mirror of https://github.com/GOSTSec/sgminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
456 lines
11 KiB
456 lines
11 KiB
/*- |
|
* Copyright 2014 James Lovejoy |
|
* Copyright 2014 phm |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
*/ |
|
|
|
#include "config.h" |
|
#include "miner.h" |
|
|
|
#include <stdlib.h> |
|
#include <stdint.h> |
|
#include <string.h> |
|
|
|
#include "algorithm/sysendian.h" |
|
|
|
static const uint32_t sha256_h[8] = { |
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, |
|
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 |
|
}; |
|
|
|
static const uint32_t sha256_k[64] = { |
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, |
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, |
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, |
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, |
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, |
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
|
}; |
|
|
|
void sha256_init(uint32_t *state) |
|
{ |
|
memcpy(state, sha256_h, 32); |
|
} |
|
|
|
/* Elementary functions used by SHA256 */ |
|
#define Ch(x, y, z) ((x & (y ^ z)) ^ z) |
|
#define Maj(x, y, z) ((x & (y | z)) | (y & z)) |
|
#define ROTR(x, n) ((x >> n) | (x << (32 - n))) |
|
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) |
|
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) |
|
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3)) |
|
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10)) |
|
|
|
/* SHA256 round function */ |
|
#define RND(a, b, c, d, e, f, g, h, k) \ |
|
do { \ |
|
t0 = h + S1(e) + Ch(e, f, g) + k; \ |
|
t1 = S0(a) + Maj(a, b, c); \ |
|
d += t0; \ |
|
h = t0 + t1; \ |
|
} while (0) |
|
|
|
/* Adjusted round function for rotating state */ |
|
#define RNDr(S, W, i) \ |
|
RND(S[(64 - i) % 8], S[(65 - i) % 8], \ |
|
S[(66 - i) % 8], S[(67 - i) % 8], \ |
|
S[(68 - i) % 8], S[(69 - i) % 8], \ |
|
S[(70 - i) % 8], S[(71 - i) % 8], \ |
|
W[i] + sha256_k[i]) |
|
|
|
|
|
/* |
|
* SHA256 block compression function. The 256-bit state is transformed via |
|
* the 512-bit input block to produce a new state. |
|
*/ |
|
void sha256_transform(uint32_t *state, const uint32_t *block, int swap) |
|
{ |
|
uint32_t W[64]; |
|
uint32_t S[8]; |
|
uint32_t t0, t1; |
|
int i; |
|
|
|
/* 1. Prepare message schedule W. */ |
|
if (swap) { |
|
for (i = 0; i < 16; i++) |
|
W[i] = swab32(block[i]); |
|
} |
|
else |
|
memcpy(W, block, 64); |
|
for (i = 16; i < 64; i += 2) { |
|
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; |
|
W[i + 1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; |
|
} |
|
|
|
/* 2. Initialize working variables. */ |
|
memcpy(S, state, 32); |
|
|
|
/* 3. Mix. */ |
|
RNDr(S, W, 0); |
|
RNDr(S, W, 1); |
|
RNDr(S, W, 2); |
|
RNDr(S, W, 3); |
|
RNDr(S, W, 4); |
|
RNDr(S, W, 5); |
|
RNDr(S, W, 6); |
|
RNDr(S, W, 7); |
|
RNDr(S, W, 8); |
|
RNDr(S, W, 9); |
|
RNDr(S, W, 10); |
|
RNDr(S, W, 11); |
|
RNDr(S, W, 12); |
|
RNDr(S, W, 13); |
|
RNDr(S, W, 14); |
|
RNDr(S, W, 15); |
|
RNDr(S, W, 16); |
|
RNDr(S, W, 17); |
|
RNDr(S, W, 18); |
|
RNDr(S, W, 19); |
|
RNDr(S, W, 20); |
|
RNDr(S, W, 21); |
|
RNDr(S, W, 22); |
|
RNDr(S, W, 23); |
|
RNDr(S, W, 24); |
|
RNDr(S, W, 25); |
|
RNDr(S, W, 26); |
|
RNDr(S, W, 27); |
|
RNDr(S, W, 28); |
|
RNDr(S, W, 29); |
|
RNDr(S, W, 30); |
|
RNDr(S, W, 31); |
|
RNDr(S, W, 32); |
|
RNDr(S, W, 33); |
|
RNDr(S, W, 34); |
|
RNDr(S, W, 35); |
|
RNDr(S, W, 36); |
|
RNDr(S, W, 37); |
|
RNDr(S, W, 38); |
|
RNDr(S, W, 39); |
|
RNDr(S, W, 40); |
|
RNDr(S, W, 41); |
|
RNDr(S, W, 42); |
|
RNDr(S, W, 43); |
|
RNDr(S, W, 44); |
|
RNDr(S, W, 45); |
|
RNDr(S, W, 46); |
|
RNDr(S, W, 47); |
|
RNDr(S, W, 48); |
|
RNDr(S, W, 49); |
|
RNDr(S, W, 50); |
|
RNDr(S, W, 51); |
|
RNDr(S, W, 52); |
|
RNDr(S, W, 53); |
|
RNDr(S, W, 54); |
|
RNDr(S, W, 55); |
|
RNDr(S, W, 56); |
|
RNDr(S, W, 57); |
|
RNDr(S, W, 58); |
|
RNDr(S, W, 59); |
|
RNDr(S, W, 60); |
|
RNDr(S, W, 61); |
|
RNDr(S, W, 62); |
|
RNDr(S, W, 63); |
|
|
|
/* 4. Mix local working variables into global state */ |
|
for (i = 0; i < 8; i++) |
|
state[i] += S[i]; |
|
} |
|
|
|
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) |
|
//note, this is 64 bytes |
|
static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16]) |
|
{ |
|
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) |
|
uint32_t x00, x01, x02, x03, x04, x05, x06, x07, x08, x09, x10, x11, x12, x13, x14, x15; |
|
int i; |
|
|
|
x00 = (B[0] ^= Bx[0]); |
|
x01 = (B[1] ^= Bx[1]); |
|
x02 = (B[2] ^= Bx[2]); |
|
x03 = (B[3] ^= Bx[3]); |
|
x04 = (B[4] ^= Bx[4]); |
|
x05 = (B[5] ^= Bx[5]); |
|
x06 = (B[6] ^= Bx[6]); |
|
x07 = (B[7] ^= Bx[7]); |
|
x08 = (B[8] ^= Bx[8]); |
|
x09 = (B[9] ^= Bx[9]); |
|
x10 = (B[10] ^= Bx[10]); |
|
x11 = (B[11] ^= Bx[11]); |
|
x12 = (B[12] ^= Bx[12]); |
|
x13 = (B[13] ^= Bx[13]); |
|
x14 = (B[14] ^= Bx[14]); |
|
x15 = (B[15] ^= Bx[15]); |
|
for (i = 0; i < 8; i += 2) { |
|
/* Operate on columns. */ |
|
x04 ^= ROTL(x00 + x12, 7); x09 ^= ROTL(x05 + x01, 7); |
|
x14 ^= ROTL(x10 + x06, 7); x03 ^= ROTL(x15 + x11, 7); |
|
|
|
x08 ^= ROTL(x04 + x00, 9); x13 ^= ROTL(x09 + x05, 9); |
|
x02 ^= ROTL(x14 + x10, 9); x07 ^= ROTL(x03 + x15, 9); |
|
|
|
x12 ^= ROTL(x08 + x04, 13); x01 ^= ROTL(x13 + x09, 13); |
|
x06 ^= ROTL(x02 + x14, 13); x11 ^= ROTL(x07 + x03, 13); |
|
|
|
x00 ^= ROTL(x12 + x08, 18); x05 ^= ROTL(x01 + x13, 18); |
|
x10 ^= ROTL(x06 + x02, 18); x15 ^= ROTL(x11 + x07, 18); |
|
|
|
/* Operate on rows. */ |
|
x01 ^= ROTL(x00 + x03, 7); x06 ^= ROTL(x05 + x04, 7); |
|
x11 ^= ROTL(x10 + x09, 7); x12 ^= ROTL(x15 + x14, 7); |
|
|
|
x02 ^= ROTL(x01 + x00, 9); x07 ^= ROTL(x06 + x05, 9); |
|
x08 ^= ROTL(x11 + x10, 9); x13 ^= ROTL(x12 + x15, 9); |
|
|
|
x03 ^= ROTL(x02 + x01, 13); x04 ^= ROTL(x07 + x06, 13); |
|
x09 ^= ROTL(x08 + x11, 13); x14 ^= ROTL(x13 + x12, 13); |
|
|
|
x00 ^= ROTL(x03 + x02, 18); x05 ^= ROTL(x04 + x07, 18); |
|
x10 ^= ROTL(x09 + x08, 18); x15 ^= ROTL(x14 + x13, 18); |
|
} |
|
B[0] += x00; |
|
B[1] += x01; |
|
B[2] += x02; |
|
B[3] += x03; |
|
B[4] += x04; |
|
B[5] += x05; |
|
B[6] += x06; |
|
B[7] += x07; |
|
B[8] += x08; |
|
B[9] += x09; |
|
B[10] += x10; |
|
B[11] += x11; |
|
B[12] += x12; |
|
B[13] += x13; |
|
B[14] += x14; |
|
B[15] += x15; |
|
#undef ROTL |
|
} |
|
|
|
void sha256_hash(unsigned char *hash, const unsigned char *data, int len) |
|
{ |
|
uint32_t S[16], T[16]; |
|
int i, r; |
|
|
|
sha256_init(S); |
|
for (r = len; r > -9; r -= 64) { |
|
if (r < 64) |
|
memset(T, 0, 64); |
|
memcpy(T, data + len - r, r > 64 ? 64 : (r < 0 ? 0 : r)); |
|
if (r >= 0 && r < 64) |
|
((unsigned char *)T)[r] = 0x80; |
|
for (i = 0; i < 16; i++) |
|
T[i] = be32dec(T + i); |
|
|
|
if (r < 56) |
|
T[15] = 8 * len; |
|
sha256_transform(S, T, 0); |
|
} |
|
for (i = 0; i < 8; i++) |
|
be32enc((uint32_t *)hash + i, S[i]); |
|
} |
|
|
|
void sha256_hash512(unsigned char *hash, const unsigned char *data) |
|
{ |
|
uint32_t S[16], T[16]; |
|
int i; |
|
|
|
sha256_init(S); |
|
|
|
memcpy(T, data, 64); |
|
|
|
for (i = 0; i < 16; i++) |
|
T[i] = be32dec(T + i); |
|
sha256_transform(S, T, 0); |
|
|
|
memset(T, 0, 64); |
|
//memcpy(T, data + 64, 0); |
|
((unsigned char *)T)[0] = 0x80; |
|
for (i = 0; i < 16; i++) |
|
T[i] = be32dec(T + i); |
|
T[15] = 8 * 64; |
|
sha256_transform(S, T, 0); |
|
|
|
for (i = 0; i < 8; i++) |
|
be32enc((uint32_t *)hash + i, S[i]); |
|
} |
|
|
|
void pluckrehash(void *state, const void *input) |
|
{ |
|
|
|
int i,j; |
|
uint32_t data[20]; |
|
|
|
const int HASH_MEMORY = 128 * 1024; |
|
uint8_t * scratchbuf = (uint8_t*)malloc(HASH_MEMORY); |
|
memcpy(data,input,80); |
|
|
|
uint8_t hashbuffer[128*1024]; //don't allocate this on stack, since it's huge.. |
|
int size = HASH_MEMORY; |
|
memset(hashbuffer, 0, 64); |
|
sha256_hash(&hashbuffer[0], (uint8_t*)data, 80); |
|
for (i = 64; i < size - 32; i += 32) |
|
{ |
|
int randmax = i - 4; //we could use size here, but then it's probable to use 0 as the value in most cases |
|
uint32_t joint[16]; |
|
uint32_t randbuffer[16]; |
|
|
|
uint32_t randseed[16]; |
|
memcpy(randseed, &hashbuffer[i - 64], 64); |
|
if (i>128) |
|
{ |
|
memcpy(randbuffer, &hashbuffer[i - 128], 64); |
|
} |
|
else |
|
{ |
|
memset(&randbuffer, 0, 64); |
|
} |
|
|
|
xor_salsa8(randbuffer, randseed); |
|
|
|
memcpy(joint, &hashbuffer[i - 32], 32); |
|
//use the last hash value as the seed |
|
for (j = 32; j < 64; j += 4) |
|
{ |
|
uint32_t rand = randbuffer[(j - 32) / 4] % (randmax - 32); |
|
joint[j / 4] = *((uint32_t*)&hashbuffer[rand]); |
|
|
|
} |
|
sha256_hash512(&hashbuffer[i], (uint8_t*)joint); |
|
|
|
memcpy(randseed, &hashbuffer[i - 32], 64); |
|
if (i>128) |
|
{ |
|
memcpy(randbuffer, &hashbuffer[i - 128], 64); |
|
} |
|
else |
|
{ |
|
memset(randbuffer, 0, 64); |
|
} |
|
xor_salsa8(randbuffer, randseed); |
|
for (j = 0; j < 32; j += 2) |
|
{ |
|
uint32_t rand = randbuffer[j / 2] % randmax; |
|
*((uint32_t*)&hashbuffer[rand]) = *((uint32_t*)&hashbuffer[j + i - 4]); |
|
} |
|
} |
|
|
|
|
|
//printf("cpu hashbuffer %08x nonce %08x\n", ((uint32_t*)hashbuffer)[7],data[19]); |
|
|
|
memcpy(state, hashbuffer, 32); |
|
} |
|
|
|
static const uint32_t diff1targ = 0x0000ffff; |
|
|
|
|
|
/* Used externally as confirmation of correct OCL code */ |
|
int pluck_test(unsigned char *pdata, const unsigned char *ptarget, uint32_t nonce) |
|
{ |
|
uint32_t tmp_hash7, Htarg = le32toh(((const uint32_t *)ptarget)[7]); |
|
uint32_t data[20], ohash[8]; |
|
|
|
be32enc_vect(data, (const uint32_t *)pdata, 19); |
|
data[19] = htobe32(nonce); |
|
pluckrehash(ohash, data); |
|
|
|
tmp_hash7 = be32toh(ohash[7]); |
|
|
|
applog(LOG_DEBUG, "htarget %08lx diff1 %08lx hash %08lx", |
|
(long unsigned int)Htarg, |
|
(long unsigned int)diff1targ, |
|
(long unsigned int)tmp_hash7); |
|
|
|
if (tmp_hash7 > diff1targ) |
|
return -1; |
|
|
|
if (tmp_hash7 > Htarg) |
|
return 0; |
|
|
|
return 1; |
|
} |
|
|
|
void pluck_regenhash(struct work *work) |
|
{ |
|
uint32_t data[20]; |
|
uint32_t *nonce = (uint32_t *)(work->data + 76); |
|
uint32_t *ohash = (uint32_t *)(work->hash); |
|
|
|
be32enc_vect(data, (const uint32_t *)work->data, 19); |
|
data[19] = htobe32(*nonce); |
|
|
|
pluckrehash(ohash, data); |
|
} |
|
|
|
|
|
bool scanhash_pluck(struct thr_info *thr, const unsigned char __maybe_unused *pmidstate, |
|
unsigned char *pdata, unsigned char __maybe_unused *phash1, |
|
unsigned char __maybe_unused *phash, const unsigned char *ptarget, |
|
uint32_t max_nonce, uint32_t *last_nonce, uint32_t n) |
|
{ |
|
uint32_t *nonce = (uint32_t *)(pdata + 76); |
|
uint32_t data[20]; |
|
uint32_t tmp_hash7; |
|
uint32_t Htarg = le32toh(((const uint32_t *)ptarget)[7]); |
|
bool ret = false; |
|
|
|
be32enc_vect(data, (const uint32_t *)pdata, 19); |
|
|
|
while (1) |
|
{ |
|
uint32_t ostate[8]; |
|
|
|
*nonce = ++n; |
|
data[19] = (n); |
|
pluckrehash(ostate, data); |
|
tmp_hash7 = (ostate[7]); |
|
|
|
applog(LOG_INFO, "data7 %08lx", (long unsigned int)data[7]); |
|
|
|
if (unlikely(tmp_hash7 <= Htarg)) |
|
{ |
|
((uint32_t *)pdata)[19] = htobe32(n); |
|
*last_nonce = n; |
|
ret = true; |
|
break; |
|
} |
|
|
|
if (unlikely((n >= max_nonce) || thr->work_restart)) |
|
{ |
|
*last_nonce = n; |
|
break; |
|
} |
|
} |
|
|
|
return ret; |
|
} |