1
0
mirror of https://github.com/GOSTSec/sgminer synced 2025-01-25 14:04:25 +00:00
sgminer/driver-bflsc.c

1933 lines
52 KiB
C

/*
* Copyright 2013 Andrew Smith
* Copyright 2013 Con Kolivas
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include <float.h>
#include <limits.h>
#include <pthread.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <sys/time.h>
#include <unistd.h>
#include "config.h"
#ifdef WIN32
#include <windows.h>
#endif
#include "compat.h"
#include "miner.h"
#include "usbutils.h"
#include "driver-bflsc.h"
int opt_bflsc_overheat = BFLSC_TEMP_OVERHEAT;
static const char *blank = "";
static enum driver_version drv_ver(struct cgpu_info *bflsc, const char *ver)
{
char *tmp;
if (strstr(ver, "1.0.0"))
return BFLSC_DRV1;
if (strstr(ver, "1.0.") || strstr(ver, "1.1.")) {
applog(LOG_WARNING, "%s detect (%s) Warning assuming firmware '%s' is Ver1",
bflsc->drv->dname, bflsc->device_path, ver);
return BFLSC_DRV1;
}
if (strstr(ver, "1.2."))
return BFLSC_DRV2;
tmp = str_text((char *)ver);
applog(LOG_WARNING, "%s detect (%s) Warning unknown firmware '%s' using Ver2",
bflsc->drv->dname, bflsc->device_path, tmp);
free(tmp);
return BFLSC_DRV2;
}
static void xlinkstr(char *xlink, size_t siz, int dev, struct bflsc_info *sc_info)
{
if (dev > 0)
snprintf(xlink, siz, " x-%d", dev);
else {
if (sc_info->sc_count > 1)
strcpy(xlink, " master");
else
*xlink = '\0';
}
}
static void bflsc_applog(struct cgpu_info *bflsc, int dev, enum usb_cmds cmd, int amount, int err)
{
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
char xlink[17];
xlinkstr(xlink, sizeof(xlink), dev, sc_info);
usb_applog(bflsc, cmd, xlink, amount, err);
}
// Break an input up into lines with LFs removed
// false means an error, but if *lines > 0 then data was also found
// error would be no data or missing LF at the end
static bool tolines(struct cgpu_info *bflsc, int dev, char *buf, int *lines, char ***items, enum usb_cmds cmd)
{
bool ok = false;
char *ptr;
#define p_lines (*lines)
#define p_items (*items)
p_lines = 0;
p_items = NULL;
if (!buf || !(*buf)) {
applog(LOG_DEBUG, "USB: %s%i: (%d) empty %s",
bflsc->drv->name, bflsc->device_id, dev, usb_cmdname(cmd));
return ok;
}
ptr = strdup(buf);
while (ptr && *ptr) {
p_items = realloc(p_items, ++p_lines * sizeof(*p_items));
if (unlikely(!p_items))
quit(1, "Failed to realloc p_items in tolines");
p_items[p_lines-1] = ptr;
ptr = strchr(ptr, '\n');
if (ptr)
*(ptr++) = '\0';
else {
applog(LOG_DEBUG, "USB: %s%i: (%d) missing lf(s) in %s",
bflsc->drv->name, bflsc->device_id, dev, usb_cmdname(cmd));
return ok;
}
}
ok = true;
return ok;
}
static void freetolines(int *lines, char ***items)
{
if (*lines > 0) {
free(**items);
free(*items);
}
*lines = 0;
*items = NULL;
}
enum breakmode {
NOCOLON,
ONECOLON,
ALLCOLON // Temperature uses this
};
// Break down a single line into 'fields'
// 'lf' will be a pointer to the final LF if it is there (or NULL)
// firstname will be the allocated buf copy pointer which is also
// the string before ':' for ONECOLON and ALLCOLON
// If any string is missing the ':' when it was expected, false is returned
static bool breakdown(enum breakmode mode, char *buf, int *count, char **firstname, char ***fields, char **lf)
{
char *ptr, *colon, *comma;
bool ok = false;
#define p_count (*count)
#define p_firstname (*firstname)
#define p_fields (*fields)
#define p_lf (*lf)
p_count = 0;
p_firstname = NULL;
p_fields = NULL;
p_lf = NULL;
if (!buf || !(*buf))
return ok;
ptr = p_firstname = strdup(buf);
p_lf = strchr(p_firstname, '\n');
if (mode == ONECOLON) {
colon = strchr(ptr, ':');
if (colon) {
ptr = colon;
*(ptr++) = '\0';
} else
return ok;
}
while (ptr && *ptr) {
if (mode == ALLCOLON) {
colon = strchr(ptr, ':');
if (colon)
ptr = colon + 1;
else
return ok;
}
comma = strchr(ptr, ',');
if (comma)
*(comma++) = '\0';
p_fields = realloc(p_fields, ++p_count * sizeof(*p_fields));
if (unlikely(!p_fields))
quit(1, "Failed to realloc p_fields in breakdown");
p_fields[p_count-1] = ptr;
ptr = comma;
}
ok = true;
return ok;
}
static void freebreakdown(int *count, char **firstname, char ***fields)
{
if (*firstname)
free(*firstname);
if (*count > 0)
free(*fields);
*count = 0;
*firstname = NULL;
*fields = NULL;
}
static bool isokerr(int err, char *buf, int amount)
{
if (err < 0 || amount < (int)BFLSC_OK_LEN)
return false;
else {
if (strstr(buf, BFLSC_ANERR))
return false;
else
return true;
}
}
// send+receive dual stage - always single line replies
static int send_recv_ds(struct cgpu_info *bflsc, int dev, int *stage, bool *sent, int *amount, char *send1, int send1_len, enum usb_cmds send1_cmd, enum usb_cmds recv1_cmd, char *send2, int send2_len, enum usb_cmds send2_cmd, enum usb_cmds recv2_cmd, char *recv, int recv_siz)
{
struct DataForwardToChain data;
int len, err, tried;
if (dev == 0) {
usb_buffer_clear(bflsc);
*stage = 1;
*sent = false;
err = usb_write(bflsc, send1, send1_len, amount, send1_cmd);
if (err < 0 || *amount < send1_len)
return err;
*sent = true;
err = usb_read_nl(bflsc, recv, recv_siz, amount, recv1_cmd);
if (!isokerr(err, recv, *amount))
return err;
usb_buffer_clear(bflsc);
*stage = 2;
*sent = false;
err = usb_write(bflsc, send2, send2_len, amount, send2_cmd);
if (err < 0 || *amount < send2_len)
return err;
*sent = true;
err = usb_read_nl(bflsc, recv, recv_siz, amount, recv2_cmd);
return err;
}
data.header = BFLSC_XLINKHDR;
data.deviceAddress = (uint8_t)dev;
tried = 0;
while (tried++ < 3) {
data.payloadSize = send1_len;
memcpy(data.payloadData, send1, send1_len);
len = DATAFORWARDSIZE(data);
usb_buffer_clear(bflsc);
*stage = 1;
*sent = false;
err = usb_write(bflsc, (char *)&data, len, amount, send1_cmd);
if (err < 0 || *amount < send1_len)
return err;
*sent = true;
err = usb_read_nl(bflsc, recv, recv_siz, amount, recv1_cmd);
if (err != LIBUSB_SUCCESS)
return err;
// x-link timeout? - try again?
if (strstr(recv, BFLSC_XTIMEOUT))
continue;
if (!isokerr(err, recv, *amount))
return err;
data.payloadSize = send2_len;
memcpy(data.payloadData, send2, send2_len);
len = DATAFORWARDSIZE(data);
usb_buffer_clear(bflsc);
*stage = 2;
*sent = false;
err = usb_write(bflsc, (char *)&data, len, amount, send2_cmd);
if (err < 0 || *amount < send2_len)
return err;
*sent = true;
err = usb_read_nl(bflsc, recv, recv_siz, amount, recv2_cmd);
if (err != LIBUSB_SUCCESS)
return err;
// x-link timeout? - try again?
if (strstr(recv, BFLSC_XTIMEOUT))
continue;
// SUCCESS - return it
break;
}
return err;
}
#define READ_OK true
#define READ_NL false
// send+receive single stage
static int send_recv_ss(struct cgpu_info *bflsc, int dev, bool *sent, int *amount, char *send, int send_len, enum usb_cmds send_cmd, char *recv, int recv_siz, enum usb_cmds recv_cmd, bool read_ok)
{
struct DataForwardToChain data;
int len, err, tried;
if (dev == 0) {
usb_buffer_clear(bflsc);
*sent = false;
err = usb_write(bflsc, send, send_len, amount, send_cmd);
if (err < 0 || *amount < send_len) {
// N.B. thus !(*sent) directly implies err < 0 or *amount < send_len
return err;
}
*sent = true;
if (read_ok == READ_OK)
err = usb_read_ok(bflsc, recv, recv_siz, amount, recv_cmd);
else
err = usb_read_nl(bflsc, recv, recv_siz, amount, recv_cmd);
return err;
}
data.header = BFLSC_XLINKHDR;
data.deviceAddress = (uint8_t)dev;
data.payloadSize = send_len;
memcpy(data.payloadData, send, send_len);
len = DATAFORWARDSIZE(data);
tried = 0;
while (tried++ < 3) {
usb_buffer_clear(bflsc);
*sent = false;
err = usb_write(bflsc, (char *)&data, len, amount, recv_cmd);
if (err < 0 || *amount < send_len)
return err;
*sent = true;
if (read_ok == READ_OK)
err = usb_read_ok(bflsc, recv, recv_siz, amount, recv_cmd);
else
err = usb_read_nl(bflsc, recv, recv_siz, amount, recv_cmd);
if (err != LIBUSB_SUCCESS && err != LIBUSB_ERROR_TIMEOUT)
return err;
// read_ok can err timeout if it's looking for OK<LF>
// TODO: add a usb_read() option to spot the ERR: and convert end=OK<LF> to just <LF>
// x-link timeout? - try again?
if ((err == LIBUSB_SUCCESS || (read_ok == READ_OK && err == LIBUSB_ERROR_TIMEOUT)) &&
strstr(recv, BFLSC_XTIMEOUT))
continue;
// SUCCESS or TIMEOUT - return it
break;
}
return err;
}
static int write_to_dev(struct cgpu_info *bflsc, int dev, char *buf, int buflen, int *amount, enum usb_cmds cmd)
{
struct DataForwardToChain data;
int len;
/*
* The protocol is syncronous so any previous excess can be
* discarded and assumed corrupt data or failed USB transfers
*/
usb_buffer_clear(bflsc);
if (dev == 0)
return usb_write(bflsc, buf, buflen, amount, cmd);
data.header = BFLSC_XLINKHDR;
data.deviceAddress = (uint8_t)dev;
data.payloadSize = buflen;
memcpy(data.payloadData, buf, buflen);
len = DATAFORWARDSIZE(data);
return usb_write(bflsc, (char *)&data, len, amount, cmd);
}
static void bflsc_send_flush_work(struct cgpu_info *bflsc, int dev)
{
char buf[BFLSC_BUFSIZ+1];
int err, amount;
bool sent;
// Device is gone
if (bflsc->usbinfo.nodev)
return;
mutex_lock(&bflsc->device_mutex);
err = send_recv_ss(bflsc, dev, &sent, &amount,
BFLSC_QFLUSH, BFLSC_QFLUSH_LEN, C_QUEFLUSH,
buf, sizeof(buf)-1, C_QUEFLUSHREPLY, READ_NL);
mutex_unlock(&bflsc->device_mutex);
if (!sent)
bflsc_applog(bflsc, dev, C_QUEFLUSH, amount, err);
else {
// TODO: do we care if we don't get 'OK'? (always will in normal processing)
}
}
/* return True = attempted usb_read_ok()
* set ignore to true means no applog/ignore errors */
static bool bflsc_qres(struct cgpu_info *bflsc, char *buf, size_t bufsiz, int dev, int *err, int *amount, bool ignore)
{
bool readok = false;
mutex_lock(&(bflsc->device_mutex));
*err = send_recv_ss(bflsc, dev, &readok, amount,
BFLSC_QRES, BFLSC_QRES_LEN, C_REQUESTRESULTS,
buf, bufsiz-1, C_GETRESULTS, READ_OK);
mutex_unlock(&(bflsc->device_mutex));
if (!readok) {
if (!ignore)
bflsc_applog(bflsc, dev, C_REQUESTRESULTS, *amount, *err);
// TODO: do what? flag as dead device?
// count how many times it has happened and reset/fail it
// or even make sure it is all x-link and that means device
// has failed after some limit of this?
// of course all other I/O must also be failing ...
} else {
if (*err < 0 || *amount < 1) {
if (!ignore)
bflsc_applog(bflsc, dev, C_GETRESULTS, *amount, *err);
// TODO: do what? ... see above
}
}
return readok;
}
static void __bflsc_initialise(struct cgpu_info *bflsc)
{
int err, interface;
// TODO: does x-link bypass the other device FTDI? (I think it does)
// So no initialisation required except for the master device?
if (bflsc->usbinfo.nodev)
return;
interface = usb_interface(bflsc);
// Reset
err = usb_transfer(bflsc, FTDI_TYPE_OUT, FTDI_REQUEST_RESET,
FTDI_VALUE_RESET, interface, C_RESET);
applog(LOG_DEBUG, "%s%i: reset got err %d",
bflsc->drv->name, bflsc->device_id, err);
if (bflsc->usbinfo.nodev)
return;
usb_ftdi_set_latency(bflsc);
if (bflsc->usbinfo.nodev)
return;
// Set data control
err = usb_transfer(bflsc, FTDI_TYPE_OUT, FTDI_REQUEST_DATA,
FTDI_VALUE_DATA_BAS, interface, C_SETDATA);
applog(LOG_DEBUG, "%s%i: setdata got err %d",
bflsc->drv->name, bflsc->device_id, err);
if (bflsc->usbinfo.nodev)
return;
// Set the baud
err = usb_transfer(bflsc, FTDI_TYPE_OUT, FTDI_REQUEST_BAUD, FTDI_VALUE_BAUD_BAS,
(FTDI_INDEX_BAUD_BAS & 0xff00) | interface,
C_SETBAUD);
applog(LOG_DEBUG, "%s%i: setbaud got err %d",
bflsc->drv->name, bflsc->device_id, err);
if (bflsc->usbinfo.nodev)
return;
// Set Flow Control
err = usb_transfer(bflsc, FTDI_TYPE_OUT, FTDI_REQUEST_FLOW,
FTDI_VALUE_FLOW, interface, C_SETFLOW);
applog(LOG_DEBUG, "%s%i: setflowctrl got err %d",
bflsc->drv->name, bflsc->device_id, err);
if (bflsc->usbinfo.nodev)
return;
// Set Modem Control
err = usb_transfer(bflsc, FTDI_TYPE_OUT, FTDI_REQUEST_MODEM,
FTDI_VALUE_MODEM, interface, C_SETMODEM);
applog(LOG_DEBUG, "%s%i: setmodemctrl got err %d",
bflsc->drv->name, bflsc->device_id, err);
if (bflsc->usbinfo.nodev)
return;
// Clear any sent data
err = usb_transfer(bflsc, FTDI_TYPE_OUT, FTDI_REQUEST_RESET,
FTDI_VALUE_PURGE_TX, interface, C_PURGETX);
applog(LOG_DEBUG, "%s%i: purgetx got err %d",
bflsc->drv->name, bflsc->device_id, err);
if (bflsc->usbinfo.nodev)
return;
// Clear any received data
err = usb_transfer(bflsc, FTDI_TYPE_OUT, FTDI_REQUEST_RESET,
FTDI_VALUE_PURGE_RX, interface, C_PURGERX);
applog(LOG_DEBUG, "%s%i: purgerx got err %d",
bflsc->drv->name, bflsc->device_id, err);
if (!bflsc->cutofftemp)
bflsc->cutofftemp = opt_bflsc_overheat;
}
static void bflsc_initialise(struct cgpu_info *bflsc)
{
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
char buf[BFLSC_BUFSIZ+1];
int err, amount;
int dev;
mutex_lock(&(bflsc->device_mutex));
__bflsc_initialise(bflsc);
mutex_unlock(&(bflsc->device_mutex));
for (dev = 0; dev < sc_info->sc_count; dev++) {
bflsc_send_flush_work(bflsc, dev);
bflsc_qres(bflsc, buf, sizeof(buf), dev, &err, &amount, true);
}
}
static bool getinfo(struct cgpu_info *bflsc, int dev)
{
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
struct bflsc_dev sc_dev;
char buf[BFLSC_BUFSIZ+1];
int err, amount;
char **items, *firstname, **fields, *lf;
bool res, ok = false;
int i, lines, count;
char *tmp;
/*
* Kano's first dev Jalapeno output:
* DEVICE: BitFORCE SC<LF>
* FIRMWARE: 1.0.0<LF>
* ENGINES: 30<LF>
* FREQUENCY: [UNKNOWN]<LF>
* XLINK MODE: MASTER<LF>
* XLINK PRESENT: YES<LF>
* --DEVICES IN CHAIN: 0<LF>
* --CHAIN PRESENCE MASK: 00000000<LF>
* OK<LF>
*/
/*
* Don't use send_recv_ss() since we have a different receive timeout
* Also getinfo() is called multiple times if it fails anyway
*/
err = write_to_dev(bflsc, dev, BFLSC_DETAILS, BFLSC_DETAILS_LEN, &amount, C_REQUESTDETAILS);
if (err < 0 || amount != BFLSC_DETAILS_LEN) {
applog(LOG_ERR, "%s detect (%s) send details request failed (%d:%d)",
bflsc->drv->dname, bflsc->device_path, amount, err);
return ok;
}
err = usb_read_ok_timeout(bflsc, buf, sizeof(buf)-1, &amount,
BFLSC_INFO_TIMEOUT, C_GETDETAILS);
if (err < 0 || amount < 1) {
if (err < 0) {
applog(LOG_ERR, "%s detect (%s) get details return invalid/timed out (%d:%d)",
bflsc->drv->dname, bflsc->device_path, amount, err);
} else {
applog(LOG_ERR, "%s detect (%s) get details returned nothing (%d:%d)",
bflsc->drv->dname, bflsc->device_path, amount, err);
}
return ok;
}
memset(&sc_dev, 0, sizeof(struct bflsc_dev));
sc_info->sc_count = 1;
res = tolines(bflsc, dev, &(buf[0]), &lines, &items, C_GETDETAILS);
if (!res)
return ok;
tmp = str_text(buf);
strncpy(sc_dev.getinfo, tmp, sizeof(sc_dev.getinfo));
sc_dev.getinfo[sizeof(sc_dev.getinfo)-1] = '\0';
free(tmp);
for (i = 0; i < lines-2; i++) {
res = breakdown(ONECOLON, items[i], &count, &firstname, &fields, &lf);
if (lf)
*lf = '\0';
if (!res || count != 1) {
tmp = str_text(items[i]);
applogsiz(LOG_WARNING, BFLSC_APPLOGSIZ,
"%s detect (%s) invalid details line: '%s' %d",
bflsc->drv->dname, bflsc->device_path, tmp, count);
free(tmp);
dev_error(bflsc, REASON_DEV_COMMS_ERROR);
goto mata;
}
if (strstr(firstname, BFLSC_DI_FIRMWARE)) {
sc_dev.firmware = strdup(fields[0]);
sc_info->driver_version = drv_ver(bflsc, sc_dev.firmware);
}
else if (strstr(firstname, BFLSC_DI_ENGINES)) {
sc_dev.engines = atoi(fields[0]);
if (sc_dev.engines < 1) {
tmp = str_text(items[i]);
applogsiz(LOG_WARNING, BFLSC_APPLOGSIZ,
"%s detect (%s) invalid engine count: '%s'",
bflsc->drv->dname, bflsc->device_path, tmp);
free(tmp);
goto mata;
}
}
else if (strstr(firstname, BFLSC_DI_XLINKMODE))
sc_dev.xlink_mode = strdup(fields[0]);
else if (strstr(firstname, BFLSC_DI_XLINKPRESENT))
sc_dev.xlink_present = strdup(fields[0]);
else if (strstr(firstname, BFLSC_DI_DEVICESINCHAIN)) {
sc_info->sc_count = atoi(fields[0]);
if (sc_info->sc_count < 1 || sc_info->sc_count > 30) {
tmp = str_text(items[i]);
applogsiz(LOG_WARNING, BFLSC_APPLOGSIZ,
"%s detect (%s) invalid s-link count: '%s'",
bflsc->drv->dname, bflsc->device_path, tmp);
free(tmp);
goto mata;
}
else if (strstr(firstname, BFLSC_DI_CHIPS))
sc_dev.chips = strdup(fields[0]);
}
freebreakdown(&count, &firstname, &fields);
}
if (sc_info->driver_version == BFLSC_DRVUNDEF) {
applog(LOG_WARNING, "%s detect (%s) missing %s",
bflsc->drv->dname, bflsc->device_path, BFLSC_DI_FIRMWARE);
goto ne;
}
sc_info->sc_devs = calloc(sc_info->sc_count, sizeof(struct bflsc_dev));
if (unlikely(!sc_info->sc_devs))
quit(1, "Failed to calloc in getinfo");
memcpy(&(sc_info->sc_devs[0]), &sc_dev, sizeof(sc_dev));
// TODO: do we care about getting this info for the rest if > 0 x-link
ok = true;
goto ne;
mata:
freebreakdown(&count, &firstname, &fields);
ok = false;
ne:
freetolines(&lines, &items);
return ok;
}
static bool bflsc_detect_one(struct libusb_device *dev, struct usb_find_devices *found)
{
struct bflsc_info *sc_info = NULL;
char buf[BFLSC_BUFSIZ+1];
int i, err, amount;
struct timeval init_start, init_now;
int init_sleep, init_count;
bool ident_first, sent;
char *newname;
uint16_t latency;
struct cgpu_info *bflsc = usb_alloc_cgpu(&bflsc_drv, 1);
sc_info = calloc(1, sizeof(*sc_info));
if (unlikely(!sc_info))
quit(1, "Failed to calloc sc_info in bflsc_detect_one");
// TODO: fix ... everywhere ...
bflsc->device_data = (FILE *)sc_info;
if (!usb_init(bflsc, dev, found))
goto shin;
// Allow 2 complete attempts if the 1st time returns an unrecognised reply
ident_first = true;
retry:
init_count = 0;
init_sleep = REINIT_TIME_FIRST_MS;
cgtime(&init_start);
reinit:
__bflsc_initialise(bflsc);
err = send_recv_ss(bflsc, 0, &sent, &amount,
BFLSC_IDENTIFY, BFLSC_IDENTIFY_LEN, C_REQUESTIDENTIFY,
buf, sizeof(buf)-1, C_GETIDENTIFY, READ_NL);
if (!sent) {
applog(LOG_ERR, "%s detect (%s) send identify request failed (%d:%d)",
bflsc->drv->dname, bflsc->device_path, amount, err);
goto unshin;
}
if (err < 0 || amount < 1) {
init_count++;
cgtime(&init_now);
if (us_tdiff(&init_now, &init_start) <= REINIT_TIME_MAX) {
if (init_count == 2) {
applog(LOG_WARNING, "%s detect (%s) 2nd init failed (%d:%d) - retrying",
bflsc->drv->dname, bflsc->device_path, amount, err);
}
cgsleep_ms(init_sleep);
if ((init_sleep * 2) <= REINIT_TIME_MAX_MS)
init_sleep *= 2;
goto reinit;
}
if (init_count > 0)
applog(LOG_WARNING, "%s detect (%s) init failed %d times %.2fs",
bflsc->drv->dname, bflsc->device_path, init_count, tdiff(&init_now, &init_start));
if (err < 0) {
applog(LOG_ERR, "%s detect (%s) error identify reply (%d:%d)",
bflsc->drv->dname, bflsc->device_path, amount, err);
} else {
applog(LOG_ERR, "%s detect (%s) empty identify reply (%d)",
bflsc->drv->dname, bflsc->device_path, amount);
}
goto unshin;
}
buf[amount] = '\0';
if (unlikely(!strstr(buf, BFLSC_BFLSC))) {
applog(LOG_DEBUG, "%s detect (%s) found an FPGA '%s' ignoring",
bflsc->drv->dname, bflsc->device_path, buf);
goto unshin;
}
if (unlikely(strstr(buf, BFLSC_IDENTITY))) {
if (ident_first) {
applog(LOG_DEBUG, "%s detect (%s) didn't recognise '%s' trying again ...",
bflsc->drv->dname, bflsc->device_path, buf);
ident_first = false;
goto retry;
}
applog(LOG_DEBUG, "%s detect (%s) didn't recognise '%s' on 2nd attempt",
bflsc->drv->dname, bflsc->device_path, buf);
goto unshin;
}
int tries = 0;
while (7734) {
if (getinfo(bflsc, 0))
break;
// N.B. we will get displayed errors each time it fails
if (++tries > 2)
goto unshin;
cgsleep_ms(40);
}
switch (sc_info->driver_version) {
case BFLSC_DRV1:
sc_info->que_size = BFLSC_QUE_SIZE_V1;
sc_info->que_full_enough = BFLSC_QUE_FULL_ENOUGH_V1;
sc_info->que_watermark = BFLSC_QUE_WATERMARK_V1;
sc_info->que_low = BFLSC_QUE_LOW_V1;
sc_info->que_noncecount = QUE_NONCECOUNT_V1;
sc_info->que_fld_min = QUE_FLD_MIN_V1;
sc_info->que_fld_max = QUE_FLD_MAX_V1;
// Only Jalapeno uses 1.0.0
sc_info->flush_size = 1;
break;
case BFLSC_DRV2:
case BFLSC_DRVUNDEF:
default:
sc_info->driver_version = BFLSC_DRV2;
sc_info->que_size = BFLSC_QUE_SIZE_V2;
sc_info->que_full_enough = BFLSC_QUE_FULL_ENOUGH_V2;
sc_info->que_watermark = BFLSC_QUE_WATERMARK_V2;
sc_info->que_low = BFLSC_QUE_LOW_V2;
sc_info->que_noncecount = QUE_NONCECOUNT_V2;
sc_info->que_fld_min = QUE_FLD_MIN_V2;
sc_info->que_fld_max = QUE_FLD_MAX_V2;
// TODO: this can be reduced to total chip count
sc_info->flush_size = 16 * sc_info->sc_count;
break;
}
sc_info->scan_sleep_time = BAS_SCAN_TIME;
sc_info->results_sleep_time = BFLSC_RES_TIME;
sc_info->default_ms_work = BAS_WORK_TIME;
latency = BAS_LATENCY;
/* When getinfo() "FREQUENCY: [UNKNOWN]" is fixed -
* use 'freq * engines' to estimate.
* Otherwise for now: */
newname = NULL;
if (sc_info->sc_count > 1) {
newname = BFLSC_MINIRIG;
sc_info->scan_sleep_time = BAM_SCAN_TIME;
sc_info->default_ms_work = BAM_WORK_TIME;
bflsc->usbdev->ident = IDENT_BAM;
latency = BAM_LATENCY;
} else {
if (sc_info->sc_devs[0].engines < 34) { // 16 * 2 + 2
newname = BFLSC_JALAPENO;
sc_info->scan_sleep_time = BAJ_SCAN_TIME;
sc_info->default_ms_work = BAJ_WORK_TIME;
bflsc->usbdev->ident = IDENT_BAJ;
latency = BAJ_LATENCY;
} else if (sc_info->sc_devs[0].engines < 130) { // 16 * 8 + 2
newname = BFLSC_LITTLESINGLE;
sc_info->scan_sleep_time = BAL_SCAN_TIME;
sc_info->default_ms_work = BAL_WORK_TIME;
bflsc->usbdev->ident = IDENT_BAL;
latency = BAL_LATENCY;
}
}
if (latency != bflsc->usbdev->found->latency) {
bflsc->usbdev->found->latency = latency;
usb_ftdi_set_latency(bflsc);
}
for (i = 0; i < sc_info->sc_count; i++)
sc_info->sc_devs[i].ms_work = sc_info->default_ms_work;
if (newname) {
if (!bflsc->drv->copy)
bflsc->drv = copy_drv(bflsc->drv);
bflsc->drv->name = newname;
}
// We have a real BFLSC!
applog(LOG_DEBUG, "%s (%s) identified as: '%s'",
bflsc->drv->dname, bflsc->device_path, bflsc->drv->name);
if (!add_cgpu(bflsc))
goto unshin;
update_usb_stats(bflsc);
mutex_init(&bflsc->device_mutex);
rwlock_init(&sc_info->stat_lock);
usb_buffer_enable(bflsc);
return true;
unshin:
usb_uninit(bflsc);
shin:
free(bflsc->device_data);
bflsc->device_data = NULL;
if (bflsc->name != blank) {
free(bflsc->name);
bflsc->name = NULL;
}
bflsc = usb_free_cgpu(bflsc);
return false;
}
static void bflsc_detect(bool __maybe_unused hotplug)
{
usb_detect(&bflsc_drv, bflsc_detect_one);
}
static void get_bflsc_statline_before(char *buf, size_t bufsiz, struct cgpu_info *bflsc)
{
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
float temp = 0;
float vcc1 = 0;
int i;
rd_lock(&(sc_info->stat_lock));
for (i = 0; i < sc_info->sc_count; i++) {
if (sc_info->sc_devs[i].temp1 > temp)
temp = sc_info->sc_devs[i].temp1;
if (sc_info->sc_devs[i].temp2 > temp)
temp = sc_info->sc_devs[i].temp2;
if (sc_info->sc_devs[i].vcc1 > vcc1)
vcc1 = sc_info->sc_devs[i].vcc1;
}
rd_unlock(&(sc_info->stat_lock));
tailsprintf(buf, bufsiz, " max%3.0fC %4.2fV | ", temp, vcc1);
}
static void flush_one_dev(struct cgpu_info *bflsc, int dev)
{
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
struct work *work, *tmp;
bool did = false;
bflsc_send_flush_work(bflsc, dev);
rd_lock(&bflsc->qlock);
HASH_ITER(hh, bflsc->queued_work, work, tmp) {
if (work->queued && work->subid == dev) {
// devflag is used to flag stale work
work->devflag = true;
did = true;
}
}
rd_unlock(&bflsc->qlock);
if (did) {
wr_lock(&(sc_info->stat_lock));
sc_info->sc_devs[dev].flushed = true;
sc_info->sc_devs[dev].flush_id = sc_info->sc_devs[dev].result_id;
sc_info->sc_devs[dev].work_queued = 0;
wr_unlock(&(sc_info->stat_lock));
}
}
static void bflsc_flush_work(struct cgpu_info *bflsc)
{
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
int dev;
for (dev = 0; dev < sc_info->sc_count; dev++)
flush_one_dev(bflsc, dev);
}
static void bflsc_flash_led(struct cgpu_info *bflsc, int dev)
{
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
char buf[BFLSC_BUFSIZ+1];
int err, amount;
bool sent;
// Device is gone
if (bflsc->usbinfo.nodev)
return;
// It is not critical flashing the led so don't get stuck if we
// can't grab the mutex now
if (mutex_trylock(&bflsc->device_mutex))
return;
err = send_recv_ss(bflsc, dev, &sent, &amount,
BFLSC_FLASH, BFLSC_FLASH_LEN, C_REQUESTFLASH,
buf, sizeof(buf)-1, C_FLASHREPLY, READ_NL);
mutex_unlock(&(bflsc->device_mutex));
if (!sent)
bflsc_applog(bflsc, dev, C_REQUESTFLASH, amount, err);
else {
// Don't care
}
// Once we've tried - don't do it until told to again
// - even if it failed
sc_info->flash_led = false;
return;
}
static bool bflsc_get_temp(struct cgpu_info *bflsc, int dev)
{
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
struct bflsc_dev *sc_dev;
char temp_buf[BFLSC_BUFSIZ+1];
char volt_buf[BFLSC_BUFSIZ+1];
char *tmp;
int err, amount;
char *firstname, **fields, *lf;
char xlink[17];
int count;
bool res, sent;
float temp, temp1, temp2;
float vcc1, vcc2, vmain;
// Device is gone
if (bflsc->usbinfo.nodev)
return false;
if (dev >= sc_info->sc_count) {
applog(LOG_ERR, "%s%i: temp invalid xlink device %d - limit %d",
bflsc->drv->name, bflsc->device_id, dev, sc_info->sc_count - 1);
return false;
}
// Flash instead of Temp
if (sc_info->flash_led) {
bflsc_flash_led(bflsc, dev);
return true;
}
xlinkstr(xlink, sizeof(xlink), dev, sc_info);
/* It is not very critical getting temp so don't get stuck if we
* can't grab the mutex here */
if (mutex_trylock(&bflsc->device_mutex))
return false;
err = send_recv_ss(bflsc, dev, &sent, &amount,
BFLSC_TEMPERATURE, BFLSC_TEMPERATURE_LEN, C_REQUESTTEMPERATURE,
temp_buf, sizeof(temp_buf)-1, C_GETTEMPERATURE, READ_NL);
mutex_unlock(&(bflsc->device_mutex));
if (!sent) {
applog(LOG_ERR, "%s%i: Error: Request%s temp invalid/timed out (%d:%d)",
bflsc->drv->name, bflsc->device_id, xlink, amount, err);
return false;
} else {
if (err < 0 || amount < 1) {
if (err < 0) {
applog(LOG_ERR, "%s%i: Error: Get%s temp return invalid/timed out (%d:%d)",
bflsc->drv->name, bflsc->device_id, xlink, amount, err);
} else {
applog(LOG_ERR, "%s%i: Error: Get%s temp returned nothing (%d:%d)",
bflsc->drv->name, bflsc->device_id, xlink, amount, err);
}
return false;
}
}
// Ignore it if we can't get the V
if (mutex_trylock(&bflsc->device_mutex))
return false;
err = send_recv_ss(bflsc, dev, &sent, &amount,
BFLSC_VOLTAGE, BFLSC_VOLTAGE_LEN, C_REQUESTVOLTS,
volt_buf, sizeof(volt_buf)-1, C_GETVOLTS, READ_NL);
mutex_unlock(&(bflsc->device_mutex));
if (!sent) {
applog(LOG_ERR, "%s%i: Error: Request%s volts invalid/timed out (%d:%d)",
bflsc->drv->name, bflsc->device_id, xlink, amount, err);
return false;
} else {
if (err < 0 || amount < 1) {
if (err < 0) {
applog(LOG_ERR, "%s%i: Error: Get%s volt return invalid/timed out (%d:%d)",
bflsc->drv->name, bflsc->device_id, xlink, amount, err);
} else {
applog(LOG_ERR, "%s%i: Error: Get%s volt returned nothing (%d:%d)",
bflsc->drv->name, bflsc->device_id, xlink, amount, err);
}
return false;
}
}
res = breakdown(ALLCOLON, temp_buf, &count, &firstname, &fields, &lf);
if (lf)
*lf = '\0';
if (!res || count != 2 || !lf) {
tmp = str_text(temp_buf);
applog(LOG_WARNING, "%s%i: Invalid%s temp reply: '%s'",
bflsc->drv->name, bflsc->device_id, xlink, tmp);
free(tmp);
freebreakdown(&count, &firstname, &fields);
dev_error(bflsc, REASON_DEV_COMMS_ERROR);
return false;
}
temp = temp1 = (float)atoi(fields[0]);
temp2 = (float)atoi(fields[1]);
freebreakdown(&count, &firstname, &fields);
res = breakdown(NOCOLON, volt_buf, &count, &firstname, &fields, &lf);
if (lf)
*lf = '\0';
if (!res || count != 3 || !lf) {
tmp = str_text(volt_buf);
applog(LOG_WARNING, "%s%i: Invalid%s volt reply: '%s'",
bflsc->drv->name, bflsc->device_id, xlink, tmp);
free(tmp);
freebreakdown(&count, &firstname, &fields);
dev_error(bflsc, REASON_DEV_COMMS_ERROR);
return false;
}
sc_dev = &sc_info->sc_devs[dev];
vcc1 = (float)atoi(fields[0]) / 1000.0;
vcc2 = (float)atoi(fields[1]) / 1000.0;
vmain = (float)atoi(fields[2]) / 1000.0;
freebreakdown(&count, &firstname, &fields);
if (vcc1 > 0 || vcc2 > 0 || vmain > 0) {
wr_lock(&(sc_info->stat_lock));
if (vcc1 > 0) {
if (unlikely(sc_dev->vcc1 == 0))
sc_dev->vcc1 = vcc1;
else {
sc_dev->vcc1 += vcc1 * 0.63;
sc_dev->vcc1 /= 1.63;
}
}
if (vcc2 > 0) {
if (unlikely(sc_dev->vcc2 == 0))
sc_dev->vcc2 = vcc2;
else {
sc_dev->vcc2 += vcc2 * 0.63;
sc_dev->vcc2 /= 1.63;
}
}
if (vmain > 0) {
if (unlikely(sc_dev->vmain == 0))
sc_dev->vmain = vmain;
else {
sc_dev->vmain += vmain * 0.63;
sc_dev->vmain /= 1.63;
}
}
wr_unlock(&(sc_info->stat_lock));
}
if (temp1 > 0 || temp2 > 0) {
wr_lock(&(sc_info->stat_lock));
if (unlikely(!sc_dev->temp1))
sc_dev->temp1 = temp1;
else {
sc_dev->temp1 += temp1 * 0.63;
sc_dev->temp1 /= 1.63;
}
if (unlikely(!sc_dev->temp2))
sc_dev->temp2 = temp2;
else {
sc_dev->temp2 += temp2 * 0.63;
sc_dev->temp2 /= 1.63;
}
if (temp1 > sc_dev->temp1_max) {
sc_dev->temp1_max = temp1;
sc_dev->temp1_max_time = time(NULL);
}
if (temp2 > sc_dev->temp2_max) {
sc_dev->temp2_max = temp2;
sc_dev->temp2_max_time = time(NULL);
}
if (unlikely(sc_dev->temp1_5min_av == 0))
sc_dev->temp1_5min_av = temp1;
else {
sc_dev->temp1_5min_av += temp1 * .0042;
sc_dev->temp1_5min_av /= 1.0042;
}
if (unlikely(sc_dev->temp2_5min_av == 0))
sc_dev->temp2_5min_av = temp2;
else {
sc_dev->temp2_5min_av += temp2 * .0042;
sc_dev->temp2_5min_av /= 1.0042;
}
wr_unlock(&(sc_info->stat_lock));
if (temp < temp2)
temp = temp2;
bflsc->temp = temp;
if (bflsc->cutofftemp > 0 && temp >= bflsc->cutofftemp) {
applog(LOG_WARNING, "%s%i:%s temp (%.1f) hit thermal cutoff limit %d, stopping work!",
bflsc->drv->name, bflsc->device_id, xlink,
temp, bflsc->cutofftemp);
dev_error(bflsc, REASON_DEV_THERMAL_CUTOFF);
sc_dev->overheat = true;
flush_one_dev(bflsc, dev);
return false;
}
if (bflsc->cutofftemp > 0 && temp < (bflsc->cutofftemp - BFLSC_TEMP_RECOVER))
sc_dev->overheat = false;
}
return true;
}
static void process_nonces(struct cgpu_info *bflsc, int dev, char *xlink, char *data, int count, char **fields, int *nonces)
{
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
char midstate[MIDSTATE_BYTES], blockdata[MERKLE_BYTES];
struct work *work;
uint32_t nonce;
int i, num, x;
bool res;
char *tmp;
if (count < sc_info->que_fld_min) {
tmp = str_text(data);
applogsiz(LOG_INFO, BFLSC_APPLOGSIZ,
"%s%i:%s work returned too small (%d,%s)",
bflsc->drv->name, bflsc->device_id, xlink, count, tmp);
free(tmp);
inc_hw_errors(bflsc->thr[0]);
return;
}
if (count > sc_info->que_fld_max) {
applog(LOG_INFO, "%s%i:%s work returned too large (%d) processing %d anyway",
bflsc->drv->name, bflsc->device_id, xlink, count, sc_info->que_fld_max);
count = sc_info->que_fld_max;
inc_hw_errors(bflsc->thr[0]);
}
num = atoi(fields[sc_info->que_noncecount]);
if (num != count - sc_info->que_fld_min) {
tmp = str_text(data);
applogsiz(LOG_INFO, BFLSC_APPLOGSIZ,
"%s%i:%s incorrect data count (%d) will use %d instead from (%s)",
bflsc->drv->name, bflsc->device_id, xlink, num,
count - sc_info->que_fld_max, tmp);
free(tmp);
inc_hw_errors(bflsc->thr[0]);
}
memset(midstate, 0, MIDSTATE_BYTES);
memset(blockdata, 0, MERKLE_BYTES);
if (!hex2bin((unsigned char *)midstate, fields[QUE_MIDSTATE], MIDSTATE_BYTES) ||
!hex2bin((unsigned char *)blockdata, fields[QUE_BLOCKDATA], MERKLE_BYTES)) {
applog(LOG_INFO, "%s%i:%s Failed to convert binary data to hex result - ignored",
bflsc->drv->name, bflsc->device_id, xlink);
inc_hw_errors(bflsc->thr[0]);
return;
}
work = take_queued_work_bymidstate(bflsc, midstate, MIDSTATE_BYTES,
blockdata, MERKLE_OFFSET, MERKLE_BYTES);
if (!work) {
if (sc_info->not_first_work) {
applog(LOG_INFO, "%s%i:%s failed to find nonce work - can't be processed - ignored",
bflsc->drv->name, bflsc->device_id, xlink);
inc_hw_errors(bflsc->thr[0]);
}
return;
}
res = false;
x = 0;
for (i = sc_info->que_fld_min; i < count; i++) {
if (strlen(fields[i]) != 8) {
tmp = str_text(data);
applogsiz(LOG_INFO, BFLSC_APPLOGSIZ,
"%s%i:%s invalid nonce (%s) will try to process anyway",
bflsc->drv->name, bflsc->device_id, xlink, tmp);
free(tmp);
}
hex2bin((void*)&nonce, fields[i], 4);
nonce = htobe32(nonce);
res = submit_nonce(bflsc->thr[0], work, nonce);
if (res) {
wr_lock(&(sc_info->stat_lock));
sc_info->sc_devs[dev].nonces_found++;
wr_unlock(&(sc_info->stat_lock));
(*nonces)++;
x++;
}
}
wr_lock(&(sc_info->stat_lock));
if (res)
sc_info->sc_devs[dev].result_id++;
if (x > QUE_MAX_RESULTS)
x = QUE_MAX_RESULTS + 1;
(sc_info->result_size[x])++;
sc_info->sc_devs[dev].work_complete++;
sc_info->sc_devs[dev].hashes_unsent += FULLNONCE;
// If not flushed (stale)
if (!(work->devflag))
sc_info->sc_devs[dev].work_queued -= 1;
wr_unlock(&(sc_info->stat_lock));
free_work(work);
}
static int process_results(struct cgpu_info *bflsc, int dev, char *pbuf, int *nonces)
{
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
char **items, *firstname, **fields, *lf;
int que = 0, i, lines, count;
char *tmp, *tmp2, *buf;
char xlink[17];
bool res;
*nonces = 0;
xlinkstr(xlink, sizeof(xlink), dev, sc_info);
buf = strdup(pbuf);
res = tolines(bflsc, dev, buf, &lines, &items, C_GETRESULTS);
free(buf);
if (!res || lines < 1) {
tmp = str_text(pbuf);
applogsiz(LOG_ERR, BFLSC_APPLOGSIZ,
"%s%i:%s empty result (%s) ignored",
bflsc->drv->name, bflsc->device_id, xlink, tmp);
free(tmp);
goto arigatou;
}
if (lines < QUE_RES_LINES_MIN) {
tmp = str_text(pbuf);
applogsiz(LOG_ERR, BFLSC_APPLOGSIZ,
"%s%i:%s result of %d too small (%s) ignored",
bflsc->drv->name, bflsc->device_id, xlink, lines, tmp);
free(tmp);
goto arigatou;
}
breakdown(ONECOLON, items[1], &count, &firstname, &fields, &lf);
if (count < 1) {
tmp = str_text(pbuf);
tmp2 = str_text(items[1]);
applogsiz(LOG_ERR, BFLSC_APPLOGSIZ,
"%s%i:%s empty result count (%s) in (%s) ignoring",
bflsc->drv->name, bflsc->device_id, xlink, tmp2, tmp);
free(tmp2);
free(tmp);
goto arigatou;
} else if (count != 1) {
tmp = str_text(pbuf);
tmp2 = str_text(items[1]);
applogsiz(LOG_ERR, BFLSC_APPLOGSIZ,
"%s%i:%s incorrect result count %d (%s) in (%s) will try anyway",
bflsc->drv->name, bflsc->device_id, xlink, count, tmp2, tmp);
free(tmp2);
free(tmp);
}
que = atoi(fields[0]);
if (que != (lines - QUE_RES_LINES_MIN)) {
i = que;
// 1+ In case the last line isn't 'OK' - try to process it
que = 1 + lines - QUE_RES_LINES_MIN;
tmp = str_text(pbuf);
tmp2 = str_text(items[0]);
applogsiz(LOG_ERR, BFLSC_APPLOGSIZ,
"%s%i:%s incorrect result count %d (%s) will try %d (%s)",
bflsc->drv->name, bflsc->device_id, xlink, i, tmp2, que, tmp);
free(tmp2);
free(tmp);
}
freebreakdown(&count, &firstname, &fields);
for (i = 0; i < que; i++) {
res = breakdown(NOCOLON, items[i + QUE_RES_LINES_MIN - 1], &count, &firstname, &fields, &lf);
if (likely(res))
process_nonces(bflsc, dev, &(xlink[0]), items[i], count, fields, nonces);
else
applogsiz(LOG_ERR, BFLSC_APPLOGSIZ,
"%s%i:%s failed to process nonce %s",
bflsc->drv->name, bflsc->device_id, xlink, items[i]);
freebreakdown(&count, &firstname, &fields);
sc_info->not_first_work = true;
}
arigatou:
freetolines(&lines, &items);
return que;
}
#define TVF(tv) ((float)((tv)->tv_sec) + ((float)((tv)->tv_usec) / 1000000.0))
#define TVFMS(tv) (TVF(tv) * 1000.0)
// Thread to simply keep looking for results
static void *bflsc_get_results(void *userdata)
{
struct cgpu_info *bflsc = (struct cgpu_info *)userdata;
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
struct timeval elapsed, now;
float oldest, f;
char buf[BFLSC_BUFSIZ+1];
int err, amount;
int i, que, dev, nonces;
bool readok;
cgtime(&now);
for (i = 0; i < sc_info->sc_count; i++) {
copy_time(&(sc_info->sc_devs[i].last_check_result), &now);
copy_time(&(sc_info->sc_devs[i].last_dev_result), &now);
copy_time(&(sc_info->sc_devs[i].last_nonce_result), &now);
}
while (sc_info->shutdown == false) {
cgtimer_t ts_start;
if (bflsc->usbinfo.nodev)
return NULL;
dev = -1;
oldest = FLT_MAX;
cgtime(&now);
// Find the first oldest ... that also needs checking
for (i = 0; i < sc_info->sc_count; i++) {
timersub(&now, &(sc_info->sc_devs[i].last_check_result), &elapsed);
f = TVFMS(&elapsed);
if (f < oldest && f >= sc_info->sc_devs[i].ms_work) {
f = oldest;
dev = i;
}
}
if (bflsc->usbinfo.nodev)
return NULL;
cgsleep_prepare_r(&ts_start);
if (dev == -1)
goto utsura;
cgtime(&(sc_info->sc_devs[dev].last_check_result));
readok = bflsc_qres(bflsc, buf, sizeof(buf), dev, &err, &amount, false);
if (err < 0 || (!readok && amount != BFLSC_QRES_LEN) || (readok && amount < 1)) {
// TODO: do what else?
} else {
que = process_results(bflsc, dev, buf, &nonces);
sc_info->not_first_work = true; // in case it failed processing it
if (que > 0)
cgtime(&(sc_info->sc_devs[dev].last_dev_result));
if (nonces > 0)
cgtime(&(sc_info->sc_devs[dev].last_nonce_result));
// TODO: if not getting results ... reinit?
}
utsura:
cgsleep_ms_r(&ts_start, sc_info->results_sleep_time);
}
return NULL;
}
static bool bflsc_thread_prepare(struct thr_info *thr)
{
struct cgpu_info *bflsc = thr->cgpu;
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
if (thr_info_create(&(sc_info->results_thr), NULL, bflsc_get_results, (void *)bflsc)) {
applog(LOG_ERR, "%s%i: thread create failed", bflsc->drv->name, bflsc->device_id);
return false;
}
pthread_detach(sc_info->results_thr.pth);
return true;
}
static void bflsc_shutdown(struct thr_info *thr)
{
struct cgpu_info *bflsc = thr->cgpu;
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
bflsc_flush_work(bflsc);
sc_info->shutdown = true;
}
static void bflsc_thread_enable(struct thr_info *thr)
{
struct cgpu_info *bflsc = thr->cgpu;
if (bflsc->usbinfo.nodev)
return;
bflsc_initialise(bflsc);
}
static bool bflsc_send_work(struct cgpu_info *bflsc, int dev, bool mandatory)
{
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
struct FullNonceRangeJob data;
char buf[BFLSC_BUFSIZ+1];
bool sent, ret = false;
struct work *work;
int err, amount;
int len, try;
int stage;
// Device is gone
if (bflsc->usbinfo.nodev)
return false;
// TODO: handle this everywhere
if (sc_info->sc_devs[dev].overheat == true)
return false;
// Initially code only deals with sending one work item
data.payloadSize = BFLSC_JOBSIZ;
data.endOfBlock = BFLSC_EOB;
len = sizeof(struct FullNonceRangeJob);
/* On faster devices we have a lot of lock contention so only
* mandatorily grab the lock and send work if the queue is empty since
* we have a submit queue. */
if (mandatory)
mutex_lock(&(bflsc->device_mutex));
else {
if (mutex_trylock(&bflsc->device_mutex))
return ret;
}
work = get_queued(bflsc);
if (unlikely(!work)) {
mutex_unlock(&bflsc->device_mutex);
return ret;
}
memcpy(data.midState, work->midstate, MIDSTATE_BYTES);
memcpy(data.blockData, work->data + MERKLE_OFFSET, MERKLE_BYTES);
try = 0;
re_send:
err = send_recv_ds(bflsc, dev, &stage, &sent, &amount,
BFLSC_QJOB, BFLSC_QJOB_LEN, C_REQUESTQUEJOB, C_REQUESTQUEJOBSTATUS,
(char *)&data, len, C_QUEJOB, C_QUEJOBSTATUS,
buf, sizeof(buf)-1);
mutex_unlock(&(bflsc->device_mutex));
switch (stage) {
case 1:
if (!sent) {
bflsc_applog(bflsc, dev, C_REQUESTQUEJOB, amount, err);
goto out;
} else {
// TODO: handle other errors ...
// Try twice
if (try++ < 1 && amount > 1 &&
strstr(buf, BFLSC_TIMEOUT))
goto re_send;
bflsc_applog(bflsc, dev, C_REQUESTQUEJOBSTATUS, amount, err);
goto out;
}
break;
case 2:
if (!sent) {
bflsc_applog(bflsc, dev, C_QUEJOB, amount, err);
goto out;
} else {
if (!isokerr(err, buf, amount)) {
// TODO: check for QUEUE FULL and set work_queued to sc_info->que_size
// and report a code bug LOG_ERR - coz it should never happen
// TODO: handle other errors ...
// Try twice
if (try++ < 1 && amount > 1 &&
strstr(buf, BFLSC_TIMEOUT))
goto re_send;
bflsc_applog(bflsc, dev, C_QUEJOBSTATUS, amount, err);
goto out;
}
}
break;
}
wr_lock(&(sc_info->stat_lock));
sc_info->sc_devs[dev].work_queued++;
wr_unlock(&(sc_info->stat_lock));
work->subid = dev;
ret = true;
out:
if (unlikely(!ret))
work_completed(bflsc, work);
return ret;
}
static bool bflsc_queue_full(struct cgpu_info *bflsc)
{
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
int i, dev, tried, que;
bool ret = false;
int tries = 0;
tried = -1;
// if something is wrong with a device try the next one available
// TODO: try them all? Add an unavailable flag to sc_devs[i] init to 0 here first
while (++tries < 3) {
bool mandatory = false;
// Device is gone - shouldn't normally get here
if (bflsc->usbinfo.nodev) {
ret = true;
break;
}
dev = -1;
rd_lock(&(sc_info->stat_lock));
// Anything waiting - gets the work first
for (i = 0; i < sc_info->sc_count; i++) {
// TODO: and ignore x-link dead - once I work out how to decide it is dead
if (i != tried && sc_info->sc_devs[i].work_queued == 0 &&
!sc_info->sc_devs[i].overheat) {
dev = i;
break;
}
}
if (dev == -1) {
que = sc_info->que_size * 10; // 10x is certainly above the MAX it could be
// The first device with the smallest amount queued
for (i = 0; i < sc_info->sc_count; i++) {
if (i != tried && sc_info->sc_devs[i].work_queued < que &&
!sc_info->sc_devs[i].overheat) {
dev = i;
que = sc_info->sc_devs[i].work_queued;
}
}
if (que > sc_info->que_full_enough)
dev = -1;
else if (que < sc_info->que_low)
mandatory = true;
}
rd_unlock(&(sc_info->stat_lock));
// nothing needs work yet
if (dev == -1) {
ret = true;
break;
}
if (bflsc_send_work(bflsc, dev, mandatory))
break;
else
tried = dev;
}
return ret;
}
static int64_t bflsc_scanwork(struct thr_info *thr)
{
struct cgpu_info *bflsc = thr->cgpu;
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
int64_t ret, unsent;
bool flushed, cleanup;
struct work *work, *tmp;
int dev, waited, i;
// Device is gone
if (bflsc->usbinfo.nodev)
return -1;
flushed = false;
// Single lock check if any are flagged as flushed
rd_lock(&(sc_info->stat_lock));
for (dev = 0; dev < sc_info->sc_count; dev++)
flushed |= sc_info->sc_devs[dev].flushed;
rd_unlock(&(sc_info->stat_lock));
// > 0 flagged as flushed
if (flushed) {
// TODO: something like this ......
for (dev = 0; dev < sc_info->sc_count; dev++) {
cleanup = false;
// Is there any flushed work that can be removed?
rd_lock(&(sc_info->stat_lock));
if (sc_info->sc_devs[dev].flushed) {
if (sc_info->sc_devs[dev].result_id > (sc_info->sc_devs[dev].flush_id + sc_info->flush_size))
cleanup = true;
}
rd_unlock(&(sc_info->stat_lock));
// yes remove the flushed work that can be removed
if (cleanup) {
wr_lock(&bflsc->qlock);
HASH_ITER(hh, bflsc->queued_work, work, tmp) {
if (work->devflag && work->subid == dev) {
bflsc->queued_count--;
HASH_DEL(bflsc->queued_work, work);
discard_work(work);
}
}
wr_unlock(&bflsc->qlock);
wr_lock(&(sc_info->stat_lock));
sc_info->sc_devs[dev].flushed = false;
wr_unlock(&(sc_info->stat_lock));
}
}
}
waited = restart_wait(thr, sc_info->scan_sleep_time);
if (waited == ETIMEDOUT) {
unsigned int old_sleep_time, new_sleep_time = 0;
int min_queued = sc_info->que_size;
/* Only adjust the scan_sleep_time if we did not receive a
* restart message while waiting. Try to adjust sleep time
* so we drop to sc_info->que_watermark before getting more work.
*/
rd_lock(&sc_info->stat_lock);
old_sleep_time = sc_info->scan_sleep_time;
for (i = 0; i < sc_info->sc_count; i++) {
if (sc_info->sc_devs[i].work_queued < min_queued)
min_queued = sc_info->sc_devs[i].work_queued;
}
rd_unlock(&sc_info->stat_lock);
new_sleep_time = old_sleep_time;
/* Increase slowly but decrease quickly */
if (min_queued > sc_info->que_full_enough && old_sleep_time < BFLSC_MAX_SLEEP)
new_sleep_time = old_sleep_time * 21 / 20;
else if (min_queued < sc_info->que_low)
new_sleep_time = old_sleep_time * 2 / 3;
/* Do not sleep more than BFLSC_MAX_SLEEP so we can always
* report in at least 2 results per 5s log interval. */
if (new_sleep_time != old_sleep_time) {
if (new_sleep_time > BFLSC_MAX_SLEEP)
new_sleep_time = BFLSC_MAX_SLEEP;
else if (new_sleep_time == 0)
new_sleep_time = 1;
applog(LOG_DEBUG, "%s%i: Changed scan sleep time to %d",
bflsc->drv->name, bflsc->device_id, new_sleep_time);
wr_lock(&sc_info->stat_lock);
sc_info->scan_sleep_time = new_sleep_time;
wr_unlock(&sc_info->stat_lock);
}
}
// Count up the work done since we last were here
ret = 0;
wr_lock(&(sc_info->stat_lock));
for (dev = 0; dev < sc_info->sc_count; dev++) {
unsent = sc_info->sc_devs[dev].hashes_unsent;
sc_info->sc_devs[dev].hashes_unsent = 0;
sc_info->sc_devs[dev].hashes_sent += unsent;
sc_info->hashes_sent += unsent;
ret += unsent;
}
wr_unlock(&(sc_info->stat_lock));
return ret;
}
#define BFLSC_OVER_TEMP 60
/* Set the fanspeed to auto for any valid value <= BFLSC_OVER_TEMP,
* or max for any value > BFLSC_OVER_TEMP or if we don't know the temperature. */
static void bflsc_set_fanspeed(struct cgpu_info *bflsc)
{
struct bflsc_info *sc_info = (struct bflsc_info *)bflsc->device_data;
char buf[BFLSC_BUFSIZ+1];
char data[16+1];
int amount;
bool sent;
if ((bflsc->temp <= BFLSC_OVER_TEMP && bflsc->temp > 0 && sc_info->fanauto) ||
((bflsc->temp > BFLSC_OVER_TEMP || !bflsc->temp) && !sc_info->fanauto))
return;
if (bflsc->temp > BFLSC_OVER_TEMP || !bflsc->temp) {
strcpy(data, BFLSC_FAN4);
sc_info->fanauto = false;
} else {
strcpy(data, BFLSC_FANAUTO);
sc_info->fanauto = true;
}
applog(LOG_DEBUG, "%s%i: temp=%.0f over=%d set fan to %s",
bflsc->drv->name, bflsc->device_id, bflsc->temp,
BFLSC_OVER_TEMP, data);
mutex_lock(&bflsc->device_mutex);
send_recv_ss(bflsc, 0, &sent, &amount,
data, strlen(data), C_SETFAN,
buf, sizeof(buf)-1, C_FANREPLY, READ_NL);
mutex_unlock(&bflsc->device_mutex);
}
static bool bflsc_get_stats(struct cgpu_info *bflsc)
{
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
bool allok = true;
int i;
// Device is gone
if (bflsc->usbinfo.nodev)
return false;
for (i = 0; i < sc_info->sc_count; i++) {
if (!bflsc_get_temp(bflsc, i))
allok = false;
// Device is gone
if (bflsc->usbinfo.nodev)
return false;
if (i < (sc_info->sc_count - 1))
cgsleep_ms(BFLSC_TEMP_SLEEPMS);
}
bflsc_set_fanspeed(bflsc);
return allok;
}
static void bflsc_identify(struct cgpu_info *bflsc)
{
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
// TODO: handle x-link
sc_info->flash_led = true;
}
static bool bflsc_thread_init(struct thr_info *thr)
{
struct cgpu_info *bflsc = thr->cgpu;
if (bflsc->usbinfo.nodev)
return false;
bflsc_initialise(bflsc);
return true;
}
// there should be a new API function to return device info that isn't the standard stuff
// instead of bflsc_api_stats - since the stats should really just be internal code info
// and the new one should be UNusual device stats/extra details - like the stuff below
static struct api_data *bflsc_api_stats(struct cgpu_info *bflsc)
{
struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data);
struct api_data *root = NULL;
char buf[256];
int i;
//if no x-link ... etc
rd_lock(&(sc_info->stat_lock));
root = api_add_temp(root, "Temp1", &(sc_info->sc_devs[0].temp1), true);
root = api_add_temp(root, "Temp2", &(sc_info->sc_devs[0].temp2), true);
root = api_add_volts(root, "Vcc1", &(sc_info->sc_devs[0].vcc1), true);
root = api_add_volts(root, "Vcc2", &(sc_info->sc_devs[0].vcc2), true);
root = api_add_volts(root, "Vmain", &(sc_info->sc_devs[0].vmain), true);
root = api_add_temp(root, "Temp1 Max", &(sc_info->sc_devs[0].temp1_max), true);
root = api_add_temp(root, "Temp2 Max", &(sc_info->sc_devs[0].temp2_max), true);
root = api_add_time(root, "Temp1 Max Time", &(sc_info->sc_devs[0].temp1_max_time), true);
root = api_add_time(root, "Temp2 Max Time", &(sc_info->sc_devs[0].temp2_max_time), true);
root = api_add_int(root, "Work Queued", &(sc_info->sc_devs[0].work_queued), true);
root = api_add_int(root, "Work Complete", &(sc_info->sc_devs[0].work_complete), true);
root = api_add_bool(root, "Overheat", &(sc_info->sc_devs[0].overheat), true);
root = api_add_uint64(root, "Flush ID", &(sc_info->sc_devs[0].flush_id), true);
root = api_add_uint64(root, "Result ID", &(sc_info->sc_devs[0].result_id), true);
root = api_add_bool(root, "Flushed", &(sc_info->sc_devs[0].flushed), true);
root = api_add_uint(root, "Scan Sleep", &(sc_info->scan_sleep_time), true);
root = api_add_uint(root, "Results Sleep", &(sc_info->results_sleep_time), true);
root = api_add_uint(root, "Work ms", &(sc_info->default_ms_work), true);
buf[0] = '\0';
for (i = 0; i <= QUE_MAX_RESULTS + 1; i++)
tailsprintf(buf, sizeof(buf), "%s%"PRIu64, (i > 0) ? "/" : "", sc_info->result_size[i]);
root = api_add_string(root, "Result Size", buf, true);
rd_unlock(&(sc_info->stat_lock));
i = (int)(sc_info->driver_version);
root = api_add_int(root, "Driver", &i, true);
root = api_add_string(root, "Firmware", sc_info->sc_devs[0].firmware, false);
root = api_add_string(root, "Chips", sc_info->sc_devs[0].chips, false);
root = api_add_int(root, "Que Size", &(sc_info->que_size), false);
root = api_add_int(root, "Que Full", &(sc_info->que_full_enough), false);
root = api_add_int(root, "Que Watermark", &(sc_info->que_watermark), false);
root = api_add_int(root, "Que Low", &(sc_info->que_low), false);
root = api_add_escape(root, "GetInfo", sc_info->sc_devs[0].getinfo, false);
/*
else a whole lot of something like these ... etc
root = api_add_temp(root, "X-%d-Temp1", &(sc_info->temp1), false);
root = api_add_temp(root, "X-%d-Temp2", &(sc_info->temp2), false);
root = api_add_volts(root, "X-%d-Vcc1", &(sc_info->vcc1), false);
root = api_add_volts(root, "X-%d-Vcc2", &(sc_info->vcc2), false);
root = api_add_volts(root, "X-%d-Vmain", &(sc_info->vmain), false);
*/
return root;
}
struct device_drv bflsc_drv = {
.drv_id = DRIVER_bflsc,
.dname = "BitForceSC",
.name = BFLSC_SINGLE,
.drv_detect = bflsc_detect,
.get_api_stats = bflsc_api_stats,
.get_statline_before = get_bflsc_statline_before,
.get_stats = bflsc_get_stats,
.identify_device = bflsc_identify,
.thread_prepare = bflsc_thread_prepare,
.thread_init = bflsc_thread_init,
.hash_work = hash_queued_work,
.scanwork = bflsc_scanwork,
.queue_full = bflsc_queue_full,
.flush_work = bflsc_flush_work,
.thread_shutdown = bflsc_shutdown,
.thread_enable = bflsc_thread_enable
};