mirror of
https://github.com/GOSTSec/sgminer
synced 2025-01-25 05:54:19 +00:00
482 lines
12 KiB
C
482 lines
12 KiB
C
/*-
|
|
* Copyright 2014 James Lovejoy
|
|
* Copyright 2014 phm
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "miner.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
|
|
|
|
static const uint32_t sha256_h[8] = {
|
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
|
|
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
|
|
};
|
|
|
|
static const uint32_t sha256_k[64] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
};
|
|
|
|
void sha256_init(uint32_t *state)
|
|
{
|
|
memcpy(state, sha256_h, 32);
|
|
}
|
|
|
|
/* Elementary functions used by SHA256 */
|
|
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
|
|
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
|
|
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
|
|
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
|
|
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
|
|
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3))
|
|
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10))
|
|
|
|
/* SHA256 round function */
|
|
#define RND(a, b, c, d, e, f, g, h, k) \
|
|
do { \
|
|
t0 = h + S1(e) + Ch(e, f, g) + k; \
|
|
t1 = S0(a) + Maj(a, b, c); \
|
|
d += t0; \
|
|
h = t0 + t1; \
|
|
} while (0)
|
|
|
|
/* Adjusted round function for rotating state */
|
|
#define RNDr(S, W, i) \
|
|
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
|
|
S[(66 - i) % 8], S[(67 - i) % 8], \
|
|
S[(68 - i) % 8], S[(69 - i) % 8], \
|
|
S[(70 - i) % 8], S[(71 - i) % 8], \
|
|
W[i] + sha256_k[i])
|
|
|
|
|
|
/*
|
|
* SHA256 block compression function. The 256-bit state is transformed via
|
|
* the 512-bit input block to produce a new state.
|
|
*/
|
|
void sha256_transform(uint32_t *state, const uint32_t *block, int swap)
|
|
{
|
|
uint32_t W[64];
|
|
uint32_t S[8];
|
|
uint32_t t0, t1;
|
|
int i;
|
|
|
|
/* 1. Prepare message schedule W. */
|
|
if (swap) {
|
|
for (i = 0; i < 16; i++)
|
|
W[i] = swab32(block[i]);
|
|
}
|
|
else
|
|
memcpy(W, block, 64);
|
|
for (i = 16; i < 64; i += 2) {
|
|
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
|
|
W[i + 1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
|
|
}
|
|
|
|
/* 2. Initialize working variables. */
|
|
memcpy(S, state, 32);
|
|
|
|
/* 3. Mix. */
|
|
RNDr(S, W, 0);
|
|
RNDr(S, W, 1);
|
|
RNDr(S, W, 2);
|
|
RNDr(S, W, 3);
|
|
RNDr(S, W, 4);
|
|
RNDr(S, W, 5);
|
|
RNDr(S, W, 6);
|
|
RNDr(S, W, 7);
|
|
RNDr(S, W, 8);
|
|
RNDr(S, W, 9);
|
|
RNDr(S, W, 10);
|
|
RNDr(S, W, 11);
|
|
RNDr(S, W, 12);
|
|
RNDr(S, W, 13);
|
|
RNDr(S, W, 14);
|
|
RNDr(S, W, 15);
|
|
RNDr(S, W, 16);
|
|
RNDr(S, W, 17);
|
|
RNDr(S, W, 18);
|
|
RNDr(S, W, 19);
|
|
RNDr(S, W, 20);
|
|
RNDr(S, W, 21);
|
|
RNDr(S, W, 22);
|
|
RNDr(S, W, 23);
|
|
RNDr(S, W, 24);
|
|
RNDr(S, W, 25);
|
|
RNDr(S, W, 26);
|
|
RNDr(S, W, 27);
|
|
RNDr(S, W, 28);
|
|
RNDr(S, W, 29);
|
|
RNDr(S, W, 30);
|
|
RNDr(S, W, 31);
|
|
RNDr(S, W, 32);
|
|
RNDr(S, W, 33);
|
|
RNDr(S, W, 34);
|
|
RNDr(S, W, 35);
|
|
RNDr(S, W, 36);
|
|
RNDr(S, W, 37);
|
|
RNDr(S, W, 38);
|
|
RNDr(S, W, 39);
|
|
RNDr(S, W, 40);
|
|
RNDr(S, W, 41);
|
|
RNDr(S, W, 42);
|
|
RNDr(S, W, 43);
|
|
RNDr(S, W, 44);
|
|
RNDr(S, W, 45);
|
|
RNDr(S, W, 46);
|
|
RNDr(S, W, 47);
|
|
RNDr(S, W, 48);
|
|
RNDr(S, W, 49);
|
|
RNDr(S, W, 50);
|
|
RNDr(S, W, 51);
|
|
RNDr(S, W, 52);
|
|
RNDr(S, W, 53);
|
|
RNDr(S, W, 54);
|
|
RNDr(S, W, 55);
|
|
RNDr(S, W, 56);
|
|
RNDr(S, W, 57);
|
|
RNDr(S, W, 58);
|
|
RNDr(S, W, 59);
|
|
RNDr(S, W, 60);
|
|
RNDr(S, W, 61);
|
|
RNDr(S, W, 62);
|
|
RNDr(S, W, 63);
|
|
|
|
/* 4. Mix local working variables into global state */
|
|
for (i = 0; i < 8; i++)
|
|
state[i] += S[i];
|
|
}
|
|
|
|
/*
|
|
* Encode a length len/4 vector of (uint32_t) into a length len vector of
|
|
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
|
|
*/
|
|
static inline void
|
|
be32enc_vect(uint32_t *dst, const uint32_t *src, uint32_t len)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
dst[i] = htobe32(src[i]);
|
|
}
|
|
static inline void be32enc(void *pp, uint32_t x)
|
|
{
|
|
uint8_t *p = (uint8_t *)pp;
|
|
p[3] = x & 0xff;
|
|
p[2] = (x >> 8) & 0xff;
|
|
p[1] = (x >> 16) & 0xff;
|
|
p[0] = (x >> 24) & 0xff;
|
|
}
|
|
static inline uint32_t be32dec(const void *pp)
|
|
{
|
|
const uint8_t *p = (uint8_t const *)pp;
|
|
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
|
|
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
|
|
}
|
|
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
|
|
//note, this is 64 bytes
|
|
static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16])
|
|
{
|
|
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
|
|
uint32_t x00, x01, x02, x03, x04, x05, x06, x07, x08, x09, x10, x11, x12, x13, x14, x15;
|
|
int i;
|
|
|
|
x00 = (B[0] ^= Bx[0]);
|
|
x01 = (B[1] ^= Bx[1]);
|
|
x02 = (B[2] ^= Bx[2]);
|
|
x03 = (B[3] ^= Bx[3]);
|
|
x04 = (B[4] ^= Bx[4]);
|
|
x05 = (B[5] ^= Bx[5]);
|
|
x06 = (B[6] ^= Bx[6]);
|
|
x07 = (B[7] ^= Bx[7]);
|
|
x08 = (B[8] ^= Bx[8]);
|
|
x09 = (B[9] ^= Bx[9]);
|
|
x10 = (B[10] ^= Bx[10]);
|
|
x11 = (B[11] ^= Bx[11]);
|
|
x12 = (B[12] ^= Bx[12]);
|
|
x13 = (B[13] ^= Bx[13]);
|
|
x14 = (B[14] ^= Bx[14]);
|
|
x15 = (B[15] ^= Bx[15]);
|
|
for (i = 0; i < 8; i += 2) {
|
|
/* Operate on columns. */
|
|
x04 ^= ROTL(x00 + x12, 7); x09 ^= ROTL(x05 + x01, 7);
|
|
x14 ^= ROTL(x10 + x06, 7); x03 ^= ROTL(x15 + x11, 7);
|
|
|
|
x08 ^= ROTL(x04 + x00, 9); x13 ^= ROTL(x09 + x05, 9);
|
|
x02 ^= ROTL(x14 + x10, 9); x07 ^= ROTL(x03 + x15, 9);
|
|
|
|
x12 ^= ROTL(x08 + x04, 13); x01 ^= ROTL(x13 + x09, 13);
|
|
x06 ^= ROTL(x02 + x14, 13); x11 ^= ROTL(x07 + x03, 13);
|
|
|
|
x00 ^= ROTL(x12 + x08, 18); x05 ^= ROTL(x01 + x13, 18);
|
|
x10 ^= ROTL(x06 + x02, 18); x15 ^= ROTL(x11 + x07, 18);
|
|
|
|
/* Operate on rows. */
|
|
x01 ^= ROTL(x00 + x03, 7); x06 ^= ROTL(x05 + x04, 7);
|
|
x11 ^= ROTL(x10 + x09, 7); x12 ^= ROTL(x15 + x14, 7);
|
|
|
|
x02 ^= ROTL(x01 + x00, 9); x07 ^= ROTL(x06 + x05, 9);
|
|
x08 ^= ROTL(x11 + x10, 9); x13 ^= ROTL(x12 + x15, 9);
|
|
|
|
x03 ^= ROTL(x02 + x01, 13); x04 ^= ROTL(x07 + x06, 13);
|
|
x09 ^= ROTL(x08 + x11, 13); x14 ^= ROTL(x13 + x12, 13);
|
|
|
|
x00 ^= ROTL(x03 + x02, 18); x05 ^= ROTL(x04 + x07, 18);
|
|
x10 ^= ROTL(x09 + x08, 18); x15 ^= ROTL(x14 + x13, 18);
|
|
}
|
|
B[0] += x00;
|
|
B[1] += x01;
|
|
B[2] += x02;
|
|
B[3] += x03;
|
|
B[4] += x04;
|
|
B[5] += x05;
|
|
B[6] += x06;
|
|
B[7] += x07;
|
|
B[8] += x08;
|
|
B[9] += x09;
|
|
B[10] += x10;
|
|
B[11] += x11;
|
|
B[12] += x12;
|
|
B[13] += x13;
|
|
B[14] += x14;
|
|
B[15] += x15;
|
|
#undef ROTL
|
|
}
|
|
|
|
void sha256_hash(unsigned char *hash, const unsigned char *data, int len)
|
|
{
|
|
uint32_t S[16], T[16];
|
|
int i, r;
|
|
|
|
sha256_init(S);
|
|
for (r = len; r > -9; r -= 64) {
|
|
if (r < 64)
|
|
memset(T, 0, 64);
|
|
memcpy(T, data + len - r, r > 64 ? 64 : (r < 0 ? 0 : r));
|
|
if (r >= 0 && r < 64)
|
|
((unsigned char *)T)[r] = 0x80;
|
|
for (i = 0; i < 16; i++)
|
|
T[i] = be32dec(T + i);
|
|
|
|
if (r < 56)
|
|
T[15] = 8 * len;
|
|
sha256_transform(S, T, 0);
|
|
}
|
|
for (i = 0; i < 8; i++)
|
|
be32enc((uint32_t *)hash + i, S[i]);
|
|
}
|
|
|
|
void sha256_hash512(unsigned char *hash, const unsigned char *data)
|
|
{
|
|
uint32_t S[16], T[16];
|
|
int i;
|
|
|
|
sha256_init(S);
|
|
|
|
memcpy(T, data, 64);
|
|
|
|
for (i = 0; i < 16; i++)
|
|
T[i] = be32dec(T + i);
|
|
sha256_transform(S, T, 0);
|
|
|
|
memset(T, 0, 64);
|
|
//memcpy(T, data + 64, 0);
|
|
((unsigned char *)T)[0] = 0x80;
|
|
for (i = 0; i < 16; i++)
|
|
T[i] = be32dec(T + i);
|
|
T[15] = 8 * 64;
|
|
sha256_transform(S, T, 0);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
be32enc((uint32_t *)hash + i, S[i]);
|
|
}
|
|
|
|
inline void pluckrehash(void *state, const void *input)
|
|
{
|
|
|
|
int i,j;
|
|
uint32_t data[20];
|
|
|
|
const int HASH_MEMORY = 128 * 1024;
|
|
uint8_t * scratchbuf = (uint8_t*)malloc(HASH_MEMORY);
|
|
memcpy(data,input,80);
|
|
|
|
uint8_t hashbuffer[128*1024]; //don't allocate this on stack, since it's huge..
|
|
int size = HASH_MEMORY;
|
|
memset(hashbuffer, 0, 64);
|
|
sha256_hash(&hashbuffer[0], (uint8_t*)data, 80);
|
|
for (i = 64; i < size - 32; i += 32)
|
|
{
|
|
int randmax = i - 4; //we could use size here, but then it's probable to use 0 as the value in most cases
|
|
uint32_t joint[16];
|
|
uint32_t randbuffer[16];
|
|
|
|
uint32_t randseed[16];
|
|
memcpy(randseed, &hashbuffer[i - 64], 64);
|
|
if (i>128)
|
|
{
|
|
memcpy(randbuffer, &hashbuffer[i - 128], 64);
|
|
}
|
|
else
|
|
{
|
|
memset(&randbuffer, 0, 64);
|
|
}
|
|
|
|
xor_salsa8(randbuffer, randseed);
|
|
|
|
memcpy(joint, &hashbuffer[i - 32], 32);
|
|
//use the last hash value as the seed
|
|
for (j = 32; j < 64; j += 4)
|
|
{
|
|
uint32_t rand = randbuffer[(j - 32) / 4] % (randmax - 32);
|
|
joint[j / 4] = *((uint32_t*)&hashbuffer[rand]);
|
|
|
|
}
|
|
sha256_hash512(&hashbuffer[i], (uint8_t*)joint);
|
|
|
|
memcpy(randseed, &hashbuffer[i - 32], 64);
|
|
if (i>128)
|
|
{
|
|
memcpy(randbuffer, &hashbuffer[i - 128], 64);
|
|
}
|
|
else
|
|
{
|
|
memset(randbuffer, 0, 64);
|
|
}
|
|
xor_salsa8(randbuffer, randseed);
|
|
for (j = 0; j < 32; j += 2)
|
|
{
|
|
uint32_t rand = randbuffer[j / 2] % randmax;
|
|
*((uint32_t*)&hashbuffer[rand]) = *((uint32_t*)&hashbuffer[j + i - 4]);
|
|
}
|
|
}
|
|
|
|
|
|
//printf("cpu hashbuffer %08x nonce %08x\n", ((uint32_t*)hashbuffer)[7],data[19]);
|
|
|
|
memcpy(state, hashbuffer, 32);
|
|
}
|
|
|
|
static const uint32_t diff1targ = 0x0000ffff;
|
|
|
|
|
|
/* Used externally as confirmation of correct OCL code */
|
|
int pluck_test(unsigned char *pdata, const unsigned char *ptarget, uint32_t nonce)
|
|
{
|
|
uint32_t tmp_hash7, Htarg = le32toh(((const uint32_t *)ptarget)[7]);
|
|
uint32_t data[20], ohash[8];
|
|
|
|
be32enc_vect(data, (const uint32_t *)pdata, 19);
|
|
data[19] = htobe32(nonce);
|
|
pluckrehash(ohash, data);
|
|
|
|
tmp_hash7 = be32toh(ohash[7]);
|
|
|
|
applog(LOG_DEBUG, "htarget %08lx diff1 %08lx hash %08lx",
|
|
(long unsigned int)Htarg,
|
|
(long unsigned int)diff1targ,
|
|
(long unsigned int)tmp_hash7);
|
|
|
|
if (tmp_hash7 > diff1targ)
|
|
return -1;
|
|
|
|
if (tmp_hash7 > Htarg)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void pluck_regenhash(struct work *work)
|
|
{
|
|
uint32_t data[20];
|
|
uint32_t *nonce = (uint32_t *)(work->data + 76);
|
|
uint32_t *ohash = (uint32_t *)(work->hash);
|
|
|
|
be32enc_vect(data, (const uint32_t *)work->data, 19);
|
|
data[19] = htobe32(*nonce);
|
|
|
|
pluckrehash(ohash, data);
|
|
}
|
|
|
|
|
|
bool scanhash_pluck(struct thr_info *thr, const unsigned char __maybe_unused *pmidstate,
|
|
unsigned char *pdata, unsigned char __maybe_unused *phash1,
|
|
unsigned char __maybe_unused *phash, const unsigned char *ptarget,
|
|
uint32_t max_nonce, uint32_t *last_nonce, uint32_t n)
|
|
{
|
|
uint32_t *nonce = (uint32_t *)(pdata + 76);
|
|
uint32_t data[20];
|
|
uint32_t tmp_hash7;
|
|
uint32_t Htarg = le32toh(((const uint32_t *)ptarget)[7]);
|
|
bool ret = false;
|
|
|
|
be32enc_vect(data, (const uint32_t *)pdata, 19);
|
|
|
|
while (1)
|
|
{
|
|
uint32_t ostate[8];
|
|
|
|
*nonce = ++n;
|
|
data[19] = (n);
|
|
pluckrehash(ostate, data);
|
|
tmp_hash7 = (ostate[7]);
|
|
|
|
applog(LOG_INFO, "data7 %08lx", (long unsigned int)data[7]);
|
|
|
|
if (unlikely(tmp_hash7 <= Htarg))
|
|
{
|
|
((uint32_t *)pdata)[19] = htobe32(n);
|
|
*last_nonce = n;
|
|
ret = true;
|
|
break;
|
|
}
|
|
|
|
if (unlikely((n >= max_nonce) || thr->work_restart))
|
|
{
|
|
*last_nonce = n;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
} |