mirror of https://github.com/GOSTSec/sgminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
659 lines
39 KiB
659 lines
39 KiB
// -ck modified kernel taken from Phoenix taken from poclbm, with aspects of |
|
// phatk and others. |
|
// Modified version copyright 2011-2012 Con Kolivas |
|
|
|
// This file is taken and modified from the public-domain poclbm project, and |
|
// we have therefore decided to keep it public-domain in Phoenix. |
|
|
|
#ifdef VECTORS4 |
|
typedef uint4 u; |
|
#elif defined VECTORS2 |
|
typedef uint2 u; |
|
#else |
|
typedef uint u; |
|
#endif |
|
|
|
__constant uint K[64] = { |
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
|
}; |
|
|
|
|
|
// This part is not from the stock poclbm kernel. It's part of an optimization |
|
// added in the Phoenix Miner. |
|
|
|
// Some AMD devices have a BFI_INT opcode, which behaves exactly like the |
|
// SHA-256 ch function, but provides it in exactly one instruction. If |
|
// detected, use it for ch. Otherwise, construct ch out of simpler logical |
|
// primitives. |
|
|
|
#ifdef BITALIGN |
|
#pragma OPENCL EXTENSION cl_amd_media_ops : enable |
|
#define rotr(x, y) amd_bitalign((u)x, (u)x, (u)y) |
|
#ifdef BFI_INT |
|
// Well, slight problem... It turns out BFI_INT isn't actually exposed to |
|
// OpenCL (or CAL IL for that matter) in any way. However, there is |
|
// a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via |
|
// amd_bytealign, takes the same inputs, and provides the same output. |
|
// We can use that as a placeholder for BFI_INT and have the application |
|
// patch it after compilation. |
|
|
|
// This is the BFI_INT function |
|
#define ch(x, y, z) amd_bytealign(x, y, z) |
|
|
|
// Ma can also be implemented in terms of BFI_INT... |
|
#define Ma(x, y, z) amd_bytealign( (z^x), (y), (x) ) |
|
#else // BFI_INT |
|
// Later SDKs optimise this to BFI INT without patching and GCN |
|
// actually fails if manually patched with BFI_INT |
|
|
|
#define ch(x, y, z) bitselect((u)z, (u)y, (u)x) |
|
#define Ma(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x) |
|
#endif |
|
#else // BITALIGN |
|
#define ch(x, y, z) (z ^ (x & (y ^ z))) |
|
#define Ma(x, y, z) ((x & z) | (y & (x | z))) |
|
#define rotr(x, y) rotate((u)x, (u)(32 - y)) |
|
#endif |
|
|
|
// AMD's KernelAnalyzer throws errors compiling the kernel if we use |
|
// amd_bytealign on constants with vectors enabled, so we use this to avoid |
|
// problems. (this is used 4 times, and likely optimized out by the compiler.) |
|
#define Ma2(x, y, z) ((y & z) | (x & (y | z))) |
|
|
|
__kernel void search(const uint state0, const uint state1, const uint state2, const uint state3, |
|
const uint state4, const uint state5, const uint state6, const uint state7, |
|
const uint b1, const uint c1, const uint d1, |
|
const uint f1, const uint g1, const uint h1, |
|
const uint base, |
|
const uint fw0, const uint fw1, const uint fw2, const uint fw3, const uint fw15, const uint fw01r, const uint fcty_e, const uint fcty_e2, |
|
__global uint * output) |
|
{ |
|
u W[24]; |
|
//u Vals[8]; Now put at W[16] to be in same array |
|
u nonce; |
|
|
|
#ifdef VECTORS4 |
|
nonce = base + (get_global_id(0)<<2) + (uint4)(0, 1, 2, 3); |
|
#elif defined VECTORS2 |
|
nonce = base + (get_global_id(0)<<1) + (uint2)(0, 1); |
|
#else |
|
nonce = base + get_global_id(0); |
|
#endif |
|
|
|
W[3] = nonce + fw3; |
|
W[20] = fcty_e + nonce; |
|
W[16] = state0 + W[20]; |
|
W[20] += fcty_e2; |
|
W[19] = d1 + (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], b1, c1) + K[ 4] + 0x80000000; |
|
W[23] = h1 + W[19]; |
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma2(g1, W[20], f1); |
|
W[18] = c1 + (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], b1) + K[ 5]; |
|
W[22] = g1 + W[18]; |
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma2(f1, W[19], W[20]); |
|
W[17] = b1 + (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[ 6]; |
|
W[21] = f1 + W[17]; |
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[ 7]; |
|
W[20] += W[16]; |
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[ 8]; |
|
W[19] += W[23]; |
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[ 9]; |
|
W[18] += W[22]; |
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[10]; |
|
W[17] += W[21]; |
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[11]; |
|
W[16] += W[20]; |
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[12]; |
|
W[23] += W[19]; |
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[13]; |
|
W[22] += W[18]; |
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[14]; |
|
W[21] += W[17]; |
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[15] + 0x00000280U; |
|
W[20] += W[16]; |
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[16] + fw0; |
|
W[19] += W[23]; |
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[17] + fw1; |
|
W[18] += W[22]; |
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
W[2] = (rotr(nonce, 7) ^ rotr(nonce, 18) ^ (nonce >> 3U)) + fw2; |
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[18] + W[2]; |
|
W[17] += W[21]; |
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[19] + W[3]; |
|
W[16] += W[20]; |
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
W[4] = (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)) + 0x80000000; |
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[20] + W[4]; |
|
W[23] += W[19]; |
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
W[5] = (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[21] + W[5]; |
|
W[22] += W[18]; |
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
W[6] = (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)) + 0x00000280U; |
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[22] + W[6]; |
|
W[21] += W[17]; |
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
W[7] = (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)) + fw0; |
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[23] + W[7]; |
|
W[20] += W[16]; |
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
W[8] = (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)) + fw1; |
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[24] + W[8]; |
|
W[19] += W[23]; |
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
W[9] = W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[25] + W[9]; |
|
W[18] += W[22]; |
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
W[10] = W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[26] + W[10]; |
|
W[17] += W[21]; |
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
W[11] = W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[27] + W[11]; |
|
W[16] += W[20]; |
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
W[12] = W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[28] + W[12]; |
|
W[23] += W[19]; |
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
W[13] = W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[29] + W[13]; |
|
W[22] += W[18]; |
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
W[14] = 0x00a00055U + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[30] + W[14]; |
|
W[21] += W[17]; |
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
W[15] = fw15 + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[31] + W[15]; |
|
W[20] += W[16]; |
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
W[0] = fw01r + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U)); |
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[32] + W[0]; |
|
W[19] += W[23]; |
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
W[1] = fw1 + (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U)); |
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[33] + W[1]; |
|
W[18] += W[22]; |
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
W[2] += (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[34] + W[2]; |
|
W[17] += W[21]; |
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
W[3] += (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[35] + W[3]; |
|
W[16] += W[20]; |
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
W[4] += (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[36] + W[4]; |
|
W[23] += W[19]; |
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
W[5] += (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[37] + W[5]; |
|
W[22] += W[18]; |
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
W[6] += (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[38] + W[6]; |
|
W[21] += W[17]; |
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
W[7] += (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[39] + W[7]; |
|
W[20] += W[16]; |
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
W[8] += (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[40] + W[8]; |
|
W[19] += W[23]; |
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
W[9] += (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[41] + W[9]; |
|
W[18] += W[22]; |
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
W[10] += (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[42] + W[10]; |
|
W[17] += W[21]; |
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
W[11] += (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[43] + W[11]; |
|
W[16] += W[20]; |
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
W[12] += (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[44] + W[12]; |
|
W[23] += W[19]; |
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
W[13] += (rotr(W[14], 7) ^ rotr(W[14], 18) ^ (W[14] >> 3U)) + W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[45] + W[13]; |
|
W[22] += W[18]; |
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
W[14] += (rotr(W[15], 7) ^ rotr(W[15], 18) ^ (W[15] >> 3U)) + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[46] + W[14]; |
|
W[21] += W[17]; |
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
W[15] += (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[47] + W[15]; |
|
W[20] += W[16]; |
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
W[0] += (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)) + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U)); |
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[48] + W[0]; |
|
W[19] += W[23]; |
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
W[1] += (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U)); |
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[49] + W[1]; |
|
W[18] += W[22]; |
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
W[2] += (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[50] + W[2]; |
|
W[17] += W[21]; |
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
W[3] += (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[51] + W[3]; |
|
W[16] += W[20]; |
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
W[4] += (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[52] + W[4]; |
|
W[23] += W[19]; |
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
W[5] += (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[53] + W[5]; |
|
W[22] += W[18]; |
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
W[6] += (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[54] + W[6]; |
|
W[21] += W[17]; |
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
W[7] += (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[55] + W[7]; |
|
W[20] += W[16]; |
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
W[8] += (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[56] + W[8]; |
|
W[19] += W[23]; |
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
W[9] += (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[57] + W[9]; |
|
W[18] += W[22]; |
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
W[10] += (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[58] + W[10]; |
|
W[17] += W[21]; |
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
W[11] += (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[59] + W[11]; |
|
W[16] += W[20]; |
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
W[12] += (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[60] + W[12]; |
|
W[23] += W[19]; |
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
W[13] += (rotr(W[14], 7) ^ rotr(W[14], 18) ^ (W[14] >> 3U)) + W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[61] + W[13]; |
|
W[22] += W[18]; |
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
W[14] += (rotr(W[15], 7) ^ rotr(W[15], 18) ^ (W[15] >> 3U)) + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[62] + W[14]; |
|
W[21] += W[17]; |
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
W[15] += (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[63] + W[15]; |
|
W[20] += W[16]; |
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
|
|
W[0] = W[16] + state0; |
|
W[7] = W[23] + state7; |
|
W[23] = 0xb0edbdd0 + K[ 0] + W[0]; |
|
|
|
W[3] = W[19] + state3; |
|
W[19] = 0xa54ff53a + W[23]; |
|
W[23] += 0x08909ae5U; |
|
|
|
W[1] = W[17] + state1; |
|
W[6] = W[22] + state6; |
|
W[22] = 0x1f83d9abU + (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + (0x9b05688cU ^ (W[19] & 0xca0b3af3U)) + K[ 1] + W[1]; |
|
|
|
W[2] = W[18] + state2; |
|
W[18] = 0x3c6ef372U + W[22]; |
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma2(0xbb67ae85U, W[23], 0x6a09e667U); |
|
|
|
W[5] = W[21] + state5; |
|
W[21] = 0x9b05688cU + (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], 0x510e527fU) + K[ 2] + W[2]; |
|
W[17] = 0xbb67ae85U + W[21]; |
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma2(0x6a09e667U, W[22], W[23]); |
|
|
|
W[4] = W[20] + state4; |
|
W[20] = 0x510e527fU + (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[ 3] + W[3]; |
|
W[16] = 0x6a09e667U + W[20]; |
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[ 4] + W[4]; |
|
W[23] += W[19]; |
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[ 5] + W[5]; |
|
W[22] += W[18]; |
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[ 6] + W[6]; |
|
W[21] += W[17]; |
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[ 7] + W[7]; |
|
W[20] += W[16]; |
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[ 8] + 0x80000000; |
|
W[19] += W[23]; |
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[ 9]; |
|
W[18] += W[22]; |
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[10]; |
|
W[17] += W[21]; |
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[11]; |
|
W[16] += W[20]; |
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[12]; |
|
W[23] += W[19]; |
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[13]; |
|
W[22] += W[18]; |
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[14]; |
|
W[21] += W[17]; |
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[15] + 0x00000100U; |
|
W[20] += W[16]; |
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
W[0] += (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)); |
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[16] + W[0]; |
|
W[19] += W[23]; |
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
W[1] += (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + 0x00a00000U; |
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[17] + W[1]; |
|
W[18] += W[22]; |
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
W[2] += (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[18] + W[2]; |
|
W[17] += W[21]; |
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
W[3] += (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[19] + W[3]; |
|
W[16] += W[20]; |
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
W[4] += (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[20] + W[4]; |
|
W[23] += W[19]; |
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
W[5] += (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[21] + W[5]; |
|
W[22] += W[18]; |
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
W[6] += (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + 0x00000100U + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[22] + W[6]; |
|
W[21] += W[17]; |
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
W[7] += 0x11002000U + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[23] + W[7]; |
|
W[20] += W[16]; |
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
W[8] = 0x80000000 + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[24] + W[8]; |
|
W[19] += W[23]; |
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
W[9] = W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[25] + W[9]; |
|
W[18] += W[22]; |
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
W[10] = W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[26] + W[10]; |
|
W[17] += W[21]; |
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
W[11] = W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[27] + W[11]; |
|
W[16] += W[20]; |
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
W[12] = W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[28] + W[12]; |
|
W[23] += W[19]; |
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
W[13] = W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[29] + W[13]; |
|
W[22] += W[18]; |
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
W[14] = 0x00400022U + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[30] + W[14]; |
|
W[21] += W[17]; |
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
W[15] = 0x00000100U + (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[31] + W[15]; |
|
W[20] += W[16]; |
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
W[0] += (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)) + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U)); |
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[32] + W[0]; |
|
W[19] += W[23]; |
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
W[1] += (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U)); |
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[33] + W[1]; |
|
W[18] += W[22]; |
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
W[2] += (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[34] + W[2]; |
|
W[17] += W[21]; |
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
W[3] += (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[35] + W[3]; |
|
W[16] += W[20]; |
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
W[4] += (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[36] + W[4]; |
|
W[23] += W[19]; |
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
W[5] += (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[37] + W[5]; |
|
W[22] += W[18]; |
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
W[6] += (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[38] + W[6]; |
|
W[21] += W[17]; |
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
W[7] += (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[39] + W[7]; |
|
W[20] += W[16]; |
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
W[8] += (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[40] + W[8]; |
|
W[19] += W[23]; |
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
W[9] += (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[41] + W[9]; |
|
W[18] += W[22]; |
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
W[10] += (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[42] + W[10]; |
|
W[17] += W[21]; |
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
W[11] += (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[43] + W[11]; |
|
W[16] += W[20]; |
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
W[12] += (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[44] + W[12]; |
|
W[23] += W[19]; |
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
W[13] += (rotr(W[14], 7) ^ rotr(W[14], 18) ^ (W[14] >> 3U)) + W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[45] + W[13]; |
|
W[22] += W[18]; |
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
W[14] += (rotr(W[15], 7) ^ rotr(W[15], 18) ^ (W[15] >> 3U)) + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[46] + W[14]; |
|
W[21] += W[17]; |
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
W[15] += (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[47] + W[15]; |
|
W[20] += W[16]; |
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
W[0] += (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)) + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U)); |
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[48] + W[0]; |
|
W[19] += W[23]; |
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
W[1] += (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U)); |
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[49] + W[1]; |
|
W[18] += W[22]; |
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
W[2] += (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[50] + W[2]; |
|
W[17] += W[21]; |
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
W[3] += (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[51] + W[3]; |
|
W[16] += W[20]; |
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
W[4] += (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[52] + W[4]; |
|
W[23] += W[19]; |
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
W[5] += (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[53] + W[5]; |
|
W[22] += W[18]; |
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
W[6] += (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[54] + W[6]; |
|
W[21] += W[17]; |
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
W[7] += (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[55] + W[7]; |
|
W[20] += W[16]; |
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
W[8] += (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[56] + W[8]; |
|
W[19] += W[23]; |
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
W[9] += (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[57] + W[9]; |
|
W[18] += W[22]; |
|
W[10] += (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[58] + W[10]; |
|
W[17] += W[21]; |
|
W[11] += (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[59] + W[11]; |
|
W[16] += W[20]; |
|
W[12] += (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
W[23] += W[19] + (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[60] + W[12]; |
|
|
|
#define FOUND (0x80) |
|
#define NFLAG (0x7F) |
|
|
|
#if defined(VECTORS4) |
|
W[23] ^= -0x5be0cd19U; |
|
bool result = W[23].x & W[23].y & W[23].z & W[23].w; |
|
if (!result) { |
|
if (!W[23].x) |
|
output[FOUND] = output[NFLAG & nonce.x] = nonce.x; |
|
if (!W[23].y) |
|
output[FOUND] = output[NFLAG & nonce.y] = nonce.y; |
|
if (!W[23].z) |
|
output[FOUND] = output[NFLAG & nonce.z] = nonce.z; |
|
if (!W[23].w) |
|
output[FOUND] = output[NFLAG & nonce.w] = nonce.w; |
|
} |
|
#elif defined(VECTORS2) |
|
W[23] ^= -0x5be0cd19U; |
|
bool result = W[23].x & W[23].y; |
|
if (!result) { |
|
if (!W[23].x) |
|
output[FOUND] = output[NFLAG & nonce.x] = nonce.x; |
|
if (!W[23].y) |
|
output[FOUND] = output[NFLAG & nonce.y] = nonce.y; |
|
} |
|
#else |
|
if (W[23] == -0x5be0cd19U) |
|
output[FOUND] = output[NFLAG & nonce] = nonce; |
|
#endif |
|
}
|
|
|