OpenCL GPU miner
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

354 lines
12 KiB

;/*
; * Copyright (C) 2011 - Neil Kettle <neil@digit-labs.org>
; *
; * This file is part of cpuminer-ng.
; *
; * cpuminer-ng is free software: you can redistribute it and/or modify
; * it under the terms of the GNU General Public License as published by
; * the Free Software Foundation, either version 3 of the License, or
; * (at your option) any later version.
; *
; * cpuminer-ng is distributed in the hope that it will be useful,
; * but WITHOUT ANY WARRANTY; without even the implied warranty of
; * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; * GNU General Public License for more details.
; *
; * You should have received a copy of the GNU General Public License
; * along with cpuminer-ng. If not, see <http://www.gnu.org/licenses/>.
; */
; %rbp, %rbx, and %r12-%r15 - callee save
ALIGN 32
BITS 64
%ifidn __OUTPUT_FORMAT__,win64
%define hash rcx
%define hash1 rdx
%define data r8
%define init r9
%else
%define hash rdi
%define hash1 rsi
%define data rdx
%define init rcx
%endif
; 0 = (1024 - 256) (mod (LAB_CALC_UNROLL*LAB_CALC_PARA*16))
%define SHA_CALC_W_PARA 2
%define SHA_CALC_W_UNROLL 8
%define SHA_ROUND_LOOP_UNROLL 16
%ifidn __YASM_OBJFMT__, macho64
extern _sha256_consts_m128i
extern _sha256_init
%else
extern sha256_consts_m128i
extern sha256_init
%endif
%ifidn __YASM_OBJFMT__, macho64
global _sha256_sse2_64_new
%else
global sha256_sse2_64_new
%endif
%define sr1 xmm6
%define sr2 xmm1
%define sr3 xmm2
%define sr4 xmm13
%define rA xmm7
%define rB xmm5
%define rC xmm4
%define rD xmm3
%define rE xmm0
%define rF xmm8
%define rG xmm9
%define rH xmm10
%macro sha_round_blk 0
movdqa sr1, [data+rax] ; T1 = w;
;movdqa sr1, xmm11
movdqa sr2, rE ; sr2 = rE
pandn sr2, rG ; sr2 = ~rE & rG
movdqa sr3, rF ; sr3 = rF
paddd sr1, rH ; T1 = h + sha256_consts_m128i[i] + w;
movdqa rH, rG ; rH = rG
pand sr3, rE ; sr3 = rE & rF
movdqa rG, rF ; rG = rF
%ifidn __YASM_OBJFMT__, macho64
paddd sr1, [rcx+rax]
%else
paddd sr1, sha256_consts_m128i[rax] ; T1 = sha256_consts_m128i[i] + w;
%endif
pxor sr2, sr3 ; sr2 = (rE & rF) ^ (~rE & rG) = Ch (e, f, g)
movdqa rF, rE ; rF = rE
paddd sr1, sr2 ; T1 = h + Ch (e, f, g) + sha256_consts_m128i[i] + w;
movdqa sr2, rE ; sr2 = rE
psrld rE, 6 ; e >> 6
movdqa sr3, rE ; e >> 6
pslld sr2, 7 ; e << 7
psrld sr3, 5 ; e >> 11
pxor rE, sr2 ; e >> 6 ^ e << 7
pslld sr2, 14 ; e << 21
pxor rE, sr3 ; e >> 6 ^ e << 7 ^ e >> 11
psrld sr3, 14 ; e >> 25
pxor rE, sr2 ; e >> 6 ^ e << 7 ^ e >> 11 ^ e << 21
pslld sr2, 5 ; e << 26
pxor rE, sr3 ; e >> 6 ^ e << 7 ^ e >> 11 ^ e << 21 ^ e >> 25
pxor rE, sr2 ; e >> 6 ^ e << 7 ^ e >> 11 ^ e << 21 ^ e >> 25 ^ e << 26
movdqa sr2, rB ; sr2 = rB
paddd sr1, rE ; sr1 = h + BIGSIGMA1_256(e) + Ch (e, f, g) + sha256_consts_m128i[i] + w;
movdqa rE, rD ; rE = rD
movdqa rD, rC ; rD = rC
paddd rE, sr1 ; rE = rD + T1
movdqa sr3, rC ; sr3 = rC
pand rC, rA ; rC = rC & rA
pand sr3, rB ; sr3 = rB & rC
pand sr2, rA ; sr2 = rB & rA
pxor sr2, rC ; sr2 = (rB & rA) ^ (rC & rA)
movdqa rC, rB ; rC = rB
pxor sr2, sr3 ; sr2 = (rB & rA) ^ (rC & rA) ^ (rB & rC)
movdqa rB, rA ; rB = rA
paddd sr1, sr2 ; sr1 = T1 + (rB & rA) ^ (rC & rA) ^ (rB & rC)
lea rax, [rax+16]
movdqa sr3, rA ; sr3 = rA
psrld rA, 2 ; a >> 2
pslld sr3, 10 ; a << 10
movdqa sr2, rA ; a >> 2
pxor rA, sr3 ; a >> 2 ^ a << 10
psrld sr2, 11 ; a >> 13
pxor rA, sr2 ; a >> 2 ^ a << 10 ^ a >> 13
pslld sr3, 9 ; a << 19
pxor rA, sr3 ; a >> 2 ^ a << 10 ^ a >> 13 ^ a << 19
psrld sr2, 9 ; a >> 21
pxor rA, sr2 ; a >> 2 ^ a << 10 ^ a >> 13 ^ a << 19 ^ a >> 21
pslld sr3, 11 ; a << 30
pxor rA, sr3 ; a >> 2 ^ a << 10 ^ a >> 13 ^ a << 19 ^ a >> 21 ^ a << 30
paddd rA, sr1 ; T1 + BIGSIGMA0_256(a) + Maj(a, b, c);
%endmacro
%macro sha_calc_w_blk 1
movdqa xmm0, [r11-(15-%1)*16] ; xmm0 = W[I-15]
movdqa xmm4, [r11-(15-(%1+1))*16] ; xmm4 = W[I-15+1]
movdqa xmm2, xmm0 ; xmm2 = W[I-15]
movdqa xmm6, xmm4 ; xmm6 = W[I-15+1]
psrld xmm0, 3 ; xmm0 = W[I-15] >> 3
psrld xmm4, 3 ; xmm4 = W[I-15+1] >> 3
movdqa xmm1, xmm0 ; xmm1 = W[I-15] >> 3
movdqa xmm5, xmm4 ; xmm5 = W[I-15+1] >> 3
pslld xmm2, 14 ; xmm2 = W[I-15] << 14
pslld xmm6, 14 ; xmm6 = W[I-15+1] << 14
psrld xmm1, 4 ; xmm1 = W[I-15] >> 7
psrld xmm5, 4 ; xmm5 = W[I-15+1] >> 7
pxor xmm0, xmm1 ; xmm0 = (W[I-15] >> 3) ^ (W[I-15] >> 7)
pxor xmm4, xmm5 ; xmm4 = (W[I-15+1] >> 3) ^ (W[I-15+1] >> 7)
psrld xmm1, 11 ; xmm1 = W[I-15] >> 18
psrld xmm5, 11 ; xmm5 = W[I-15+1] >> 18
pxor xmm0, xmm2 ; xmm0 = (W[I-15] >> 3) ^ (W[I-15] >> 7) ^ (W[I-15] << 14)
pxor xmm4, xmm6 ; xmm4 = (W[I-15+1] >> 3) ^ (W[I-15+1] >> 7) ^ (W[I-15+1] << 14)
pslld xmm2, 11 ; xmm2 = W[I-15] << 25
pslld xmm6, 11 ; xmm6 = W[I-15+1] << 25
pxor xmm0, xmm1 ; xmm0 = (W[I-15] >> 3) ^ (W[I-15] >> 7) ^ (W[I-15] << 14) ^ (W[I-15] >> 18)
pxor xmm4, xmm5 ; xmm4 = (W[I-15+1] >> 3) ^ (W[I-15+1] >> 7) ^ (W[I-15+1] << 14) ^ (W[I-15+1] >> 18)
pxor xmm0, xmm2 ; xmm0 = (W[I-15] >> 3) ^ (W[I-15] >> 7) ^ (W[I-15] << 14) ^ (W[I-15] >> 18) ^ (W[I-15] << 25)
pxor xmm4, xmm6 ; xmm4 = (W[I-15+1] >> 3) ^ (W[I-15+1] >> 7) ^ (W[I-15+1] << 14) ^ (W[I-15+1] >> 18) ^ (W[I-15+1] << 25)
movdqa xmm3, [r11-(2-%1)*16] ; xmm3 = W[I-2]
movdqa xmm7, [r11-(2-(%1+1))*16] ; xmm7 = W[I-2+1]
paddd xmm0, [r11-(16-%1)*16] ; xmm0 = s0(W[I-15]) + W[I-16]
paddd xmm4, [r11-(16-(%1+1))*16] ; xmm4 = s0(W[I-15+1]) + W[I-16+1]
;;;;;;;;;;;;;;;;;;
movdqa xmm2, xmm3 ; xmm2 = W[I-2]
movdqa xmm6, xmm7 ; xmm6 = W[I-2+1]
psrld xmm3, 10 ; xmm3 = W[I-2] >> 10
psrld xmm7, 10 ; xmm7 = W[I-2+1] >> 10
movdqa xmm1, xmm3 ; xmm1 = W[I-2] >> 10
movdqa xmm5, xmm7 ; xmm5 = W[I-2+1] >> 10
paddd xmm0, [r11-(7-%1)*16] ; xmm0 = s0(W[I-15]) + W[I-16] + W[I-7]
pslld xmm2, 13 ; xmm2 = W[I-2] << 13
pslld xmm6, 13 ; xmm6 = W[I-2+1] << 13
psrld xmm1, 7 ; xmm1 = W[I-2] >> 17
psrld xmm5, 7 ; xmm5 = W[I-2+1] >> 17
paddd xmm4, [r11-(7-(%1+1))*16] ; xmm4 = s0(W[I-15+1]) + W[I-16+1] + W[I-7+1]
pxor xmm3, xmm1 ; xmm3 = (W[I-2] >> 10) ^ (W[I-2] >> 17)
pxor xmm7, xmm5 ; xmm7 = (W[I-2+1] >> 10) ^ (W[I-2+1] >> 17)
psrld xmm1, 2 ; xmm1 = W[I-2] >> 19
psrld xmm5, 2 ; xmm5 = W[I-2+1] >> 19
pxor xmm3, xmm2 ; xmm3 = (W[I-2] >> 10) ^ (W[I-2] >> 17) ^ (W[I-2] << 13)
pxor xmm7, xmm6 ; xmm7 = (W[I-2+1] >> 10) ^ (W[I-2+1] >> 17) ^ (W[I-2+1] << 13)
pslld xmm2, 2 ; xmm2 = W[I-2] << 15
pslld xmm6, 2 ; xmm6 = W[I-2+1] << 15
pxor xmm3, xmm1 ; xmm3 = (W[I-2] >> 10) ^ (W[I-2] >> 17) ^ (W[I-2] << 13) ^ (W[I-2] >> 19)
pxor xmm7, xmm5 ; xmm7 = (W[I-2+1] >> 10) ^ (W[I-2+1] >> 17) ^ (W[I-2+1] << 13) ^ (W[I-2+1] >> 19)
pxor xmm3, xmm2 ; xmm3 = (W[I-2] >> 10) ^ (W[I-2] >> 17) ^ (W[I-2] << 13) ^ (W[I-2] >> 19) ^ (W[I-2] << 15)
pxor xmm7, xmm6 ; xmm7 = (W[I-2+1] >> 10) ^ (W[I-2+1] >> 17) ^ (W[I-2+1] << 13) ^ (W[I-2+1] >> 19) ^ (W[I-2+1] << 15)
paddd xmm0, xmm3 ; xmm0 = s0(W[I-15]) + W[I-16] + s1(W[I-2]) + W[I-7]
paddd xmm4, xmm7 ; xmm4 = s0(W[I-15+1]) + W[I-16+1] + s1(W[I-2+1]) + W[I-7+1]
movdqa [r11+(%1*16)], xmm0
movdqa [r11+((%1+1)*16)], xmm4
%endmacro
; _sha256_sse2_64_new hash(rdi), hash1(rsi), data(rdx), init(rcx),
%ifidn __YASM_OBJFMT__, macho64
_sha256_sse2_64_new:
%else
sha256_sse2_64_new:
%endif
push rbx
%ifidn __OUTPUT_FORMAT__,win64
sub rsp, 16 * 6
movdqa [rsp + 16*0], xmm6
movdqa [rsp + 16*1], xmm7
movdqa [rsp + 16*2], xmm8
movdqa [rsp + 16*3], xmm9
movdqa [rsp + 16*4], xmm10
movdqa [rsp + 16*5], xmm13
%endif
%macro SHA_256 0
mov rbx, 64*4 ; rbx is # of SHA-2 rounds
mov rax, 16*4 ; rax is where we expand to
push rbx
lea rbx, qword [data+rbx*4]
lea r11, qword [data+rax*4]
%%SHA_CALC_W:
%assign i 0
%rep SHA_CALC_W_UNROLL
sha_calc_w_blk i
%assign i i+SHA_CALC_W_PARA
%endrep
add r11, SHA_CALC_W_UNROLL*SHA_CALC_W_PARA*16
cmp r11, rbx
jb %%SHA_CALC_W
pop rbx
mov rax, 0
lea rbx, [rbx*4]
movdqa rA, [init]
pshufd rB, rA, 0x55 ; rB == B
pshufd rC, rA, 0xAA ; rC == C
pshufd rD, rA, 0xFF ; rD == D
pshufd rA, rA, 0 ; rA == A
movdqa rE, [init+4*4]
pshufd rF, rE, 0x55 ; rF == F
pshufd rG, rE, 0xAA ; rG == G
pshufd rH, rE, 0xFF ; rH == H
pshufd rE, rE, 0 ; rE == E
%ifidn __YASM_OBJFMT__, macho64
lea rcx, [_sha256_consts_m128i wrt rip]
%endif
%%SHAROUND_LOOP:
%assign i 0
%rep SHA_ROUND_LOOP_UNROLL
sha_round_blk
%assign i i+1
%endrep
cmp rax, rbx
jb %%SHAROUND_LOOP
; Finished the 64 rounds, calculate hash and save
movdqa sr1, [init]
pshufd sr2, sr1, 0x55
pshufd sr3, sr1, 0xAA
pshufd sr4, sr1, 0xFF
pshufd sr1, sr1, 0
paddd rB, sr2
paddd rC, sr3
paddd rD, sr4
paddd rA, sr1
movdqa sr1, [init+4*4]
pshufd sr2, sr1, 0x55
pshufd sr3, sr1, 0xAA
pshufd sr4, sr1, 0xFF
pshufd sr1, sr1, 0
paddd rF, sr2
paddd rG, sr3
paddd rH, sr4
paddd rE, sr1
%endmacro
SHA_256
movdqa [hash1+0*16], rA
movdqa [hash1+1*16], rB
movdqa [hash1+2*16], rC
movdqa [hash1+3*16], rD
movdqa [hash1+4*16], rE
movdqa [hash1+5*16], rF
movdqa [hash1+6*16], rG
movdqa [hash1+7*16], rH
mov data, hash1
mov init, sha256_init
SHA_256
movdqa [hash+7*16], rH
LAB_RET:
%ifidn __OUTPUT_FORMAT__,win64
movdqa xmm6, [rsp + 16*0]
movdqa xmm7, [rsp + 16*1]
movdqa xmm8, [rsp + 16*2]
movdqa xmm9, [rsp + 16*3]
movdqa xmm10, [rsp + 16*4]
movdqa xmm13, [rsp + 16*5]
add rsp, 16 * 6
%endif
pop rbx
ret
%ifidn __OUTPUT_FORMAT__,elf
section .note.GNU-stack noalloc noexec nowrite progbits
%endif
%ifidn __OUTPUT_FORMAT__,elf64
section .note.GNU-stack noalloc noexec nowrite progbits
%endif