GetCurrentProcess(),
|
|
&wfd.handle, 0, TRUE, DUPLICATE_SAME_ACCESS)) {
|
|
usbi_dbg("could not duplicate handle for CancelIo - using original one");
|
|
wfd.handle = handle;
|
|
// Make sure we won't close the original handle on fd deletion then
|
|
_poll_fd[i].original_handle = INVALID_HANDLE_VALUE;
|
|
} else {
|
|
_poll_fd[i].original_handle = handle;
|
|
}
|
|
} else {
|
|
wfd.handle = handle;
|
|
}
|
|
wfd.overlapped = overlapped;
|
|
memcpy(&poll_fd[i], &wfd, sizeof(struct winfd));
|
|
LeaveCriticalSection(&_poll_fd[i].mutex);
|
|
return wfd;
|
|
}
|
|
}
|
|
free_overlapped(overlapped);
|
|
_close(fd);
|
|
return INVALID_WINFD;
|
|
}
|
|
|
|
void _free_index(int _index)
|
|
{
|
|
// Cancel any async IO (Don't care about the validity of our handles for this)
|
|
cancel_io(_index);
|
|
// close fake handle for devices
|
|
if ( (poll_fd[_index].handle != INVALID_HANDLE_VALUE) && (poll_fd[_index].handle != 0)
|
|
&& (GetFileType(poll_fd[_index].handle) == FILE_TYPE_UNKNOWN) ) {
|
|
_close(poll_fd[_index].fd);
|
|
}
|
|
// close the duplicate handle (if we have an actual duplicate)
|
|
if (!CancelIoEx_Available) {
|
|
if (_poll_fd[_index].original_handle != INVALID_HANDLE_VALUE) {
|
|
CloseHandle(poll_fd[_index].handle);
|
|
}
|
|
_poll_fd[_index].original_handle = INVALID_HANDLE_VALUE;
|
|
_poll_fd[_index].thread_id = 0;
|
|
}
|
|
free_overlapped(poll_fd[_index].overlapped);
|
|
poll_fd[_index] = INVALID_WINFD;
|
|
}
|
|
|
|
/*
|
|
* Release a pollable file descriptor.
|
|
*
|
|
* Note that the associated Windows handle is not closed by this call
|
|
*/
|
|
void usbi_free_fd(int fd)
|
|
{
|
|
int _index;
|
|
|
|
CHECK_INIT_POLLING;
|
|
|
|
_index = _fd_to_index_and_lock(fd);
|
|
if (_index < 0) {
|
|
return;
|
|
}
|
|
_free_index(_index);
|
|
LeaveCriticalSection(&_poll_fd[_index].mutex);
|
|
}
|
|
|
|
/*
|
|
* The functions below perform various conversions between fd, handle and OVERLAPPED
|
|
*/
|
|
struct winfd fd_to_winfd(int fd)
|
|
{
|
|
int i;
|
|
struct winfd wfd;
|
|
|
|
CHECK_INIT_POLLING;
|
|
|
|
if (fd <= 0)
|
|
return INVALID_WINFD;
|
|
|
|
for (i=0; i<MAX_FDS; i++) {
|
|
if (poll_fd[i].fd == fd) {
|
|
EnterCriticalSection(&_poll_fd[i].mutex);
|
|
// fd might have been deleted before we got to critical
|
|
if (poll_fd[i].fd != fd) {
|
|
LeaveCriticalSection(&_poll_fd[i].mutex);
|
|
continue;
|
|
}
|
|
memcpy(&wfd, &poll_fd[i], sizeof(struct winfd));
|
|
LeaveCriticalSection(&_poll_fd[i].mutex);
|
|
return wfd;
|
|
}
|
|
}
|
|
return INVALID_WINFD;
|
|
}
|
|
|
|
struct winfd handle_to_winfd(HANDLE handle)
|
|
{
|
|
int i;
|
|
struct winfd wfd;
|
|
|
|
CHECK_INIT_POLLING;
|
|
|
|
if ((handle == 0) || (handle == INVALID_HANDLE_VALUE))
|
|
return INVALID_WINFD;
|
|
|
|
for (i=0; i<MAX_FDS; i++) {
|
|
if (poll_fd[i].handle == handle) {
|
|
EnterCriticalSection(&_poll_fd[i].mutex);
|
|
// fd might have been deleted before we got to critical
|
|
if (poll_fd[i].handle != handle) {
|
|
LeaveCriticalSection(&_poll_fd[i].mutex);
|
|
continue;
|
|
}
|
|
memcpy(&wfd, &poll_fd[i], sizeof(struct winfd));
|
|
LeaveCriticalSection(&_poll_fd[i].mutex);
|
|
return wfd;
|
|
}
|
|
}
|
|
return INVALID_WINFD;
|
|
}
|
|
|
|
struct winfd overlapped_to_winfd(OVERLAPPED* overlapped)
|
|
{
|
|
int i;
|
|
struct winfd wfd;
|
|
|
|
CHECK_INIT_POLLING;
|
|
|
|
if (overlapped == NULL)
|
|
return INVALID_WINFD;
|
|
|
|
for (i=0; i<MAX_FDS; i++) {
|
|
if (poll_fd[i].overlapped == overlapped) {
|
|
EnterCriticalSection(&_poll_fd[i].mutex);
|
|
// fd might have been deleted before we got to critical
|
|
if (poll_fd[i].overlapped != overlapped) {
|
|
LeaveCriticalSection(&_poll_fd[i].mutex);
|
|
continue;
|
|
}
|
|
memcpy(&wfd, &poll_fd[i], sizeof(struct winfd));
|
|
LeaveCriticalSection(&_poll_fd[i].mutex);
|
|
return wfd;
|
|
}
|
|
}
|
|
return INVALID_WINFD;
|
|
}
|
|
|
|
/*
|
|
* POSIX poll equivalent, using Windows OVERLAPPED
|
|
* Currently, this function only accepts one of POLLIN or POLLOUT per fd
|
|
* (but you can create multiple fds from the same handle for read and write)
|
|
*/
|
|
int usbi_poll(struct pollfd *fds, unsigned int nfds, int timeout)
|
|
{
|
|
unsigned i;
|
|
int _index, object_index, triggered;
|
|
HANDLE *handles_to_wait_on;
|
|
int *handle_to_index;
|
|
DWORD nb_handles_to_wait_on = 0;
|
|
DWORD ret;
|
|
|
|
CHECK_INIT_POLLING;
|
|
|
|
triggered = 0;
|
|
handles_to_wait_on = (HANDLE*) calloc(nfds+1, sizeof(HANDLE)); // +1 for fd_update
|
|
handle_to_index = (int*) calloc(nfds, sizeof(int));
|
|
if ((handles_to_wait_on == NULL) || (handle_to_index == NULL)) {
|
|
errno = ENOMEM;
|
|
triggered = -1;
|
|
goto poll_exit;
|
|
}
|
|
|
|
for (i = 0; i < nfds; ++i) {
|
|
fds[i].revents = 0;
|
|
|
|
// Only one of POLLIN or POLLOUT can be selected with this version of poll (not both)
|
|
if ((fds[i].events & ~POLLIN) && (!(fds[i].events & POLLOUT))) {
|
|
fds[i].revents |= POLLERR;
|
|
errno = EACCES;
|
|
usbi_warn(NULL, "unsupported set of events");
|
|
triggered = -1;
|
|
goto poll_exit;
|
|
}
|
|
|
|
_index = _fd_to_index_and_lock(fds[i].fd);
|
|
poll_dbg("fd[%d]=%d: (overlapped=%p) got events %04X", i, poll_fd[_index].fd, poll_fd[_index].overlapped, fds[i].events);
|
|
|
|
if ( (_index < 0) || (poll_fd[_index].handle == INVALID_HANDLE_VALUE)
|
|
|| (poll_fd[_index].handle == 0) || (poll_fd[_index].overlapped == NULL)) {
|
|
fds[i].revents |= POLLNVAL | POLLERR;
|
|
errno = EBADF;
|
|
if (_index >= 0) {
|
|
LeaveCriticalSection(&_poll_fd[_index].mutex);
|
|
}
|
|
usbi_warn(NULL, "invalid fd");
|
|
triggered = -1;
|
|
goto poll_exit;
|
|
}
|
|
|
|
// IN or OUT must match our fd direction
|
|
if ((fds[i].events & POLLIN) && (poll_fd[_index].rw != RW_READ)) {
|
|
fds[i].revents |= POLLNVAL | POLLERR;
|
|
errno = EBADF;
|
|
usbi_warn(NULL, "attempted POLLIN on fd without READ access");
|
|
LeaveCriticalSection(&_poll_fd[_index].mutex);
|
|
triggered = -1;
|
|
goto poll_exit;
|
|
}
|
|
|
|
if ((fds[i].events & POLLOUT) && (poll_fd[_index].rw != RW_WRITE)) {
|
|
fds[i].revents |= POLLNVAL | POLLERR;
|
|
errno = EBADF;
|
|
usbi_warn(NULL, "attempted POLLOUT on fd without WRITE access");
|
|
LeaveCriticalSection(&_poll_fd[_index].mutex);
|
|
triggered = -1;
|
|
goto poll_exit;
|
|
}
|
|
|
|
// The following macro only works if overlapped I/O was reported pending
|
|
if ( (HasOverlappedIoCompleted(poll_fd[_index].overlapped))
|
|
|| (HasOverlappedIoCompletedSync(poll_fd[_index].overlapped)) ) {
|
|
poll_dbg(" completed");
|
|
// checks above should ensure this works:
|
|
fds[i].revents = fds[i].events;
|
|
triggered++;
|
|
} else {
|
|
handles_to_wait_on[nb_handles_to_wait_on] = poll_fd[_index].overlapped->hEvent;
|
|
handle_to_index[nb_handles_to_wait_on] = i;
|
|
nb_handles_to_wait_on++;
|
|
}
|
|
LeaveCriticalSection(&_poll_fd[_index].mutex);
|
|
}
|
|
|
|
// If nothing was triggered, wait on all fds that require it
|
|
if ((timeout != 0) && (triggered == 0) && (nb_handles_to_wait_on != 0)) {
|
|
if (timeout < 0) {
|
|
poll_dbg("starting infinite wait for %d handles...", (int)nb_handles_to_wait_on);
|
|
} else {
|
|
poll_dbg("starting %d ms wait for %d handles...", timeout, (int)nb_handles_to_wait_on);
|
|
}
|
|
ret = WaitForMultipleObjects(nb_handles_to_wait_on, handles_to_wait_on,
|
|
FALSE, (timeout<0)?INFINITE:(DWORD)timeout);
|
|
object_index = ret-WAIT_OBJECT_0;
|
|
if ((object_index >= 0) && ((DWORD)object_index < nb_handles_to_wait_on)) {
|
|
poll_dbg(" completed after wait");
|
|
i = handle_to_index[object_index];
|
|
_index = _fd_to_index_and_lock(fds[i].fd);
|
|
fds[i].revents = fds[i].events;
|
|
triggered++;
|
|
if (_index >= 0) {
|
|
LeaveCriticalSection(&_poll_fd[_index].mutex);
|
|
}
|
|
} else if (ret == WAIT_TIMEOUT) {
|
|
poll_dbg(" timed out");
|
|
triggered = 0; // 0 = timeout
|
|
} else {
|
|
errno = EIO;
|
|
triggered = -1; // error
|
|
}
|
|
}
|
|
|
|
poll_exit:
|
|
if (handles_to_wait_on != NULL) {
|
|
free(handles_to_wait_on);
|
|
}
|
|
if (handle_to_index != NULL) {
|
|
free(handle_to_index);
|
|
}
|
|
return triggered;
|
|
}
|
|
|
|
/*
|
|
* close a fake pipe fd
|
|
*/
|
|
int usbi_close(int fd)
|
|
{
|
|
int _index;
|
|
int r = -1;
|
|
|
|
CHECK_INIT_POLLING;
|
|
|
|
_index = _fd_to_index_and_lock(fd);
|
|
|
|
if (_index < 0) {
|
|
errno = EBADF;
|
|
} else {
|
|
if (poll_fd[_index].overlapped != NULL) {
|
|
// Must be a different event for each end of the pipe
|
|
CloseHandle(poll_fd[_index].overlapped->hEvent);
|
|
free(poll_fd[_index].overlapped);
|
|
}
|
|
r = _close(poll_fd[_index].fd);
|
|
if (r != 0) {
|
|
errno = EIO;
|
|
}
|
|
poll_fd[_index] = INVALID_WINFD;
|
|
LeaveCriticalSection(&_poll_fd[_index].mutex);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* synchronous write for fake "pipe" signaling
|
|
*/
|
|
ssize_t usbi_write(int fd, const void *buf, size_t count)
|
|
{
|
|
int _index;
|
|
|
|
CHECK_INIT_POLLING;
|
|
|
|
if (count != sizeof(unsigned char)) {
|
|
usbi_err(NULL, "this function should only used for signaling");
|
|
return -1;
|
|
}
|
|
|
|
_index = _fd_to_index_and_lock(fd);
|
|
|
|
if ( (_index < 0) || (poll_fd[_index].overlapped == NULL) ) {
|
|
errno = EBADF;
|
|
if (_index >= 0) {
|
|
LeaveCriticalSection(&_poll_fd[_index].mutex);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
poll_dbg("set pipe event (fd = %d, thread = %08X)", _index, GetCurrentThreadId());
|
|
SetEvent(poll_fd[_index].overlapped->hEvent);
|
|
poll_fd[_index].overlapped->Internal = STATUS_WAIT_0;
|
|
// If two threads write on the pipe at the same time, we need to
|
|
// process two separate reads => use the overlapped as a counter
|
|
poll_fd[_index].overlapped->InternalHigh++;
|
|
|
|
LeaveCriticalSection(&_poll_fd[_index].mutex);
|
|
return sizeof(unsigned char);
|
|
}
|
|
|
|
/*
|
|
* synchronous read for fake "pipe" signaling
|
|
*/
|
|
ssize_t usbi_read(int fd, void *buf, size_t count)
|
|
{
|
|
int _index;
|
|
ssize_t r = -1;
|
|
|
|
CHECK_INIT_POLLING;
|
|
|
|
if (count != sizeof(unsigned char)) {
|
|
usbi_err(NULL, "this function should only used for signaling");
|
|
return -1;
|
|
}
|
|
|
|
_index = _fd_to_index_and_lock(fd);
|
|
|
|
if (_index < 0) {
|
|
errno = EBADF;
|
|
return -1;
|
|
}
|
|
|
|
if (WaitForSingleObject(poll_fd[_index].overlapped->hEvent, INFINITE) != WAIT_OBJECT_0) {
|
|
usbi_warn(NULL, "waiting for event failed: %d", (int)GetLastError());
|
|
errno = EIO;
|
|
goto out;
|
|
}
|
|
|
|
poll_dbg("clr pipe event (fd = %d, thread = %08X)", _index, GetCurrentThreadId());
|
|
poll_fd[_index].overlapped->InternalHigh--;
|
|
// Don't reset unless we don't have any more events to process
|
|
if (poll_fd[_index].overlapped->InternalHigh <= 0) {
|
|
ResetEvent(poll_fd[_index].overlapped->hEvent);
|
|
poll_fd[_index].overlapped->Internal = STATUS_PENDING;
|
|
}
|
|
|
|
r = sizeof(unsigned char);
|
|
|
|
out:
|
|
LeaveCriticalSection(&_poll_fd[_index].mutex);
|
|
return r;
|
|
}
|