1
0
mirror of https://github.com/GOSTSec/sgminer synced 2025-01-20 03:30:31 +00:00
sgminer/libztex.c
2013-05-02 23:44:47 +10:00

916 lines
25 KiB
C

/**
* libztex.c - Ztex 1.15x/1.15y fpga board support library
*
* Copyright (c) 2012 nelisky.btc@gmail.com
* Copyright (c) 2012 Denis Ahrens <denis@h3q.com>
* Copyright (c) 2012 Peter Stuge <peter@stuge.se>
*
* This work is based upon the Java SDK provided by ztex which is
* Copyright (C) 2009-2011 ZTEX GmbH.
* http://www.ztex.de
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see http://www.gnu.org/licenses/.
**/
#include "config.h"
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include "miner.h"
#include "fpgautils.h"
#include "libztex.h"
//* Capability index for EEPROM support.
#define CAPABILITY_EEPROM 0,0
//* Capability index for FPGA configuration support.
#define CAPABILITY_FPGA 0,1
//* Capability index for FLASH memory support.
#define CAPABILITY_FLASH 0,2
//* Capability index for DEBUG helper support.
#define CAPABILITY_DEBUG 0,3
//* Capability index for AVR XMEGA support.
#define CAPABILITY_XMEGA 0,4
//* Capability index for AVR XMEGA support.
#define CAPABILITY_HS_FPGA 0,5
//* Capability index for AVR XMEGA support.
#define CAPABILITY_MAC_EEPROM 0,6
//* Capability index for multi FPGA support.
#define CAPABILITY_MULTI_FPGA 0,7
static int libztex_get_string_descriptor_ascii(libusb_device_handle *dev, uint8_t desc_index,
unsigned char *data, int length)
{
int i, cnt;
uint16_t langid;
unsigned char buf[260];
/* We open code string descriptor retrieval and ASCII decoding here
* in order to work around that libusb_get_string_descriptor_ascii()
* in the FreeBSD libusb implementation hits a bug in ZTEX firmware,
* where the device returns more bytes than requested, causing babble,
* which makes FreeBSD return an error to us.
*
* Avoid the mess by doing it manually the same way as libusb-1.0.
*/
cnt = libusb_control_transfer(dev, LIBUSB_ENDPOINT_IN,
LIBUSB_REQUEST_GET_DESCRIPTOR, (LIBUSB_DT_STRING << 8) | 0,
0x0000, buf, sizeof(buf), 1000);
if (cnt < 0) {
applog(LOG_ERR, "%s: Failed to read LANGIDs: %d", __func__, cnt);
return cnt;
}
langid = libusb_le16_to_cpu(((uint16_t *)buf)[1]);
cnt = libusb_control_transfer(dev, LIBUSB_ENDPOINT_IN,
LIBUSB_REQUEST_GET_DESCRIPTOR, (LIBUSB_DT_STRING << 8) | desc_index,
langid, buf, sizeof(buf), 1000);
if (cnt < 0) {
applog(LOG_ERR, "%s: Failed to read string descriptor: %d", __func__, cnt);
return cnt;
}
/* num chars = (all bytes except bLength and bDescriptorType) / 2 */
for (i = 0; i <= (cnt - 2) / 2 && i < length-1; i++)
data[i] = buf[2 + i*2];
data[i] = 0;
return LIBUSB_SUCCESS;
}
enum check_result
{
CHECK_ERROR,
CHECK_IS_NOT_ZTEX,
CHECK_OK,
CHECK_RESCAN,
};
static bool libztex_firmwareReset(struct libusb_device_handle *hndl, bool enable)
{
uint8_t reset = enable;
int cnt = libusb_control_transfer(hndl, 0x40, 0xA0, 0xE600, 0, &reset, 1, 1000);
if (cnt < 0)
{
applog(LOG_ERR, "Ztex reset %d failed: %d", enable, cnt);
return 1;
}
return 0;
}
static enum check_result libztex_checkDevice(struct libusb_device *dev)
{
FILE *fp = NULL;
libusb_device_handle *hndl = NULL;
struct libusb_device_descriptor desc;
int ret = CHECK_ERROR, err, cnt;
size_t got_bytes, length;
unsigned char buf[64], *fw_buf;
unsigned int i;
err = libusb_get_device_descriptor(dev, &desc);
if (unlikely(err != 0)) {
applog(LOG_ERR, "Ztex check device: Failed to open read descriptor with error %d", err);
return CHECK_ERROR;
}
if (desc.idVendor != LIBZTEX_IDVENDOR || desc.idProduct != LIBZTEX_IDPRODUCT) {
applog(LOG_DEBUG, "Not a ZTEX device %04x:%04x", desc.idVendor, desc.idProduct);
return CHECK_IS_NOT_ZTEX;
}
err = libusb_open(dev, &hndl);
if (err != LIBUSB_SUCCESS) {
applog(LOG_ERR, "%s: Can not open ZTEX device: %d", __func__, err);
goto done;
}
cnt = libusb_control_transfer(hndl, 0xc0, 0x22, 0, 0, buf, 40, 500);
if (unlikely(cnt < 0)) {
applog(LOG_ERR, "Ztex check device: Failed to read ztex descriptor with err %d", cnt);
goto done;
}
if (buf[0] != 40 || buf[1] != 1 || buf[2] != 'Z' || buf[3] != 'T' || buf[4] != 'E' || buf[5] != 'X') {
applog(LOG_ERR, "Ztex check device: Error reading ztex descriptor");
goto done;
}
if (buf[6] != 10)
{
ret = CHECK_IS_NOT_ZTEX;
goto done;
}
// 15 = 1.15y 13 = 1.15d or 1.15x
switch(buf[7])
{
case 13:
applog(LOG_ERR, "Found ztex board 1.15d or 1.15x");
break;
case 15:
applog(LOG_ERR, "Found ztex board 1.15y");
break;
default:
applog(LOG_ERR, "Found unknown ztex board");
ret = CHECK_IS_NOT_ZTEX;
goto done;
}
// testing for dummy firmware
if (buf[8] != 0) {
ret = CHECK_OK;
goto done;
}
applog(LOG_ERR, "Found dummy firmware, trying to send mining firmware");
char productString[32];
cnt = libztex_get_string_descriptor_ascii(hndl, desc.iProduct, (unsigned char*)productString, sizeof(productString));
if (unlikely(cnt < 0)) {
applog(LOG_ERR, "Ztex check device: Failed to read device productString with err %d", cnt);
return cnt;
}
applog(LOG_ERR, "productString: %s", productString);
unsigned char productID2 = buf[7];
char *firmware = NULL;
if (strcmp("USB-FPGA Module 1.15d (default)", productString) == 0 && productID2 == 13)
{
firmware = "ztex_ufm1_15d4.bin";
}
else if (strcmp("USB-FPGA Module 1.15x (default)", productString) == 0 && productID2 == 13)
{
firmware = "ztex_ufm1_15d4.bin";
}
else if (strcmp("USB-FPGA Module 1.15y (default)", productString) == 0 && productID2 == 15)
{
firmware = "ztex_ufm1_15y1.bin";
}
if (firmware == NULL)
{
applog(LOG_ERR, "could not figure out which firmware to use");
goto done;
}
applog(LOG_ERR, "Mining firmware filename: %s", firmware);
fp = open_bitstream("ztex", firmware);
if (!fp) {
applog(LOG_ERR, "failed to open firmware file '%s'", firmware);
goto done;
}
if (0 != fseek(fp, 0, SEEK_END)) {
applog(LOG_ERR, "Ztex firmware fseek: %s", strerror(errno));
goto done;
}
length = ftell(fp);
rewind(fp);
fw_buf = malloc(length);
if (!fw_buf) {
applog(LOG_ERR, "%s: Can not allocate memory: %s", __func__, strerror(errno));
goto done;
}
got_bytes = fread(fw_buf, 1, length, fp);
fclose(fp);
fp = NULL;
if (got_bytes < length) {
applog(LOG_ERR, "%s: Incomplete firmware read: %zu/%zu", __func__, got_bytes, length);
goto done;
}
// in buf[] is still the identifier of the dummy firmware
// use it to compare it with the new firmware
char *rv = memmem(fw_buf, got_bytes, buf, 8);
if (rv == NULL)
{
applog(LOG_ERR, "%s: found firmware is not ZTEX", __func__);
goto done;
}
// check for dummy firmware
if (rv[8] == 0)
{
applog(LOG_ERR, "%s: found a ZTEX dummy firmware", __func__);
goto done;
}
if (libztex_firmwareReset(hndl, true))
goto done;
for (i = 0; i < length; i+= 256) {
// firmware wants data in small chunks like 256 bytes
int numbytes = (length - i) < 256 ? (length - i) : 256;
int k = libusb_control_transfer(hndl, 0x40, 0xA0, i, 0, fw_buf + i, numbytes, 1000);
if (k < numbytes)
{
applog(LOG_ERR, "Ztex device: Failed to write firmware at %d with err: %d", i, k);
goto done;
}
}
if (libztex_firmwareReset(hndl, false))
goto done;
applog(LOG_ERR, "Ztex device: succesfully wrote firmware");
ret = CHECK_RESCAN;
done:
if (fp)
fclose(fp);
if (hndl)
libusb_close(hndl);
return ret;
}
static bool libztex_checkCapability(struct libztex_device *ztex, int i, int j)
{
if (!((i >= 0) && (i <= 5) && (j >= 0) && (j < 8) &&
(((ztex->interfaceCapabilities[i] & 255) & (1 << j)) != 0))) {
applog(LOG_ERR, "%s: capability missing: %d %d", ztex->repr, i, j);
return false;
}
return true;
}
static char libztex_detectBitstreamBitOrder(const unsigned char *buf, int size)
{
int i;
for (i = 0; i < size - 4; i++) {
if (((buf[i] & 255) == 0xaa) && ((buf[i + 1] & 255) == 0x99) && ((buf[i + 2] & 255) == 0x55) && ((buf[i + 3] & 255) == 0x66))
return 1;
if (((buf[i] & 255) == 0x55) && ((buf[i + 1] & 255) == 0x99) && ((buf[i + 2] & 255) == 0xaa) && ((buf[i + 3] & 255) == 0x66))
return 0;
}
applog(LOG_WARNING, "Unable to determine bitstream bit order: no signature found");
return 0;
}
static void libztex_swapBits(unsigned char *buf, int size)
{
unsigned char c;
int i;
for (i = 0; i < size; i++) {
c = buf[i];
buf[i] = ((c & 128) >> 7) |
((c & 64) >> 5) |
((c & 32) >> 3) |
((c & 16) >> 1) |
((c & 8) << 1) |
((c & 4) << 3) |
((c & 2) << 5) |
((c & 1) << 7);
}
}
static int libztex_getFpgaState(struct libztex_device *ztex, struct libztex_fpgastate *state)
{
unsigned char buf[9];
int cnt;
if (!libztex_checkCapability(ztex, CAPABILITY_FPGA))
return -1;
cnt = libusb_control_transfer(ztex->hndl, 0xc0, 0x30, 0, 0, buf, 9, 1000);
if (unlikely(cnt < 0)) {
applog(LOG_ERR, "%s: Failed getFpgaState with err %d", ztex->repr, cnt);
return cnt;
}
state->fpgaConfigured = (buf[0] == 0);
state->fpgaChecksum = buf[1] & 0xff;
state->fpgaBytes = ((buf[5] & 0xff) << 24) | ((buf[4] & 0xff) << 16) | ((buf[3] & 0xff) << 8) | (buf[2] & 0xff);
state->fpgaInitB = buf[6] & 0xff;
state->fpgaFlashResult = buf[7];
state->fpgaFlashBitSwap = (buf[8] != 0);
return 0;
}
static int libztex_configureFpgaHS(struct libztex_device *ztex, const char* firmware, bool force, char bs)
{
struct libztex_fpgastate state;
const int transactionBytes = 65536;
unsigned char buf[transactionBytes], settings[2];
int tries, cnt, err;
FILE *fp;
if (!libztex_checkCapability(ztex, CAPABILITY_HS_FPGA))
return -1;
libztex_getFpgaState(ztex, &state);
if (!force && state.fpgaConfigured) {
applog(LOG_INFO, "Bitstream already configured");
return 0;
}
cnt = libusb_control_transfer(ztex->hndl, 0xc0, 0x33, 0, 0, settings, 2, 1000);
if (unlikely(cnt < 0)) {
applog(LOG_ERR, "%s: Failed getHSFpgaSettings with err %d", ztex->repr, cnt);
return cnt;
}
err = libusb_claim_interface(ztex->hndl, settings[1]);
if (err != LIBUSB_SUCCESS) {
applog(LOG_ERR, "%s: failed to claim interface for hs transfer", ztex->repr);
return -4;
}
for (tries = 3; tries > 0; tries--) {
fp = open_bitstream("ztex", firmware);
if (!fp) {
applog(LOG_ERR, "%s: failed to read bitstream '%s'", ztex->repr, firmware);
libusb_release_interface(ztex->hndl, settings[1]);
return -2;
}
libusb_control_transfer(ztex->hndl, 0x40, 0x34, 0, 0, NULL, 0, 1000);
// 0x34 - initHSFPGAConfiguration
do
{
int length = fread(buf,1,transactionBytes,fp);
if (bs != 0 && bs != 1)
bs = libztex_detectBitstreamBitOrder(buf, length);
if (bs == 1)
libztex_swapBits(buf, length);
err = libusb_bulk_transfer(ztex->hndl, settings[0], buf, length, &cnt, 1000);
if (cnt != length)
applog(LOG_ERR, "%s: cnt != length", ztex->repr);
if (err != 0)
applog(LOG_ERR, "%s: Failed send hs fpga data", ztex->repr);
}
while (!feof(fp));
libusb_control_transfer(ztex->hndl, 0x40, 0x35, 0, 0, NULL, 0, 1000);
// 0x35 - finishHSFPGAConfiguration
if (cnt >= 0)
tries = 0;
fclose(fp);
libztex_getFpgaState(ztex, &state);
if (!state.fpgaConfigured) {
applog(LOG_ERR, "%s: HS FPGA configuration failed: DONE pin does not go high", ztex->repr);
libusb_release_interface(ztex->hndl, settings[1]);
return -3;
}
}
libusb_release_interface(ztex->hndl, settings[1]);
nmsleep(200);
applog(LOG_INFO, "%s: HS FPGA configuration done", ztex->repr);
return 0;
}
static int libztex_configureFpgaLS(struct libztex_device *ztex, const char* firmware, bool force, char bs)
{
struct libztex_fpgastate state;
const int transactionBytes = 2048;
unsigned char buf[transactionBytes];
int tries, cnt;
FILE *fp;
if (!libztex_checkCapability(ztex, CAPABILITY_FPGA))
return -1;
libztex_getFpgaState(ztex, &state);
if (!force && state.fpgaConfigured) {
applog(LOG_DEBUG, "Bitstream already configured");
return 0;
}
for (tries = 10; tries > 0; tries--) {
fp = open_bitstream("ztex", firmware);
if (!fp) {
applog(LOG_ERR, "%s: failed to read bitstream '%s'", ztex->repr, firmware);
return -2;
}
//* Reset fpga
cnt = libztex_resetFpga(ztex);
if (unlikely(cnt < 0)) {
applog(LOG_ERR, "%s: Failed reset fpga with err %d", ztex->repr, cnt);
continue;
}
do
{
int length = fread(buf, 1, transactionBytes, fp);
if (bs != 0 && bs != 1)
bs = libztex_detectBitstreamBitOrder(buf, length);
if (bs == 1)
libztex_swapBits(buf, length);
cnt = libusb_control_transfer(ztex->hndl, 0x40, 0x32, 0, 0, buf, length, 5000);
if (cnt != length)
{
applog(LOG_ERR, "%s: Failed send ls fpga data", ztex->repr);
break;
}
}
while (!feof(fp));
if (cnt > 0)
tries = 0;
fclose(fp);
}
libztex_getFpgaState(ztex, &state);
if (!state.fpgaConfigured) {
applog(LOG_ERR, "%s: LS FPGA configuration failed: DONE pin does not go high", ztex->repr);
return -3;
}
nmsleep(200);
applog(LOG_INFO, "%s: FPGA configuration done", ztex->repr);
return 0;
}
int libztex_configureFpga(struct libztex_device *ztex)
{
char buf[256];
int rv;
strcpy(buf, ztex->bitFileName);
strcat(buf, ".bit");
rv = libztex_configureFpgaHS(ztex, buf, true, 2);
if (rv != 0)
rv = libztex_configureFpgaLS(ztex, buf, true, 2);
return rv;
}
int libztex_numberOfFpgas(struct libztex_device *ztex)
{
int cnt;
unsigned char buf[3];
if (ztex->numberOfFpgas < 0) {
if (libztex_checkCapability(ztex, CAPABILITY_MULTI_FPGA)) {
cnt = libusb_control_transfer(ztex->hndl, 0xc0, 0x50, 0, 0, buf, 3, 1000);
if (unlikely(cnt < 0)) {
applog(LOG_ERR, "%s: Failed getMultiFpgaInfo with err %d", ztex->repr, cnt);
return cnt;
}
ztex->numberOfFpgas = buf[0] + 1;
ztex->selectedFpga = -1;//buf[1];
ztex->parallelConfigSupport = (buf[2] == 1);
} else {
ztex->numberOfFpgas = 1;
ztex->selectedFpga = -1;//0;
ztex->parallelConfigSupport = false;
}
}
return ztex->numberOfFpgas;
}
int libztex_selectFpga(struct libztex_device *ztex)
{
int cnt, fpgacnt = libztex_numberOfFpgas(ztex->root);
int16_t number = ztex->fpgaNum;
if (number < 0 || number >= fpgacnt) {
applog(LOG_WARNING, "%s: Trying to select wrong fpga (%d in %d)", ztex->repr, number, fpgacnt);
return 1;
}
if (ztex->root->selectedFpga != number && libztex_checkCapability(ztex->root, CAPABILITY_MULTI_FPGA)) {
cnt = libusb_control_transfer(ztex->root->hndl, 0x40, 0x51, (uint16_t)number, 0, NULL, 0, 500);
if (unlikely(cnt < 0)) {
applog(LOG_ERR, "Ztex check device: Failed to set fpga with err %d", cnt);
ztex->root->selectedFpga = -1;
return cnt;
}
ztex->root->selectedFpga = number;
}
return 0;
}
int libztex_setFreq(struct libztex_device *ztex, uint16_t freq)
{
int cnt;
uint16_t oldfreq = ztex->freqM;
if (freq > ztex->freqMaxM)
freq = ztex->freqMaxM;
cnt = libusb_control_transfer(ztex->hndl, 0x40, 0x83, freq, 0, NULL, 0, 500);
if (unlikely(cnt < 0)) {
applog(LOG_ERR, "Ztex check device: Failed to set frequency with err %d", cnt);
return cnt;
}
ztex->freqM = freq;
if (oldfreq > ztex->freqMaxM)
applog(LOG_WARNING, "%s: Frequency set to %0.1f MHz",
ztex->repr, ztex->freqM1 * (ztex->freqM + 1));
else
applog(LOG_WARNING, "%s: Frequency change from %0.1f to %0.1f MHz",
ztex->repr, ztex->freqM1 * (oldfreq + 1), ztex->freqM1 * (ztex->freqM + 1));
return 0;
}
int libztex_resetFpga(struct libztex_device *ztex)
{
return libusb_control_transfer(ztex->hndl, 0x40, 0x31, 0, 0, NULL, 0, 1000);
}
int libztex_suspend(struct libztex_device *ztex)
{
if (ztex->suspendSupported) {
return libusb_control_transfer(ztex->hndl, 0x40, 0x84, 0, 0, NULL, 0, 1000);
} else {
return 0;
}
}
int libztex_prepare_device(struct libusb_device *dev, struct libztex_device** ztex)
{
struct libztex_device *newdev = *ztex;
int i, cnt, err;
unsigned char buf[64];
err = libusb_open(dev, &newdev->hndl);
if (err != LIBUSB_SUCCESS) {
applog(LOG_ERR, "%s: Can not open ZTEX device: %d", __func__, err);
return CHECK_ERROR;
}
err = libusb_get_device_descriptor(dev, &newdev->descriptor);
if (unlikely(err != 0)) {
applog(LOG_ERR, "Ztex check device: Failed to open read descriptor with error %d", err);
return CHECK_ERROR;
}
cnt = libztex_get_string_descriptor_ascii(newdev->hndl, newdev->descriptor.iSerialNumber, newdev->snString, sizeof(newdev->snString));
if (unlikely(cnt < 0)) {
applog(LOG_ERR, "Ztex check device: Failed to read device snString with err %d", cnt);
return cnt;
}
cnt = libusb_control_transfer(newdev->hndl, 0xc0, 0x22, 0, 0, buf, 40, 500);
if (unlikely(cnt < 0)) {
applog(LOG_ERR, "Ztex check device: Failed to read ztex descriptor with err %d", cnt);
return cnt;
}
if (buf[0] != 40 || buf[1] != 1 || buf[2] != 'Z' || buf[3] != 'T' || buf[4] != 'E' || buf[5] != 'X') {
applog(LOG_ERR, "Ztex check device: Error reading ztex descriptor");
return 2;
}
newdev->productId[0] = buf[6];
newdev->productId[1] = buf[7];
newdev->productId[2] = buf[8];
newdev->productId[3] = buf[9];
newdev->fwVersion = buf[10];
newdev->interfaceVersion = buf[11];
newdev->interfaceCapabilities[0] = buf[12];
newdev->interfaceCapabilities[1] = buf[13];
newdev->interfaceCapabilities[2] = buf[14];
newdev->interfaceCapabilities[3] = buf[15];
newdev->interfaceCapabilities[4] = buf[16];
newdev->interfaceCapabilities[5] = buf[17];
newdev->moduleReserved[0] = buf[18];
newdev->moduleReserved[1] = buf[19];
newdev->moduleReserved[2] = buf[20];
newdev->moduleReserved[3] = buf[21];
newdev->moduleReserved[4] = buf[22];
newdev->moduleReserved[5] = buf[23];
newdev->moduleReserved[6] = buf[24];
newdev->moduleReserved[7] = buf[25];
newdev->moduleReserved[8] = buf[26];
newdev->moduleReserved[9] = buf[27];
newdev->moduleReserved[10] = buf[28];
newdev->moduleReserved[11] = buf[29];
cnt = libusb_control_transfer(newdev->hndl, 0xc0, 0x82, 0, 0, buf, 64, 500);
if (unlikely(cnt < 0)) {
applog(LOG_ERR, "Ztex check device: Failed to read ztex descriptor with err %d", cnt);
return cnt;
}
if (unlikely(buf[0] != 5)) {
if (unlikely(buf[0] != 2 && buf[0] != 4)) {
applog(LOG_ERR, "Invalid BTCMiner descriptor version. Firmware must be updated (%d).", buf[0]);
return 3;
}
applog(LOG_WARNING, "Firmware out of date (%d).", buf[0]);
}
i = buf[0] > 4? 11: (buf[0] > 2? 10: 8);
while (cnt < 64 && buf[cnt] != 0)
cnt++;
if (cnt < i + 1) {
applog(LOG_ERR, "Invalid bitstream file name .");
return 4;
}
newdev->bitFileName = malloc(sizeof(char) * (cnt + 1));
memcpy(newdev->bitFileName, &buf[i], cnt);
newdev->bitFileName[cnt] = 0;
newdev->numNonces = buf[1] + 1;
newdev->offsNonces = ((buf[2] & 255) | ((buf[3] & 255) << 8)) - 10000;
newdev->freqM1 = ((buf[4] & 255) | ((buf[5] & 255) << 8) ) * 0.01;
newdev->freqMaxM = (buf[7] & 255);
newdev->freqM = (buf[6] & 255);
newdev->freqMDefault = newdev->freqM;
newdev->suspendSupported = (buf[0] == 5);
newdev->hashesPerClock = buf[0] > 2? (((buf[8] & 255) | ((buf[9] & 255) << 8)) + 1) / 128.0: 1.0;
newdev->extraSolutions = buf[0] > 4? buf[10]: 0;
applog(LOG_DEBUG, "PID: %d numNonces: %d offsNonces: %d freqM1: %f freqMaxM: %d freqM: %d suspendSupported: %s hashesPerClock: %f extraSolutions: %d",
buf[0], newdev->numNonces, newdev->offsNonces, newdev->freqM1, newdev->freqMaxM, newdev->freqM, newdev->suspendSupported ? "T": "F",
newdev->hashesPerClock, newdev->extraSolutions);
if (buf[0] < 4) {
if (strncmp(newdev->bitFileName, "ztex_ufm1_15b", 13) != 0)
newdev->hashesPerClock = 0.5;
applog(LOG_WARNING, "HASHES_PER_CLOCK not defined, assuming %0.2f", newdev->hashesPerClock);
}
for (cnt=0; cnt < 255; cnt++) {
newdev->errorCount[cnt] = 0;
newdev->errorWeight[cnt] = 0;
newdev->errorRate[cnt] = 0;
newdev->maxErrorRate[cnt] = 0;
}
// fake that the last round found something valid
newdev->nonceCheckValid = 1;
newdev->usbbus = libusb_get_bus_number(dev);
newdev->usbaddress = libusb_get_device_address(dev);
sprintf(newdev->repr, "ZTEX %s-1", newdev->snString);
return 0;
}
void libztex_destroy_device(struct libztex_device* ztex)
{
if (ztex->hndl != NULL) {
libusb_close(ztex->hndl);
ztex->hndl = NULL;
}
if (ztex->bitFileName != NULL) {
free(ztex->bitFileName);
ztex->bitFileName = NULL;
}
free(ztex);
}
int libztex_scanDevices(struct libztex_dev_list*** devs_p)
{
int usbdevices[LIBZTEX_MAX_DESCRIPTORS];
struct libztex_dev_list **devs = NULL;
struct libztex_device *ztex = NULL;
int found, max_found = 0, pos = 0, err, rescan, ret = 0;
libusb_device **list = NULL;
ssize_t cnt, i;
do {
cnt = libusb_get_device_list(NULL, &list);
if (unlikely(cnt < 0)) {
applog(LOG_ERR, "Ztex scan devices: Failed to list usb devices with err %zd", cnt);
goto done;
}
for (found = rescan = i = 0; i < cnt; i++) {
err = libztex_checkDevice(list[i]);
switch (err) {
case CHECK_ERROR:
applog(LOG_ERR, "Ztex: Can not check device: %d", err);
continue;
case CHECK_IS_NOT_ZTEX:
continue;
case CHECK_OK:
// Got one!
usbdevices[found++] = i;
break;
case CHECK_RESCAN:
rescan = 1;
found++;
break;
}
}
if (found < max_found)
rescan = 1;
else if (found > max_found)
max_found = found;
if (rescan)
libusb_free_device_list(list, 1);
} while (rescan);
if (0 == found)
goto done;
devs = malloc(sizeof(struct libztex_dev_list *) * found);
if (devs == NULL) {
applog(LOG_ERR, "Ztex scan devices: Failed to allocate memory");
goto done;
}
for (i = 0; i < found; i++) {
if (!ztex) {
ztex = malloc(sizeof(*ztex));
if (!ztex) {
applog(LOG_ERR, "%s: Can not allocate memory for device struct: %s", __func__, strerror(errno));
goto done;
}
}
ztex->bitFileName = NULL;
ztex->numberOfFpgas = -1;
err = libztex_prepare_device(list[usbdevices[i]], &ztex);
if (unlikely(err != 0)) {
applog(LOG_ERR, "prepare device: %d", err);
libztex_destroy_device(ztex);
ztex = NULL;
continue;
}
devs[pos] = malloc(sizeof(struct libztex_dev_list));
if (NULL == devs[pos]) {
applog(LOG_ERR, "%s: Can not allocate memory for device: %s", __func__, strerror(errno));
libztex_destroy_device(ztex);
ztex = NULL;
continue;
}
devs[pos]->dev = ztex;
ztex = NULL;
devs[pos]->next = NULL;
if (pos > 0)
devs[pos - 1]->next = devs[pos];
pos++;
}
ret = pos;
done:
if (ret > 0)
*devs_p = devs;
else if (devs)
free(devs);
if (list)
libusb_free_device_list(list, 1);
return ret;
}
int libztex_sendHashData(struct libztex_device *ztex, unsigned char *sendbuf)
{
int cnt = 0, ret, len;
if (ztex == NULL || ztex->hndl == NULL)
return 0;
ret = 44; len = 0;
while (ret > 0) {
cnt = libusb_control_transfer(ztex->hndl, 0x40, 0x80, 0, 0, sendbuf + len, ret, 1000);
if (cnt >= 0) {
ret -= cnt;
len += cnt;
} else
break;
}
if (unlikely(cnt < 0))
applog(LOG_ERR, "%s: Failed sendHashData with err %d", ztex->repr, cnt);
return cnt;
}
int libztex_readHashData(struct libztex_device *ztex, struct libztex_hash_data nonces[])
{
int bufsize = 12 + ztex->extraSolutions * 4;
int cnt = 0, i, j, ret, len;
unsigned char *rbuf;
if (ztex->hndl == NULL)
return 0;
rbuf = malloc(sizeof(unsigned char) * (ztex->numNonces * bufsize));
if (rbuf == NULL) {
applog(LOG_ERR, "%s: Failed to allocate memory for reading nonces", ztex->repr);
return 0;
}
ret = bufsize * ztex->numNonces; len = 0;
while (ret > 0) {
cnt = libusb_control_transfer(ztex->hndl, 0xc0, 0x81, 0, 0, rbuf + len, ret, 1000);
if (cnt >= 0) {
ret -= cnt;
len += cnt;
} else
break;
}
if (unlikely(cnt < 0)) {
applog(LOG_ERR, "%s: Failed readHashData with err %d", ztex->repr, cnt);
free(rbuf);
return cnt;
}
for (i=0; i<ztex->numNonces; i++) {
memcpy((char*)&nonces[i].goldenNonce[0], &rbuf[i*bufsize], 4);
nonces[i].goldenNonce[0] -= ztex->offsNonces;
//applog(LOG_DEBUG, "W %d:0 %0.8x", i, nonces[i].goldenNonce[0]);
memcpy((char*)&nonces[i].nonce, &rbuf[(i*bufsize)+4], 4);
memcpy((char*)&nonces[i].hash7, &rbuf[(i*bufsize)+8], 4);
nonces[i].nonce = htole32(nonces[i].nonce);
nonces[i].hash7 = htole32(nonces[i].hash7);
nonces[i].nonce -= ztex->offsNonces;
for (j=0; j<ztex->extraSolutions; j++) {
memcpy((char*)&nonces[i].goldenNonce[j+1], &rbuf[(i*bufsize)+12+(j*4)], 4);
nonces[i].goldenNonce[j+1] = htole32(nonces[i].goldenNonce[j+1]);
nonces[i].goldenNonce[j+1] -= ztex->offsNonces;
//applog(LOG_DEBUG, "W %d:%d %0.8x", i, j+1, nonces[i].goldenNonce[j+1]);
}
}
free(rbuf);
return cnt;
}
void libztex_freeDevList(struct libztex_dev_list **devs)
{
bool done = false;
ssize_t cnt = 0;
while (!done) {
if (devs[cnt]->next == NULL)
done = true;
free(devs[cnt++]);
}
free(devs);
}