mirror of https://github.com/GOSTSec/sgminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
143 lines
5.1 KiB
143 lines
5.1 KiB
If you wish to donate to the author, Con Kolivas, in LTC, please submit your |
|
donations to: |
|
|
|
Lc8TWMiKM7gRUrG8VB8pPNP1Yvt1SGZnoH |
|
|
|
Otherwise, please donate in BTC as per the main README. |
|
|
|
--- |
|
|
|
|
|
Scrypt mining, AKA litecoin mining, for GPU is completely different to sha256 |
|
used for bitcoin mining. The algorithm was originally developed in a manner |
|
that it was anticipated would make it suitable for mining on CPU but NOT GPU. |
|
Thanks to some innovative work by Artforz and mtrlt, this was proven to be |
|
wrong. However, it has very different requirements to bitcoin mining and is a |
|
lot more complicated to get working well. Note that it is a ram dependent |
|
workload, and requires you to have enough system ram as well as fast enough |
|
GPU ram. If you have less system ram than your GPU has, it may not be possible |
|
to mine at any reasonable rate. |
|
|
|
There are 5 main parameters to tuning scrypt, 2 of which you MUST set, and |
|
the others are optional for further fine tuning. When you start scrypt mining |
|
with the --scrypt option, cgminer will fail IN RANDOM WAYS. They are all due |
|
to parameters being outside what the GPU can cope with. Not giving cgminer a |
|
hint as to your GPU type, it will hardly ever perform well. |
|
|
|
NOTE that if it does not fail at startup, the presence of hardware errors (HW) |
|
are a sure sign that you have set the parameters too high. |
|
|
|
|
|
Step 1 on linux: |
|
export GPU_MAX_ALLOC_PERCENT=100 |
|
If you do not do this, you may find it impossible to scrypt mine. You may find |
|
a value of 40 is enough and increasing this further has little effect. |
|
|
|
export GPU_USE_SYNC_OBJECTS=1 |
|
may help CPU usage a little as well. |
|
|
|
--shaders XXX |
|
|
|
is a new option where you tell cgminer how many shaders your GPU has. This |
|
helps cgminer try to choose some meaningful baseline parameters. Use this table |
|
below to determine how many shaders your GPU has, and note that there are some |
|
variants of these cards, and nvidia shaders are much much lower and virtually |
|
pointless trying to mine on. |
|
|
|
GPU Shaders |
|
7750 512 |
|
7770 640 |
|
7850 1024 |
|
7870 1280 |
|
7950 1792 |
|
7970 2048 |
|
|
|
6850 960 |
|
6870 1120 |
|
6950 1408 |
|
6970 1536 |
|
6990 (6970x2) |
|
|
|
6570 480 |
|
6670 480 |
|
6790 800 |
|
|
|
6450 160 |
|
|
|
5670 400 |
|
5750 720 |
|
5770 800 |
|
5830 1120 |
|
5850 1440 |
|
5870 1600 |
|
5970 (5870x2) |
|
|
|
These are only used as a rough guide for cgminer, and it is rare that this is |
|
all you will need to set. |
|
|
|
|
|
--intensity XX |
|
|
|
Just like in bitcoin mining, scrypt mining takes an intensity, however the |
|
scale goes from 0 to 20 to mimic the "Aggression" used in mtrlt's reaper. The |
|
reason this is crucial is that too high an intensity can actually be |
|
disastrous with scrypt because it CAN run out of ram. Intensities over 13 |
|
start writing over the same ram and it is highly dependent on the GPU, but they |
|
can start actually DECREASING your hashrate, or even worse, start producing |
|
garbage with HW errors skyrocketing. The low level detail is that intensity is |
|
only guaranteed up to the power of 2 that most closely matches the thread |
|
concurrency. i.e. a thread concurrency of 6144 has 8192 as the nearest power |
|
of two above it, thus as 2^13=8192, that is an intensity of 13. |
|
|
|
|
|
Optional parameters to tune: |
|
-g, --thread-concurrency, --lookup-gap |
|
|
|
-g: |
|
Once you have found the optimal shaders and intensity, you can start increasing |
|
the -g value till cgminer fails to start. Rarely will you be able to go over |
|
about -g 4 and each increase in -g only increases hashrate slightly. |
|
|
|
--thread-concurrency: |
|
This tunes the optimal size of work that scrypt can do. It is internally tuned |
|
by cgminer to be the highest reasonable multiple of shaders that it can |
|
allocate on your GPU. Ideally it should be a multiple of your shader count. |
|
vliw5 architecture (R5XXX) would be best at 5x shaders, while VLIW4 (R6xxx and |
|
R7xxx) are best at 4x. Setting thread concurrency overrides anything you put |
|
into --shaders. |
|
|
|
--lookup-gap |
|
This tunes a compromise between ram usage and performance. Performance peaks |
|
at a gap of 2, but increasing the gap can save you some GPU ram, but almost |
|
always at the cost of significant loss of hashrate. Setting lookup gap |
|
overrides the default of 2, but cgminer will use the --shaders value to choose |
|
a thread-concurrency if you haven't chosen one. |
|
|
|
|
|
Overclocking for scrypt mining: |
|
First of all, do not underclock your memory initially. Scrypt mining requires |
|
memory speed and on most, but not all, GPUs, lowering memory speed lowers |
|
mining performance. |
|
|
|
Second, absolute engine clock speeds do NOT correlate with hashrate. The ratio |
|
of engine clock speed to memory matters, so if you set your memory to the |
|
default value, and then start overclocking as you are running it, you should |
|
find a sweet spot where the hashrate peaks and then it might actually drop if |
|
you increase the engine clock speed further. Unless you wish to run with a |
|
dynamic intensity, do not go over 13 without testing it while it's running to |
|
see that it increases hashrate AND utility WITHOUT increasing your HW errors. |
|
|
|
|
|
Suggested values for 7970 for example: |
|
export GPU_MAX_ALLOC_PERCENT=100 |
|
--thread-concurrency 8192 -g 4 --gpu-engine 1135 --gpu-memclock 1375 |
|
|
|
|
|
--- |
|
|
|
If you wish to donate to the author, Con Kolivas, in LTC, please submit your |
|
donations to: |
|
|
|
Lc8TWMiKM7gRUrG8VB8pPNP1Yvt1SGZnoH |
|
|
|
Otherwise, please donate in BTC as per the main README.
|
|
|