1
0
mirror of https://github.com/GOSTSec/sgminer synced 2025-01-25 14:04:25 +00:00
sgminer/driver-avalon.c
2013-08-23 22:52:30 +10:00

1608 lines
42 KiB
C

/*
* Copyright 2013 Con Kolivas <kernel@kolivas.org>
* Copyright 2012-2013 Xiangfu <xiangfu@openmobilefree.com>
* Copyright 2012 Luke Dashjr
* Copyright 2012 Andrew Smith
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include <limits.h>
#include <pthread.h>
#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <ctype.h>
#include <dirent.h>
#include <unistd.h>
#include <time.h>
#ifndef WIN32
#include <sys/select.h>
#include <termios.h>
#include <sys/stat.h>
#include <fcntl.h>
#ifndef O_CLOEXEC
#define O_CLOEXEC 0
#endif
#else
#include "compat.h"
#include <windows.h>
#include <io.h>
#endif
#include "elist.h"
#include "miner.h"
#include "usbutils.h"
#include "driver-avalon.h"
#include "hexdump.c"
#include "util.h"
int opt_avalon_temp = AVALON_TEMP_TARGET;
int opt_avalon_overheat = AVALON_TEMP_OVERHEAT;
int opt_avalon_fan_min = AVALON_DEFAULT_FAN_MIN_PWM;
int opt_avalon_fan_max = AVALON_DEFAULT_FAN_MAX_PWM;
int opt_avalon_freq_min = AVALON_MIN_FREQUENCY;
int opt_avalon_freq_max = AVALON_MAX_FREQUENCY;
int opt_bitburner_core_voltage = BITBURNER_DEFAULT_CORE_VOLTAGE;
bool opt_avalon_auto;
static int option_offset = -1;
struct device_drv avalon_drv;
static int avalon_init_task(struct avalon_task *at,
uint8_t reset, uint8_t ff, uint8_t fan,
uint8_t timeout, uint8_t asic_num,
uint8_t miner_num, uint8_t nonce_elf,
uint8_t gate_miner, int frequency)
{
uint16_t *lefreq16;
uint8_t *buf;
static bool first = true;
if (unlikely(!at))
return -1;
if (unlikely(timeout <= 0 || asic_num <= 0 || miner_num <= 0))
return -1;
memset(at, 0, sizeof(struct avalon_task));
if (unlikely(reset)) {
at->reset = 1;
at->fan_eft = 1;
at->timer_eft = 1;
first = true;
}
at->flush_fifo = (ff ? 1 : 0);
at->fan_eft = (fan ? 1 : 0);
if (unlikely(first && !at->reset)) {
at->fan_eft = 1;
at->timer_eft = 1;
first = false;
}
at->fan_pwm_data = (fan ? fan : AVALON_DEFAULT_FAN_MAX_PWM);
at->timeout_data = timeout;
at->asic_num = asic_num;
at->miner_num = miner_num;
at->nonce_elf = nonce_elf;
at->gate_miner_elf = 1;
at->asic_pll = 1;
if (unlikely(gate_miner)) {
at-> gate_miner = 1;
at->asic_pll = 0;
}
buf = (uint8_t *)at;
buf[5] = 0x00;
buf[8] = 0x74;
buf[9] = 0x01;
buf[10] = 0x00;
buf[11] = 0x00;
lefreq16 = (uint16_t *)&buf[6];
*lefreq16 = htole16(frequency * 8);
return 0;
}
static inline void avalon_create_task(struct avalon_task *at,
struct work *work)
{
memcpy(at->midstate, work->midstate, 32);
memcpy(at->data, work->data + 64, 12);
}
static int avalon_write(struct cgpu_info *avalon, char *buf, ssize_t len, int ep)
{
int err, amount;
err = usb_write(avalon, buf, len, &amount, ep);
applog(LOG_DEBUG, "%s%i: usb_write got err %d", avalon->drv->name,
avalon->device_id, err);
if (unlikely(err != 0)) {
applog(LOG_WARNING, "usb_write error on avalon_write");
return AVA_SEND_ERROR;
}
if (amount != len) {
applog(LOG_WARNING, "usb_write length mismatch on avalon_write");
return AVA_SEND_ERROR;
}
return AVA_SEND_OK;
}
static int avalon_send_task(const struct avalon_task *at, struct cgpu_info *avalon)
{
uint8_t buf[AVALON_WRITE_SIZE + 4 * AVALON_DEFAULT_ASIC_NUM];
int delay, ret, i, ep = C_AVALON_TASK;
struct avalon_info *info;
cgtimer_t ts_start;
uint32_t nonce_range;
size_t nr_len;
if (at->nonce_elf)
nr_len = AVALON_WRITE_SIZE + 4 * at->asic_num;
else
nr_len = AVALON_WRITE_SIZE;
memcpy(buf, at, AVALON_WRITE_SIZE);
if (at->nonce_elf) {
nonce_range = (uint32_t)0xffffffff / at->asic_num;
for (i = 0; i < at->asic_num; i++) {
buf[AVALON_WRITE_SIZE + (i * 4) + 3] =
(i * nonce_range & 0xff000000) >> 24;
buf[AVALON_WRITE_SIZE + (i * 4) + 2] =
(i * nonce_range & 0x00ff0000) >> 16;
buf[AVALON_WRITE_SIZE + (i * 4) + 1] =
(i * nonce_range & 0x0000ff00) >> 8;
buf[AVALON_WRITE_SIZE + (i * 4) + 0] =
(i * nonce_range & 0x000000ff) >> 0;
}
}
#if defined(__BIG_ENDIAN__) || defined(MIPSEB)
uint8_t tt = 0;
tt = (buf[0] & 0x0f) << 4;
tt |= ((buf[0] & 0x10) ? (1 << 3) : 0);
tt |= ((buf[0] & 0x20) ? (1 << 2) : 0);
tt |= ((buf[0] & 0x40) ? (1 << 1) : 0);
tt |= ((buf[0] & 0x80) ? (1 << 0) : 0);
buf[0] = tt;
tt = (buf[4] & 0x0f) << 4;
tt |= ((buf[4] & 0x10) ? (1 << 3) : 0);
tt |= ((buf[4] & 0x20) ? (1 << 2) : 0);
tt |= ((buf[4] & 0x40) ? (1 << 1) : 0);
tt |= ((buf[4] & 0x80) ? (1 << 0) : 0);
buf[4] = tt;
#endif
info = avalon->device_data;
delay = nr_len * 10 * 1000000;
delay = delay / info->baud;
delay += 4000;
if (at->reset) {
ep = C_AVALON_RESET;
nr_len = 1;
}
if (opt_debug) {
applog(LOG_DEBUG, "Avalon: Sent(%u):", (unsigned int)nr_len);
hexdump(buf, nr_len);
}
cgsleep_prepare_r(&ts_start);
ret = avalon_write(avalon, (char *)buf, nr_len, ep);
cgsleep_us_r(&ts_start, delay);
applog(LOG_DEBUG, "Avalon: Sent: Buffer delay: %dus", delay);
return ret;
}
static bool avalon_decode_nonce(struct thr_info *thr, struct cgpu_info *avalon,
struct avalon_info *info, struct avalon_result *ar,
struct work *work)
{
uint32_t nonce;
info = avalon->device_data;
info->matching_work[work->subid]++;
nonce = htole32(ar->nonce);
applog(LOG_DEBUG, "Avalon: nonce = %0x08x", nonce);
return submit_nonce(thr, work, nonce);
}
/* Wait until the ftdi chip returns a CTS saying we can send more data. */
static void wait_avalon_ready(struct cgpu_info *avalon)
{
while (avalon_buffer_full(avalon)) {
cgsleep_ms(40);
}
}
#define AVALON_CTS (1 << 4)
static inline bool avalon_cts(char c)
{
return (c & AVALON_CTS);
}
static int avalon_read(struct cgpu_info *avalon, unsigned char *buf,
size_t bufsize, int timeout, int ep)
{
size_t total = 0, readsize = bufsize + 2;
char readbuf[AVALON_READBUF_SIZE];
int err, amount, ofs = 2, cp;
err = usb_read_once_timeout(avalon, readbuf, readsize, &amount, timeout, ep);
applog(LOG_DEBUG, "%s%i: Get avalon read got err %d",
avalon->drv->name, avalon->device_id, err);
if (amount < 2)
goto out;
/* The first 2 of every 64 bytes are status on FTDIRL */
while (amount > 2) {
cp = amount - 2;
if (cp > 62)
cp = 62;
memcpy(&buf[total], &readbuf[ofs], cp);
total += cp;
amount -= cp + 2;
ofs += 64;
}
out:
return total;
}
static int avalon_reset(struct cgpu_info *avalon, bool initial)
{
struct avalon_result ar;
int ret, i, spare;
struct avalon_task at;
uint8_t *buf, *tmp;
struct timespec p;
/* Send reset, then check for result */
avalon_init_task(&at, 1, 0,
AVALON_DEFAULT_FAN_MAX_PWM,
AVALON_DEFAULT_TIMEOUT,
AVALON_DEFAULT_ASIC_NUM,
AVALON_DEFAULT_MINER_NUM,
0, 0,
AVALON_DEFAULT_FREQUENCY);
wait_avalon_ready(avalon);
ret = avalon_send_task(&at, avalon);
if (unlikely(ret == AVA_SEND_ERROR))
return -1;
if (!initial) {
applog(LOG_ERR, "%s%d reset sequence sent", avalon->drv->name, avalon->device_id);
return 0;
}
ret = avalon_read(avalon, (unsigned char *)&ar, AVALON_READ_SIZE,
AVALON_RESET_TIMEOUT, C_GET_AVALON_RESET);
/* What do these sleeps do?? */
p.tv_sec = 0;
p.tv_nsec = AVALON_RESET_PITCH;
nanosleep(&p, NULL);
/* Look for the first occurrence of 0xAA, the reset response should be:
* AA 55 AA 55 00 00 00 00 00 00 */
spare = ret - 10;
buf = tmp = (uint8_t *)&ar;
if (opt_debug) {
applog(LOG_DEBUG, "%s%d reset: get:", avalon->drv->name, avalon->device_id);
hexdump(tmp, AVALON_READ_SIZE);
}
for (i = 0; i <= spare; i++) {
buf = &tmp[i];
if (buf[0] == 0xAA)
break;
}
i = 0;
if (buf[0] == 0xAA && buf[1] == 0x55 &&
buf[2] == 0xAA && buf[3] == 0x55) {
for (i = 4; i < 11; i++)
if (buf[i] != 0)
break;
}
if (i != 11) {
applog(LOG_ERR, "%s%d: Reset failed! not an Avalon?"
" (%d: %02x %02x %02x %02x)", avalon->drv->name, avalon->device_id,
i, buf[0], buf[1], buf[2], buf[3]);
/* FIXME: return 1; */
} else
applog(LOG_WARNING, "%s%d: Reset succeeded",
avalon->drv->name, avalon->device_id);
return 0;
}
static int avalon_calc_timeout(int frequency)
{
return AVALON_TIMEOUT_FACTOR / frequency;
}
static bool get_options(int this_option_offset, int *baud, int *miner_count,
int *asic_count, int *timeout, int *frequency)
{
char buf[BUFSIZ+1];
char *ptr, *comma, *colon, *colon2, *colon3, *colon4;
bool timeout_default;
size_t max;
int i, tmp;
if (opt_avalon_options == NULL)
buf[0] = '\0';
else {
ptr = opt_avalon_options;
for (i = 0; i < this_option_offset; i++) {
comma = strchr(ptr, ',');
if (comma == NULL)
break;
ptr = comma + 1;
}
comma = strchr(ptr, ',');
if (comma == NULL)
max = strlen(ptr);
else
max = comma - ptr;
if (max > BUFSIZ)
max = BUFSIZ;
strncpy(buf, ptr, max);
buf[max] = '\0';
}
if (!(*buf))
return false;
colon = strchr(buf, ':');
if (colon)
*(colon++) = '\0';
tmp = atoi(buf);
switch (tmp) {
case 115200:
*baud = 115200;
break;
case 57600:
*baud = 57600;
break;
case 38400:
*baud = 38400;
break;
case 19200:
*baud = 19200;
break;
default:
quit(1, "Invalid avalon-options for baud (%s) "
"must be 115200, 57600, 38400 or 19200", buf);
}
if (colon && *colon) {
colon2 = strchr(colon, ':');
if (colon2)
*(colon2++) = '\0';
if (*colon) {
tmp = atoi(colon);
if (tmp > 0 && tmp <= AVALON_DEFAULT_MINER_NUM) {
*miner_count = tmp;
} else {
quit(1, "Invalid avalon-options for "
"miner_count (%s) must be 1 ~ %d",
colon, AVALON_DEFAULT_MINER_NUM);
}
}
if (colon2 && *colon2) {
colon3 = strchr(colon2, ':');
if (colon3)
*(colon3++) = '\0';
tmp = atoi(colon2);
if (tmp > 0 && tmp <= AVALON_DEFAULT_ASIC_NUM)
*asic_count = tmp;
else {
quit(1, "Invalid avalon-options for "
"asic_count (%s) must be 1 ~ %d",
colon2, AVALON_DEFAULT_ASIC_NUM);
}
timeout_default = false;
if (colon3 && *colon3) {
colon4 = strchr(colon3, ':');
if (colon4)
*(colon4++) = '\0';
if (tolower(*colon3) == 'd')
timeout_default = true;
else {
tmp = atoi(colon3);
if (tmp > 0 && tmp <= 0xff)
*timeout = tmp;
else {
quit(1, "Invalid avalon-options for "
"timeout (%s) must be 1 ~ %d",
colon3, 0xff);
}
}
if (colon4 && *colon4) {
tmp = atoi(colon4);
if (tmp < AVALON_MIN_FREQUENCY || tmp > AVALON_MAX_FREQUENCY) {
quit(1, "Invalid avalon-options for frequency, must be %d <= frequency <= %d",
AVALON_MIN_FREQUENCY, AVALON_MAX_FREQUENCY);
}
*frequency = tmp;
if (timeout_default)
*timeout = avalon_calc_timeout(*frequency);
}
}
}
}
return true;
}
char *set_avalon_fan(char *arg)
{
int val1, val2, ret;
ret = sscanf(arg, "%d-%d", &val1, &val2);
if (ret < 1)
return "No values passed to avalon-fan";
if (ret == 1)
val2 = val1;
if (val1 < 0 || val1 > 100 || val2 < 0 || val2 > 100 || val2 < val1)
return "Invalid value passed to avalon-fan";
opt_avalon_fan_min = val1 * AVALON_PWM_MAX / 100;
opt_avalon_fan_max = val2 * AVALON_PWM_MAX / 100;
return NULL;
}
char *set_avalon_freq(char *arg)
{
int val1, val2, ret;
ret = sscanf(arg, "%d-%d", &val1, &val2);
if (ret < 1)
return "No values passed to avalon-freq";
if (ret == 1)
val2 = val1;
if (val1 < AVALON_MIN_FREQUENCY || val1 > AVALON_MAX_FREQUENCY ||
val2 < AVALON_MIN_FREQUENCY || val2 > AVALON_MAX_FREQUENCY ||
val2 < val1)
return "Invalid value passed to avalon-freq";
opt_avalon_freq_min = val1;
opt_avalon_freq_max = val2;
return NULL;
}
static void avalon_idle(struct cgpu_info *avalon, struct avalon_info *info)
{
int i;
wait_avalon_ready(avalon);
/* Send idle to all miners */
for (i = 0; i < info->miner_count; i++) {
struct avalon_task at;
if (unlikely(avalon_buffer_full(avalon)))
break;
info->idle++;
avalon_init_task(&at, 0, 0, info->fan_pwm, info->timeout,
info->asic_count, info->miner_count, 1, 1,
info->frequency);
avalon_send_task(&at, avalon);
}
applog(LOG_WARNING, "%s%i: Idling %d miners", avalon->drv->name, avalon->device_id, i);
wait_avalon_ready(avalon);
}
static void avalon_initialise(struct cgpu_info *avalon)
{
int err, interface;
if (avalon->usbinfo.nodev)
return;
interface = avalon->usbdev->found->interface;
// Reset
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_RESET,
FTDI_VALUE_RESET, interface, C_RESET);
applog(LOG_DEBUG, "%s%i: reset got err %d",
avalon->drv->name, avalon->device_id, err);
if (avalon->usbinfo.nodev)
return;
// Set latency
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_LATENCY,
AVALON_LATENCY, interface, C_LATENCY);
applog(LOG_DEBUG, "%s%i: latency got err %d",
avalon->drv->name, avalon->device_id, err);
if (avalon->usbinfo.nodev)
return;
// Set data
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_DATA,
FTDI_VALUE_DATA_AVA, interface, C_SETDATA);
applog(LOG_DEBUG, "%s%i: data got err %d",
avalon->drv->name, avalon->device_id, err);
if (avalon->usbinfo.nodev)
return;
// Set the baud
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_BAUD, FTDI_VALUE_BAUD_AVA,
(FTDI_INDEX_BAUD_AVA & 0xff00) | interface,
C_SETBAUD);
applog(LOG_DEBUG, "%s%i: setbaud got err %d",
avalon->drv->name, avalon->device_id, err);
if (avalon->usbinfo.nodev)
return;
// Set Modem Control
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_MODEM,
FTDI_VALUE_MODEM, interface, C_SETMODEM);
applog(LOG_DEBUG, "%s%i: setmodemctrl got err %d",
avalon->drv->name, avalon->device_id, err);
if (avalon->usbinfo.nodev)
return;
// Set Flow Control
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_FLOW,
FTDI_VALUE_FLOW, interface, C_SETFLOW);
applog(LOG_DEBUG, "%s%i: setflowctrl got err %d",
avalon->drv->name, avalon->device_id, err);
if (avalon->usbinfo.nodev)
return;
/* Avalon repeats the following */
// Set Modem Control
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_MODEM,
FTDI_VALUE_MODEM, interface, C_SETMODEM);
applog(LOG_DEBUG, "%s%i: setmodemctrl 2 got err %d",
avalon->drv->name, avalon->device_id, err);
if (avalon->usbinfo.nodev)
return;
// Set Flow Control
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_FLOW,
FTDI_VALUE_FLOW, interface, C_SETFLOW);
applog(LOG_DEBUG, "%s%i: setflowctrl 2 got err %d",
avalon->drv->name, avalon->device_id, err);
}
static bool bitburner_set_core_voltage(struct cgpu_info *avalon, int core_voltage)
{
uint8_t buf[2];
int err;
if (usb_ident(avalon) == IDENT_BTB) {
buf[0] = (uint8_t)core_voltage;
buf[1] = (uint8_t)(core_voltage >> 8);
err = usb_transfer_data(avalon, FTDI_TYPE_OUT, BITBURNER_REQUEST,
BITBURNER_VALUE, BITBURNER_INDEX_SET_VOLTAGE,
(uint32_t *)buf, sizeof(buf), C_BB_SET_VOLTAGE);
if (unlikely(err < 0)) {
applog(LOG_ERR, "%s%i: SetCoreVoltage failed: err = %d",
avalon->drv->name, avalon->device_id, err);
return false;
} else {
applog(LOG_WARNING, "%s%i: Core voltage set to %d millivolts",
avalon->drv->name, avalon->device_id,
core_voltage);
}
return true;
}
return false;
}
static int bitburner_get_core_voltage(struct cgpu_info *avalon)
{
uint8_t buf[2];
int err;
int amount;
if (usb_ident(avalon) == IDENT_BTB) {
err = usb_transfer_read(avalon, FTDI_TYPE_IN, BITBURNER_REQUEST,
BITBURNER_VALUE, BITBURNER_INDEX_GET_VOLTAGE,
(char *)buf, sizeof(buf), &amount,
C_BB_GET_VOLTAGE);
if (unlikely(err != 0 || amount != 2)) {
applog(LOG_ERR, "%s%i: GetCoreVoltage failed: err = %d, amount = %d",
avalon->drv->name, avalon->device_id, err, amount);
return 0;
} else {
return (int)(buf[0] + ((unsigned int)buf[1] << 8));
}
} else {
return 0;
}
}
static void bitburner_get_version(struct cgpu_info *avalon)
{
struct avalon_info *info = avalon->device_data;
uint8_t buf[3];
int err;
int amount;
err = usb_transfer_read(avalon, FTDI_TYPE_IN, BITBURNER_REQUEST,
BITBURNER_VALUE, BITBURNER_INDEX_GET_VERSION,
(char *)buf, sizeof(buf), &amount,
C_GETVERSION);
if (unlikely(err != 0 || amount != sizeof(buf))) {
applog(LOG_DEBUG, "%s%i: GetVersion failed: err=%d, amt=%d assuming %d.%d.%d",
avalon->drv->name, avalon->device_id, err, amount,
BITBURNER_VERSION1, BITBURNER_VERSION2, BITBURNER_VERSION3);
info->version1 = BITBURNER_VERSION1;
info->version2 = BITBURNER_VERSION2;
info->version3 = BITBURNER_VERSION3;
} else {
info->version1 = buf[0];
info->version2 = buf[1];
info->version3 = buf[2];
}
}
static bool avalon_detect_one(libusb_device *dev, struct usb_find_devices *found)
{
int baud, miner_count, asic_count, timeout, frequency;
int this_option_offset = ++option_offset;
struct avalon_info *info;
struct cgpu_info *avalon;
bool configured;
int ret;
avalon = usb_alloc_cgpu(&avalon_drv, AVALON_MINER_THREADS);
baud = AVALON_IO_SPEED;
miner_count = AVALON_DEFAULT_MINER_NUM;
asic_count = AVALON_DEFAULT_ASIC_NUM;
timeout = AVALON_DEFAULT_TIMEOUT;
frequency = AVALON_DEFAULT_FREQUENCY;
configured = get_options(this_option_offset, &baud, &miner_count,
&asic_count, &timeout, &frequency);
if (!usb_init(avalon, dev, found))
goto shin;
/* Even though this is an FTDI type chip, we want to do the parsing
* all ourselves so set it to std usb type */
avalon->usbdev->usb_type = USB_TYPE_STD;
avalon->usbdev->PrefPacketSize = AVALON_USB_PACKETSIZE;
/* We have a real Avalon! */
avalon_initialise(avalon);
avalon->device_data = calloc(sizeof(struct avalon_info), 1);
if (unlikely(!(avalon->device_data)))
quit(1, "Failed to calloc avalon_info data");
info = avalon->device_data;
if (configured) {
info->baud = baud;
info->miner_count = miner_count;
info->asic_count = asic_count;
info->timeout = timeout;
info->frequency = frequency;
} else {
info->baud = AVALON_IO_SPEED;
info->miner_count = AVALON_DEFAULT_MINER_NUM;
info->asic_count = AVALON_DEFAULT_ASIC_NUM;
info->timeout = AVALON_DEFAULT_TIMEOUT;
info->frequency = AVALON_DEFAULT_FREQUENCY;
}
info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM;
info->temp_max = 0;
/* This is for check the temp/fan every 3~4s */
info->temp_history_count = (4 / (float)((float)info->timeout * ((float)1.67/0x32))) + 1;
if (info->temp_history_count <= 0)
info->temp_history_count = 1;
info->temp_history_index = 0;
info->temp_sum = 0;
info->temp_old = 0;
if (!add_cgpu(avalon))
goto unshin;
ret = avalon_reset(avalon, true);
if (ret && !configured)
goto unshin;
update_usb_stats(avalon);
avalon_idle(avalon, info);
applog(LOG_DEBUG, "Avalon Detected: %s "
"(miner_count=%d asic_count=%d timeout=%d frequency=%d)",
avalon->device_path, info->miner_count, info->asic_count, info->timeout,
info->frequency);
if (usb_ident(avalon) == IDENT_BTB) {
if (opt_bitburner_core_voltage < BITBURNER_MIN_COREMV ||
opt_bitburner_core_voltage > BITBURNER_MAX_COREMV) {
quit(1, "Invalid bitburner-voltage %d must be %dmv - %dmv",
opt_bitburner_core_voltage,
BITBURNER_MIN_COREMV,
BITBURNER_MAX_COREMV);
} else
bitburner_set_core_voltage(avalon, opt_bitburner_core_voltage);
bitburner_get_version(avalon);
}
return true;
unshin:
usb_uninit(avalon);
shin:
free(avalon->device_data);
avalon->device_data = NULL;
avalon = usb_free_cgpu(avalon);
return false;
}
static void avalon_detect(void)
{
usb_detect(&avalon_drv, avalon_detect_one);
}
static void avalon_init(struct cgpu_info *avalon)
{
applog(LOG_INFO, "Avalon: Opened on %s", avalon->device_path);
}
static struct work *avalon_valid_result(struct cgpu_info *avalon, struct avalon_result *ar)
{
return clone_queued_work_bymidstate(avalon, (char *)ar->midstate, 32,
(char *)ar->data, 64, 12);
}
static void avalon_update_temps(struct cgpu_info *avalon, struct avalon_info *info,
struct avalon_result *ar);
static void avalon_inc_nvw(struct avalon_info *info, struct thr_info *thr)
{
applog(LOG_INFO, "%s%d: No matching work - HW error",
thr->cgpu->drv->name, thr->cgpu->device_id);
inc_hw_errors(thr);
info->no_matching_work++;
}
static void avalon_parse_results(struct cgpu_info *avalon, struct avalon_info *info,
struct thr_info *thr, char *buf, int *offset)
{
int i, spare = *offset - AVALON_READ_SIZE;
bool found = false;
for (i = 0; i <= spare; i++) {
struct avalon_result *ar;
struct work *work;
ar = (struct avalon_result *)&buf[i];
work = avalon_valid_result(avalon, ar);
if (work) {
bool gettemp = false;
found = true;
if (avalon_decode_nonce(thr, avalon, info, ar, work)) {
mutex_lock(&info->lock);
if (!info->nonces++)
gettemp = true;
info->auto_nonces++;
mutex_unlock(&info->lock);
} else if (opt_avalon_auto) {
mutex_lock(&info->lock);
info->auto_hw++;
mutex_unlock(&info->lock);
}
free_work(work);
if (gettemp)
avalon_update_temps(avalon, info, ar);
break;
}
}
if (!found) {
spare = *offset - AVALON_READ_SIZE;
/* We are buffering and haven't accumulated one more corrupt
* work result. */
if (spare < (int)AVALON_READ_SIZE)
return;
avalon_inc_nvw(info, thr);
} else {
spare = AVALON_READ_SIZE + i;
if (i) {
if (i >= (int)AVALON_READ_SIZE)
avalon_inc_nvw(info, thr);
else
applog(LOG_WARNING, "Avalon: Discarding %d bytes from buffer", i);
}
}
*offset -= spare;
memmove(buf, buf + spare, *offset);
}
static void avalon_running_reset(struct cgpu_info *avalon,
struct avalon_info *info)
{
avalon_reset(avalon, false);
avalon_idle(avalon, info);
avalon->results = 0;
info->reset = false;
}
static void *avalon_get_results(void *userdata)
{
struct cgpu_info *avalon = (struct cgpu_info *)userdata;
struct avalon_info *info = avalon->device_data;
const int rsize = AVALON_FTDI_READSIZE;
char readbuf[AVALON_READBUF_SIZE];
struct thr_info *thr = info->thr;
cgtimer_t ts_start;
int offset = 0, ret = 0;
char threadname[24];
snprintf(threadname, 24, "ava_recv/%d", avalon->device_id);
RenameThread(threadname);
cgsleep_prepare_r(&ts_start);
while (likely(!avalon->shutdown)) {
unsigned char buf[rsize];
if (offset >= (int)AVALON_READ_SIZE)
avalon_parse_results(avalon, info, thr, readbuf, &offset);
if (unlikely(offset + rsize >= AVALON_READBUF_SIZE)) {
/* This should never happen */
applog(LOG_ERR, "Avalon readbuf overflow, resetting buffer");
offset = 0;
}
if (unlikely(info->reset)) {
avalon_running_reset(avalon, info);
/* Discard anything in the buffer */
offset = 0;
}
/* As the usb read returns after just 1ms, sleep long enough
* to leave the interface idle for writes to occur, but do not
* sleep if we have been receiving data, and we do not yet have
* a full result as more may be coming. */
if (ret < 1 || offset == 0)
cgsleep_ms_r(&ts_start, AVALON_READ_TIMEOUT);
cgsleep_prepare_r(&ts_start);
ret = avalon_read(avalon, buf, rsize, AVALON_READ_TIMEOUT,
C_AVALON_READ);
if (ret < 1)
continue;
if (opt_debug) {
applog(LOG_DEBUG, "Avalon: get:");
hexdump((uint8_t *)buf, ret);
}
memcpy(&readbuf[offset], &buf, ret);
offset += ret;
}
return NULL;
}
static void avalon_rotate_array(struct cgpu_info *avalon)
{
avalon->queued = 0;
if (++avalon->work_array >= AVALON_ARRAY_SIZE)
avalon->work_array = 0;
}
static void bitburner_rotate_array(struct cgpu_info *avalon)
{
avalon->queued = 0;
if (++avalon->work_array >= BITBURNER_ARRAY_SIZE)
avalon->work_array = 0;
}
static void avalon_set_timeout(struct avalon_info *info)
{
info->timeout = avalon_calc_timeout(info->frequency);
}
static void avalon_set_freq(struct cgpu_info *avalon, int frequency)
{
struct avalon_info *info = avalon->device_data;
info->frequency = frequency;
if (info->frequency > opt_avalon_freq_max)
info->frequency = opt_avalon_freq_max;
if (info->frequency < opt_avalon_freq_min)
info->frequency = opt_avalon_freq_min;
avalon_set_timeout(info);
applog(LOG_WARNING, "%s%i: Set frequency to %d, timeout %d",
avalon->drv->name, avalon->device_id,
info->frequency, info->timeout);
}
static void avalon_inc_freq(struct avalon_info *info)
{
info->frequency += 2;
if (info->frequency > opt_avalon_freq_max)
info->frequency = opt_avalon_freq_max;
avalon_set_timeout(info);
applog(LOG_NOTICE, "Avalon increasing frequency to %d, timeout %d",
info->frequency, info->timeout);
}
static void avalon_dec_freq(struct avalon_info *info)
{
info->frequency -= 1;
if (info->frequency < opt_avalon_freq_min)
info->frequency = opt_avalon_freq_min;
avalon_set_timeout(info);
applog(LOG_NOTICE, "Avalon decreasing frequency to %d, timeout %d",
info->frequency, info->timeout);
}
static void avalon_reset_auto(struct avalon_info *info)
{
info->auto_queued =
info->auto_nonces =
info->auto_hw = 0;
}
static void avalon_adjust_freq(struct avalon_info *info, struct cgpu_info *avalon)
{
if (opt_avalon_auto && info->auto_queued >= AVALON_AUTO_CYCLE) {
mutex_lock(&info->lock);
if (!info->optimal) {
if (info->fan_pwm >= opt_avalon_fan_max) {
applog(LOG_WARNING,
"%s%i: Above optimal temperature, throttling",
avalon->drv->name, avalon->device_id);
avalon_dec_freq(info);
}
} else if (info->auto_nonces >= (AVALON_AUTO_CYCLE * 19 / 20) &&
info->auto_nonces <= (AVALON_AUTO_CYCLE * 21 / 20)) {
int total = info->auto_nonces + info->auto_hw;
/* Try to keep hw errors < 2% */
if (info->auto_hw * 100 < total)
avalon_inc_freq(info);
else if (info->auto_hw * 66 > total)
avalon_dec_freq(info);
}
avalon_reset_auto(info);
mutex_unlock(&info->lock);
}
}
static void *avalon_send_tasks(void *userdata)
{
struct cgpu_info *avalon = (struct cgpu_info *)userdata;
struct avalon_info *info = avalon->device_data;
const int avalon_get_work_count = info->miner_count;
char threadname[24];
snprintf(threadname, 24, "ava_send/%d", avalon->device_id);
RenameThread(threadname);
while (likely(!avalon->shutdown)) {
int start_count, end_count, i, j, ret;
cgtimer_t ts_start;
struct avalon_task at;
bool idled = false;
int64_t us_timeout;
while (avalon_buffer_full(avalon))
cgsleep_ms(40);
avalon_adjust_freq(info, avalon);
/* A full nonce range */
us_timeout = 0x100000000ll / info->asic_count / info->frequency;
cgsleep_prepare_r(&ts_start);
mutex_lock(&info->qlock);
start_count = avalon->work_array * avalon_get_work_count;
end_count = start_count + avalon_get_work_count;
for (i = start_count, j = 0; i < end_count; i++, j++) {
if (avalon_buffer_full(avalon)) {
applog(LOG_INFO,
"%s%i: Buffer full after only %d of %d work queued",
avalon->drv->name, avalon->device_id, j, avalon_get_work_count);
break;
}
if (likely(j < avalon->queued && !info->overheat && avalon->works[i])) {
avalon_init_task(&at, 0, 0, info->fan_pwm,
info->timeout, info->asic_count,
info->miner_count, 1, 0, info->frequency);
avalon_create_task(&at, avalon->works[i]);
info->auto_queued++;
} else {
int idle_freq = info->frequency;
if (!info->idle++)
idled = true;
if (unlikely(info->overheat && opt_avalon_auto))
idle_freq = AVALON_MIN_FREQUENCY;
avalon_init_task(&at, 0, 0, info->fan_pwm,
info->timeout, info->asic_count,
info->miner_count, 1, 1, idle_freq);
/* Reset the auto_queued count if we end up
* idling any miners. */
avalon_reset_auto(info);
}
ret = avalon_send_task(&at, avalon);
if (unlikely(ret == AVA_SEND_ERROR)) {
applog(LOG_ERR, "%s%i: Comms error(buffer)",
avalon->drv->name, avalon->device_id);
dev_error(avalon, REASON_DEV_COMMS_ERROR);
info->reset = true;
break;
}
}
avalon_rotate_array(avalon);
pthread_cond_signal(&info->qcond);
mutex_unlock(&info->qlock);
if (unlikely(idled)) {
applog(LOG_WARNING, "%s%i: Idled %d miners",
avalon->drv->name, avalon->device_id, idled);
}
/* Sleep how long it would take to complete a full nonce range
* at the current frequency using the clock_nanosleep function
* timed from before we started loading new work so it will
* fall short of the full duration. */
cgsleep_us_r(&ts_start, us_timeout);
}
return NULL;
}
static void *bitburner_send_tasks(void *userdata)
{
struct cgpu_info *avalon = (struct cgpu_info *)userdata;
struct avalon_info *info = avalon->device_data;
const int avalon_get_work_count = info->miner_count;
char threadname[24];
snprintf(threadname, 24, "ava_send/%d", avalon->device_id);
RenameThread(threadname);
while (likely(!avalon->shutdown)) {
int start_count, end_count, i, j, ret;
struct avalon_task at;
bool idled = false;
while (avalon_buffer_full(avalon))
cgsleep_ms(40);
avalon_adjust_freq(info, avalon);
/* Give other threads a chance to acquire qlock. */
i = 0;
do {
cgsleep_ms(40);
} while (!avalon->shutdown && i++ < 15
&& avalon->queued < avalon_get_work_count);
mutex_lock(&info->qlock);
start_count = avalon->work_array * avalon_get_work_count;
end_count = start_count + avalon_get_work_count;
for (i = start_count, j = 0; i < end_count; i++, j++) {
while (avalon_buffer_full(avalon))
cgsleep_ms(40);
if (likely(j < avalon->queued && !info->overheat && avalon->works[i])) {
avalon_init_task(&at, 0, 0, info->fan_pwm,
info->timeout, info->asic_count,
info->miner_count, 1, 0, info->frequency);
avalon_create_task(&at, avalon->works[i]);
info->auto_queued++;
} else {
int idle_freq = info->frequency;
if (!info->idle++)
idled = true;
if (unlikely(info->overheat && opt_avalon_auto))
idle_freq = AVALON_MIN_FREQUENCY;
avalon_init_task(&at, 0, 0, info->fan_pwm,
info->timeout, info->asic_count,
info->miner_count, 1, 1, idle_freq);
/* Reset the auto_queued count if we end up
* idling any miners. */
avalon_reset_auto(info);
}
ret = avalon_send_task(&at, avalon);
if (unlikely(ret == AVA_SEND_ERROR)) {
applog(LOG_ERR, "%s%i: Comms error(buffer)",
avalon->drv->name, avalon->device_id);
dev_error(avalon, REASON_DEV_COMMS_ERROR);
info->reset = true;
break;
}
}
bitburner_rotate_array(avalon);
pthread_cond_signal(&info->qcond);
mutex_unlock(&info->qlock);
if (unlikely(idled)) {
applog(LOG_WARNING, "%s%i: Idled %d miners",
avalon->drv->name, avalon->device_id, idled);
}
}
return NULL;
}
static bool avalon_prepare(struct thr_info *thr)
{
struct cgpu_info *avalon = thr->cgpu;
struct avalon_info *info = avalon->device_data;
int array_size = AVALON_ARRAY_SIZE;
void *(*write_thread_fn)(void *) = avalon_send_tasks;
if (usb_ident(avalon) == IDENT_BTB) {
array_size = BITBURNER_ARRAY_SIZE;
write_thread_fn = bitburner_send_tasks;
}
free(avalon->works);
avalon->works = calloc(info->miner_count * sizeof(struct work *),
array_size);
if (!avalon->works)
quit(1, "Failed to calloc avalon works in avalon_prepare");
info->thr = thr;
mutex_init(&info->lock);
mutex_init(&info->qlock);
if (unlikely(pthread_cond_init(&info->qcond, NULL)))
quit(1, "Failed to pthread_cond_init avalon qcond");
if (pthread_create(&info->read_thr, NULL, avalon_get_results, (void *)avalon))
quit(1, "Failed to create avalon read_thr");
if (pthread_create(&info->write_thr, NULL, write_thread_fn, (void *)avalon))
quit(1, "Failed to create avalon write_thr");
avalon_init(avalon);
return true;
}
static void do_avalon_close(struct thr_info *thr)
{
struct cgpu_info *avalon = thr->cgpu;
struct avalon_info *info = avalon->device_data;
pthread_join(info->read_thr, NULL);
pthread_join(info->write_thr, NULL);
avalon_running_reset(avalon, info);
info->no_matching_work = 0;
}
static inline void record_temp_fan(struct avalon_info *info, struct avalon_result *ar, float *temp_avg)
{
info->fan0 = ar->fan0 * AVALON_FAN_FACTOR;
info->fan1 = ar->fan1 * AVALON_FAN_FACTOR;
info->fan2 = ar->fan2 * AVALON_FAN_FACTOR;
info->temp0 = ar->temp0;
info->temp1 = ar->temp1;
info->temp2 = ar->temp2;
if (ar->temp0 & 0x80) {
ar->temp0 &= 0x7f;
info->temp0 = 0 - ((~ar->temp0 & 0x7f) + 1);
}
if (ar->temp1 & 0x80) {
ar->temp1 &= 0x7f;
info->temp1 = 0 - ((~ar->temp1 & 0x7f) + 1);
}
if (ar->temp2 & 0x80) {
ar->temp2 &= 0x7f;
info->temp2 = 0 - ((~ar->temp2 & 0x7f) + 1);
}
*temp_avg = info->temp2 > info->temp1 ? info->temp2 : info->temp1;
if (info->temp0 > info->temp_max)
info->temp_max = info->temp0;
if (info->temp1 > info->temp_max)
info->temp_max = info->temp1;
if (info->temp2 > info->temp_max)
info->temp_max = info->temp2;
}
static void temp_rise(struct avalon_info *info, int temp)
{
if (temp >= opt_avalon_temp + AVALON_TEMP_HYSTERESIS * 3) {
info->fan_pwm = AVALON_PWM_MAX;
return;
}
if (temp >= opt_avalon_temp + AVALON_TEMP_HYSTERESIS * 2)
info->fan_pwm += 10;
else if (temp > opt_avalon_temp)
info->fan_pwm += 5;
else if (temp >= opt_avalon_temp - AVALON_TEMP_HYSTERESIS)
info->fan_pwm += 1;
else
return;
if (info->fan_pwm > opt_avalon_fan_max)
info->fan_pwm = opt_avalon_fan_max;
}
static void temp_drop(struct avalon_info *info, int temp)
{
if (temp <= opt_avalon_temp - AVALON_TEMP_HYSTERESIS * 3) {
info->fan_pwm = opt_avalon_fan_min;
return;
}
if (temp <= opt_avalon_temp - AVALON_TEMP_HYSTERESIS * 2)
info->fan_pwm -= 10;
else if (temp <= opt_avalon_temp - AVALON_TEMP_HYSTERESIS)
info->fan_pwm -= 5;
else if (temp < opt_avalon_temp)
info->fan_pwm -= 1;
if (info->fan_pwm < opt_avalon_fan_min)
info->fan_pwm = opt_avalon_fan_min;
}
static inline void adjust_fan(struct avalon_info *info)
{
int temp_new;
temp_new = info->temp_sum / info->temp_history_count;
if (temp_new > info->temp_old)
temp_rise(info, temp_new);
else if (temp_new < info->temp_old)
temp_drop(info, temp_new);
else {
/* temp_new == info->temp_old */
if (temp_new > opt_avalon_temp)
temp_rise(info, temp_new);
else if (temp_new < opt_avalon_temp - AVALON_TEMP_HYSTERESIS)
temp_drop(info, temp_new);
}
info->temp_old = temp_new;
if (info->temp_old <= opt_avalon_temp)
info->optimal = true;
else
info->optimal = false;
}
static void avalon_update_temps(struct cgpu_info *avalon, struct avalon_info *info,
struct avalon_result *ar)
{
record_temp_fan(info, ar, &(avalon->temp));
applog(LOG_INFO,
"Avalon: Fan1: %d/m, Fan2: %d/m, Fan3: %d/m\t"
"Temp1: %dC, Temp2: %dC, Temp3: %dC, TempMAX: %dC",
info->fan0, info->fan1, info->fan2,
info->temp0, info->temp1, info->temp2, info->temp_max);
info->temp_history_index++;
info->temp_sum += avalon->temp;
applog(LOG_DEBUG, "Avalon: temp_index: %d, temp_count: %d, temp_old: %d",
info->temp_history_index, info->temp_history_count, info->temp_old);
if (usb_ident(avalon) == IDENT_BTB) {
info->core_voltage = bitburner_get_core_voltage(avalon);
}
if (info->temp_history_index == info->temp_history_count) {
adjust_fan(info);
info->temp_history_index = 0;
info->temp_sum = 0;
}
if (unlikely(info->temp_old >= opt_avalon_overheat)) {
applog(LOG_WARNING, "%s%d overheat! Idling", avalon->drv->name, avalon->device_id);
info->overheat = true;
} else if (info->overheat && info->temp_old <= opt_avalon_temp) {
applog(LOG_WARNING, "%s%d cooled, restarting", avalon->drv->name, avalon->device_id);
info->overheat = false;
}
}
static void get_avalon_statline_before(char *buf, size_t bufsiz, struct cgpu_info *avalon)
{
struct avalon_info *info = avalon->device_data;
int lowfan = 10000;
if (usb_ident(avalon) == IDENT_BTB) {
int temp = info->temp0;
if (info->temp2 > temp)
temp = info->temp2;
if (temp > 99)
temp = 99;
if (temp < 0)
temp = 0;
tailsprintf(buf, bufsiz, "%2dC %3d %4dmV | ", temp, info->frequency, info->core_voltage);
} else {
/* Find the lowest fan speed of the ASIC cooling fans. */
if (info->fan1 >= 0 && info->fan1 < lowfan)
lowfan = info->fan1;
if (info->fan2 >= 0 && info->fan2 < lowfan)
lowfan = info->fan2;
tailsprintf(buf, bufsiz, "%2dC/%3dC %04dR | ", info->temp0, info->temp2, lowfan);
}
}
/* We use a replacement algorithm to only remove references to work done from
* the buffer when we need the extra space for new work. */
static bool avalon_fill(struct cgpu_info *avalon)
{
struct avalon_info *info = avalon->device_data;
int subid, slot, mc;
struct work *work;
bool ret = true;
mc = info->miner_count;
mutex_lock(&info->qlock);
if (avalon->queued >= mc)
goto out_unlock;
work = get_queued(avalon);
if (unlikely(!work)) {
ret = false;
goto out_unlock;
}
subid = avalon->queued++;
work->subid = subid;
slot = avalon->work_array * mc + subid;
if (likely(avalon->works[slot]))
work_completed(avalon, avalon->works[slot]);
avalon->works[slot] = work;
if (avalon->queued < mc)
ret = false;
out_unlock:
mutex_unlock(&info->qlock);
return ret;
}
static int64_t avalon_scanhash(struct thr_info *thr)
{
struct cgpu_info *avalon = thr->cgpu;
struct avalon_info *info = avalon->device_data;
const int miner_count = info->miner_count;
struct timeval now, then, tdiff;
int64_t hash_count, us_timeout;
struct timespec abstime;
/* Half nonce range */
us_timeout = 0x80000000ll / info->asic_count / info->frequency;
us_to_timeval(&tdiff, us_timeout);
cgtime(&now);
timeradd(&now, &tdiff, &then);
timeval_to_spec(&abstime, &then);
/* Wait until avalon_send_tasks signals us that it has completed
* sending its work or a full nonce range timeout has occurred */
mutex_lock(&info->qlock);
pthread_cond_timedwait(&info->qcond, &info->qlock, &abstime);
mutex_unlock(&info->qlock);
mutex_lock(&info->lock);
hash_count = 0xffffffffull * (uint64_t)info->nonces;
avalon->results += info->nonces + info->idle;
if (avalon->results > miner_count)
avalon->results = miner_count;
if (!info->reset)
avalon->results--;
info->nonces = info->idle = 0;
mutex_unlock(&info->lock);
/* Check for nothing but consecutive bad results or consistently less
* results than we should be getting and reset the FPGA if necessary */
if (usb_ident(avalon) != IDENT_BTB) {
if (avalon->results < -miner_count && !info->reset) {
applog(LOG_ERR, "%s%d: Result return rate low, resetting!",
avalon->drv->name, avalon->device_id);
info->reset = true;
}
}
if (unlikely(avalon->usbinfo.nodev)) {
applog(LOG_ERR, "%s%d: Device disappeared, shutting down thread",
avalon->drv->name, avalon->device_id);
avalon->shutdown = true;
}
/* This hashmeter is just a utility counter based on returned shares */
return hash_count;
}
static void avalon_flush_work(struct cgpu_info *avalon)
{
struct avalon_info *info = avalon->device_data;
mutex_lock(&info->qlock);
/* Will overwrite any work queued */
avalon->queued = 0;
pthread_cond_signal(&info->qcond);
mutex_unlock(&info->qlock);
}
static struct api_data *avalon_api_stats(struct cgpu_info *cgpu)
{
struct api_data *root = NULL;
struct avalon_info *info = cgpu->device_data;
char buf[64];
int i;
double hwp = (cgpu->hw_errors + cgpu->diff1) ?
(double)(cgpu->hw_errors) / (double)(cgpu->hw_errors + cgpu->diff1) : 0;
root = api_add_int(root, "baud", &(info->baud), false);
root = api_add_int(root, "miner_count", &(info->miner_count),false);
root = api_add_int(root, "asic_count", &(info->asic_count), false);
root = api_add_int(root, "timeout", &(info->timeout), false);
root = api_add_int(root, "frequency", &(info->frequency), false);
root = api_add_int(root, "fan1", &(info->fan0), false);
root = api_add_int(root, "fan2", &(info->fan1), false);
root = api_add_int(root, "fan3", &(info->fan2), false);
root = api_add_int(root, "temp1", &(info->temp0), false);
root = api_add_int(root, "temp2", &(info->temp1), false);
root = api_add_int(root, "temp3", &(info->temp2), false);
root = api_add_int(root, "temp_max", &(info->temp_max), false);
root = api_add_percent(root, "Device Hardware%", &hwp, true);
root = api_add_int(root, "no_matching_work", &(info->no_matching_work), false);
for (i = 0; i < info->miner_count; i++) {
char mcw[24];
sprintf(mcw, "match_work_count%d", i + 1);
root = api_add_int(root, mcw, &(info->matching_work[i]), false);
}
if (usb_ident(cgpu) == IDENT_BTB) {
root = api_add_int(root, "core_voltage", &(info->core_voltage), false);
snprintf(buf, sizeof(buf), "%"PRIu8".%"PRIu8".%"PRIu8,
info->version1, info->version2, info->version3);
root = api_add_string(root, "version", buf, true);
}
return root;
}
static void avalon_shutdown(struct thr_info *thr)
{
do_avalon_close(thr);
}
static char *avalon_set_device(struct cgpu_info *avalon, char *option, char *setting, char *replybuf)
{
int val;
if (strcasecmp(option, "help") == 0) {
sprintf(replybuf, "freq: range %d-%d millivolts: range %d-%d",
AVALON_MIN_FREQUENCY, AVALON_MAX_FREQUENCY,
BITBURNER_MIN_COREMV, BITBURNER_MAX_COREMV);
return replybuf;
}
if (strcasecmp(option, "millivolts") == 0 || strcasecmp(option, "mv") == 0) {
if (usb_ident(avalon) != IDENT_BTB) {
sprintf(replybuf, "%s cannot set millivolts", avalon->drv->name);
return replybuf;
}
if (!setting || !*setting) {
sprintf(replybuf, "missing millivolts setting");
return replybuf;
}
val = atoi(setting);
if (val < BITBURNER_MIN_COREMV || val > BITBURNER_MAX_COREMV) {
sprintf(replybuf, "invalid millivolts: '%s' valid range %d-%d",
setting, BITBURNER_MIN_COREMV, BITBURNER_MAX_COREMV);
return replybuf;
}
if (bitburner_set_core_voltage(avalon, val))
return NULL;
else {
sprintf(replybuf, "Set millivolts failed");
return replybuf;
}
}
if (strcasecmp(option, "freq") == 0) {
if (!setting || !*setting) {
sprintf(replybuf, "missing freq setting");
return replybuf;
}
val = atoi(setting);
if (val < AVALON_MIN_FREQUENCY || val > AVALON_MAX_FREQUENCY) {
sprintf(replybuf, "invalid freq: '%s' valid range %d-%d",
setting, AVALON_MIN_FREQUENCY, AVALON_MAX_FREQUENCY);
return replybuf;
}
avalon_set_freq(avalon, val);
return NULL;
}
sprintf(replybuf, "Unknown option: %s", option);
return replybuf;
}
struct device_drv avalon_drv = {
.drv_id = DRIVER_AVALON,
.dname = "avalon",
.name = "AVA",
.drv_detect = avalon_detect,
.thread_prepare = avalon_prepare,
.hash_work = hash_queued_work,
.queue_full = avalon_fill,
.scanwork = avalon_scanhash,
.flush_work = avalon_flush_work,
.get_api_stats = avalon_api_stats,
.get_statline_before = get_avalon_statline_before,
.set_device = avalon_set_device,
.reinit_device = avalon_init,
.thread_shutdown = avalon_shutdown,
};