OpenCL GPU miner
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

1946 lines
51 KiB

/*
* Copyright 2012-2013 Andrew Smith
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include <ctype.h>
#include <stdint.h>
#include <stdbool.h>
#include "logging.h"
#include "miner.h"
#include "usbutils.h"
#define NODEV(err) ((err) == LIBUSB_ERROR_NO_DEVICE || \
(err) == LIBUSB_ERROR_PIPE || \
(err) == LIBUSB_ERROR_OTHER)
#ifdef USE_BFLSC
#define DRV_BFLSC 1
#endif
#ifdef USE_BITFORCE
#define DRV_BITFORCE 2
#endif
#ifdef USE_MODMINER
#define DRV_MODMINER 3
#endif
#ifdef USE_ZTEX
#define DRV_ZTEX 4
#endif
#ifdef USE_ICARUS
#define DRV_ICARUS 5
#endif
#ifdef USE_AVALON
#define DRV_AVALON 6
#endif
#define DRV_LAST -1
#define USB_CONFIG 1
#define EPI(x) (LIBUSB_ENDPOINT_IN | (unsigned char)(x))
#define EPO(x) (LIBUSB_ENDPOINT_OUT | (unsigned char)(x))
#ifdef WIN32
#define BFLSC_TIMEOUT_MS 500
#define BITFORCE_TIMEOUT_MS 500
#define MODMINER_TIMEOUT_MS 200
#define AVALON_TIMEOUT_MS 500
#else
#define BFLSC_TIMEOUT_MS 200
#define BITFORCE_TIMEOUT_MS 200
#define MODMINER_TIMEOUT_MS 100
#define AVALON_TIMEOUT_MS 200
#endif
#ifdef USE_BFLSC
// N.B. transfer size is 512 with USB2.0, but only 64 with USB1.1
static struct usb_endpoints bas_eps[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0 }
};
#endif
#ifdef USE_BITFORCE
// N.B. transfer size is 512 with USB2.0, but only 64 with USB1.1
static struct usb_endpoints bfl_eps[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0 }
};
#endif
#ifdef USE_MODMINER
static struct usb_endpoints mmq_eps[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(3), 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(3), 0 }
};
#endif
#ifdef USE_AVALON
static struct usb_endpoints ava_eps[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0 }
};
#endif
// TODO: Add support for (at least) Isochronous endpoints
static struct usb_find_devices find_dev[] = {
/*
#ifdef USE_ICARUS
{ DRV_ICARUS, "ICA", 0x067b, 0x0230, true, EPI(3), EPO(2), 1 },
{ DRV_ICARUS, "LOT", 0x0403, 0x6001, false, EPI(0), EPO(0), 1 },
{ DRV_ICARUS, "CM1", 0x067b, 0x0230, false, EPI(0), EPO(0), 1 },
#endif
*/
#ifdef USE_BFLSC
{
.drv = DRV_BFLSC,
.name = "BAS",
.idVendor = 0x0403,
.idProduct = 0x6014,
.kernel = 0,
.config = 1,
.interface = 0,
.timeout = BFLSC_TIMEOUT_MS,
.epcount = ARRAY_SIZE(bas_eps),
.eps = bas_eps },
#endif
#ifdef USE_BITFORCE
{
.drv = DRV_BITFORCE,
.name = "BFL",
.idVendor = 0x0403,
.idProduct = 0x6014,
.kernel = 0,
.config = 1,
.interface = 0,
.timeout = BITFORCE_TIMEOUT_MS,
.epcount = ARRAY_SIZE(bfl_eps),
.eps = bfl_eps },
#endif
#ifdef USE_MODMINER
{
.drv = DRV_MODMINER,
.name = "MMQ",
.idVendor = 0x1fc9,
.idProduct = 0x0003,
.kernel = 0,
.config = 1,
.interface = 1,
.timeout = MODMINER_TIMEOUT_MS,
.epcount = ARRAY_SIZE(mmq_eps),
.eps = mmq_eps },
#endif
#ifdef USE_AVALON
{
.drv = DRV_AVALON,
.name = "AVA",
.idVendor = 0x0403,
.idProduct = 0x6001,
.kernel = 0,
.config = 1,
.interface = 1,
.timeout = AVALON_TIMEOUT_MS,
.epcount = ARRAY_SIZE(ava_eps),
.eps = ava_eps },
#endif
#ifdef USE_ZTEX
// This is here so cgminer -n shows them
// the ztex driver (as at 201303) doesn't use usbutils
{
.drv = DRV_ZTEX,
.name = "ZTX",
.idVendor = 0x221a,
.idProduct = 0x0100,
.kernel = 0,
.config = 1,
.interface = 1,
.timeout = 100,
.epcount = 0,
.eps = NULL },
#endif
{ DRV_LAST, NULL, 0, 0, 0, 0, 0, 0, 0, NULL }
};
#ifdef USE_BFLSC
extern struct device_drv bflsc_drv;
#endif
#ifdef USE_BITFORCE
extern struct device_drv bitforce_drv;
#endif
#ifdef USE_MODMINER
extern struct device_drv modminer_drv;
#endif
#ifdef USE_ICARUS
extern struct device_drv icarus_drv;
#endif
#ifdef USE_AVALON
extern struct device_drv avalon_drv;
#endif
#define STRBUFLEN 256
static const char *BLANK = "";
// For device limits by driver
static struct driver_count {
uint32_t count;
uint32_t limit;
} drv_count[DRIVER_MAX];
// For device limits by list of bus/dev
static struct usb_busdev {
int bus_number;
int device_address;
} *busdev;
static int busdev_count = 0;
// Total device limit
static int total_count = 0;
static int total_limit = 999999;
static bool stats_initialised = false;
struct cg_usb_stats_item {
uint64_t count;
double total_delay;
double min_delay;
double max_delay;
struct timeval first;
struct timeval last;
};
#define CMD_CMD 0
#define CMD_TIMEOUT 1
#define CMD_ERROR 2
struct cg_usb_stats_details {
int seq;
struct cg_usb_stats_item item[CMD_ERROR+1];
};
struct cg_usb_stats {
char *name;
int device_id;
struct cg_usb_stats_details *details;
};
#define SEQ0 0
#define SEQ1 1
static struct cg_usb_stats *usb_stats = NULL;
static int next_stat = 0;
static const char **usb_commands;
static const char *C_REJECTED_S = "RejectedNoDevice";
static const char *C_PING_S = "Ping";
static const char *C_CLEAR_S = "Clear";
static const char *C_REQUESTVERSION_S = "RequestVersion";
static const char *C_GETVERSION_S = "GetVersion";
static const char *C_REQUESTFPGACOUNT_S = "RequestFPGACount";
static const char *C_GETFPGACOUNT_S = "GetFPGACount";
static const char *C_STARTPROGRAM_S = "StartProgram";
static const char *C_STARTPROGRAMSTATUS_S = "StartProgramStatus";
static const char *C_PROGRAM_S = "Program";
static const char *C_PROGRAMSTATUS_S = "ProgramStatus";
static const char *C_PROGRAMSTATUS2_S = "ProgramStatus2";
static const char *C_FINALPROGRAMSTATUS_S = "FinalProgramStatus";
static const char *C_SETCLOCK_S = "SetClock";
static const char *C_REPLYSETCLOCK_S = "ReplySetClock";
static const char *C_REQUESTUSERCODE_S = "RequestUserCode";
static const char *C_GETUSERCODE_S = "GetUserCode";
static const char *C_REQUESTTEMPERATURE_S = "RequestTemperature";
static const char *C_GETTEMPERATURE_S = "GetTemperature";
static const char *C_SENDWORK_S = "SendWork";
static const char *C_SENDWORKSTATUS_S = "SendWorkStatus";
static const char *C_REQUESTWORKSTATUS_S = "RequestWorkStatus";
static const char *C_GETWORKSTATUS_S = "GetWorkStatus";
static const char *C_REQUESTIDENTIFY_S = "RequestIdentify";
static const char *C_GETIDENTIFY_S = "GetIdentify";
static const char *C_REQUESTFLASH_S = "RequestFlash";
static const char *C_REQUESTSENDWORK_S = "RequestSendWork";
static const char *C_REQUESTSENDWORKSTATUS_S = "RequestSendWorkStatus";
static const char *C_RESET_S = "Reset";
static const char *C_SETBAUD_S = "SetBaud";
static const char *C_SETDATA_S = "SetDataCtrl";
static const char *C_SETFLOW_S = "SetFlowCtrl";
static const char *C_SETMODEM_S = "SetModemCtrl";
static const char *C_PURGERX_S = "PurgeRx";
static const char *C_PURGETX_S = "PurgeTx";
static const char *C_FLASHREPLY_S = "FlashReply";
static const char *C_REQUESTDETAILS_S = "RequestDetails";
static const char *C_GETDETAILS_S = "GetDetails";
#ifdef EOL
#undef EOL
#endif
#define EOL "\n"
static const char *DESDEV = "Device";
static const char *DESCON = "Config";
static const char *DESSTR = "String";
static const char *DESINT = "Interface";
static const char *DESEP = "Endpoint";
static const char *DESHID = "HID";
static const char *DESRPT = "Report";
static const char *DESPHY = "Physical";
static const char *DESHUB = "Hub";
static const char *EPIN = "In: ";
static const char *EPOUT = "Out: ";
static const char *EPX = "?: ";
static const char *CONTROL = "Control";
static const char *ISOCHRONOUS_X = "Isochronous+?";
static const char *ISOCHRONOUS_N_X = "Isochronous+None+?";
static const char *ISOCHRONOUS_N_D = "Isochronous+None+Data";
static const char *ISOCHRONOUS_N_F = "Isochronous+None+Feedback";
static const char *ISOCHRONOUS_N_I = "Isochronous+None+Implicit";
static const char *ISOCHRONOUS_A_X = "Isochronous+Async+?";
static const char *ISOCHRONOUS_A_D = "Isochronous+Async+Data";
static const char *ISOCHRONOUS_A_F = "Isochronous+Async+Feedback";
static const char *ISOCHRONOUS_A_I = "Isochronous+Async+Implicit";
static const char *ISOCHRONOUS_D_X = "Isochronous+Adaptive+?";
static const char *ISOCHRONOUS_D_D = "Isochronous+Adaptive+Data";
static const char *ISOCHRONOUS_D_F = "Isochronous+Adaptive+Feedback";
static const char *ISOCHRONOUS_D_I = "Isochronous+Adaptive+Implicit";
static const char *ISOCHRONOUS_S_X = "Isochronous+Sync+?";
static const char *ISOCHRONOUS_S_D = "Isochronous+Sync+Data";
static const char *ISOCHRONOUS_S_F = "Isochronous+Sync+Feedback";
static const char *ISOCHRONOUS_S_I = "Isochronous+Sync+Implicit";
static const char *BULK = "Bulk";
static const char *INTERRUPT = "Interrupt";
static const char *UNKNOWN = "Unknown";
static const char *err_io_str = " IO Error";
static const char *err_access_str = " Access Denied-a";
static const char *err_timeout_str = " Reply Timeout";
static const char *err_pipe_str = " Access denied-p";
static const char *err_other_str = " Access denied-o";
static const char *usberrstr(int err)
{
switch (err) {
case LIBUSB_ERROR_IO:
return err_io_str;
case LIBUSB_ERROR_ACCESS:
return err_access_str;
case LIBUSB_ERROR_TIMEOUT:
return err_timeout_str;
case LIBUSB_ERROR_PIPE:
return err_pipe_str;
case LIBUSB_ERROR_OTHER:
return err_other_str;
}
return BLANK;
}
static const char *destype(uint8_t bDescriptorType)
{
switch (bDescriptorType) {
case LIBUSB_DT_DEVICE:
return DESDEV;
case LIBUSB_DT_CONFIG:
return DESCON;
case LIBUSB_DT_STRING:
return DESSTR;
case LIBUSB_DT_INTERFACE:
return DESINT;
case LIBUSB_DT_ENDPOINT:
return DESEP;
case LIBUSB_DT_HID:
return DESHID;
case LIBUSB_DT_REPORT:
return DESRPT;
case LIBUSB_DT_PHYSICAL:
return DESPHY;
case LIBUSB_DT_HUB:
return DESHUB;
}
return UNKNOWN;
}
static const char *epdir(uint8_t bEndpointAddress)
{
switch (bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) {
case LIBUSB_ENDPOINT_IN:
return EPIN;
case LIBUSB_ENDPOINT_OUT:
return EPOUT;
}
return EPX;
}
static const char *epatt(uint8_t bmAttributes)
{
switch(bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) {
case LIBUSB_TRANSFER_TYPE_CONTROL:
return CONTROL;
case LIBUSB_TRANSFER_TYPE_BULK:
return BULK;
case LIBUSB_TRANSFER_TYPE_INTERRUPT:
return INTERRUPT;
case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
switch(bmAttributes & LIBUSB_ISO_SYNC_TYPE_MASK) {
case LIBUSB_ISO_SYNC_TYPE_NONE:
switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) {
case LIBUSB_ISO_USAGE_TYPE_DATA:
return ISOCHRONOUS_N_D;
case LIBUSB_ISO_USAGE_TYPE_FEEDBACK:
return ISOCHRONOUS_N_F;
case LIBUSB_ISO_USAGE_TYPE_IMPLICIT:
return ISOCHRONOUS_N_I;
}
return ISOCHRONOUS_N_X;
case LIBUSB_ISO_SYNC_TYPE_ASYNC:
switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) {
case LIBUSB_ISO_USAGE_TYPE_DATA:
return ISOCHRONOUS_A_D;
case LIBUSB_ISO_USAGE_TYPE_FEEDBACK:
return ISOCHRONOUS_A_F;
case LIBUSB_ISO_USAGE_TYPE_IMPLICIT:
return ISOCHRONOUS_A_I;
}
return ISOCHRONOUS_A_X;
case LIBUSB_ISO_SYNC_TYPE_ADAPTIVE:
switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) {
case LIBUSB_ISO_USAGE_TYPE_DATA:
return ISOCHRONOUS_D_D;
case LIBUSB_ISO_USAGE_TYPE_FEEDBACK:
return ISOCHRONOUS_D_F;
case LIBUSB_ISO_USAGE_TYPE_IMPLICIT:
return ISOCHRONOUS_D_I;
}
return ISOCHRONOUS_D_X;
case LIBUSB_ISO_SYNC_TYPE_SYNC:
switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) {
case LIBUSB_ISO_USAGE_TYPE_DATA:
return ISOCHRONOUS_S_D;
case LIBUSB_ISO_USAGE_TYPE_FEEDBACK:
return ISOCHRONOUS_S_F;
case LIBUSB_ISO_USAGE_TYPE_IMPLICIT:
return ISOCHRONOUS_S_I;
}
return ISOCHRONOUS_S_X;
}
return ISOCHRONOUS_X;
}
return UNKNOWN;
}
static void append(char **buf, char *append, size_t *off, size_t *len)
{
int new = strlen(append);
if ((new + *off) >= *len)
{
*len *= 2;
*buf = realloc(*buf, *len);
}
strcpy(*buf + *off, append);
*off += new;
}
static bool setgetdes(ssize_t count, libusb_device *dev, struct libusb_device_handle *handle, struct libusb_config_descriptor **config, int cd, char **buf, size_t *off, size_t *len)
{
char tmp[512];
int err;
err = libusb_set_configuration(handle, cd);
if (err) {
sprintf(tmp, EOL " ** dev %d: Failed to set config descriptor to %d, err %d",
(int)count, cd, err);
append(buf, tmp, off, len);
return false;
}
err = libusb_get_active_config_descriptor(dev, config);
if (err) {
sprintf(tmp, EOL " ** dev %d: Failed to get active config descriptor set to %d, err %d",
(int)count, cd, err);
append(buf, tmp, off, len);
return false;
}
sprintf(tmp, EOL " ** dev %d: Set & Got active config descriptor to %d, err %d",
(int)count, cd, err);
append(buf, tmp, off, len);
return true;
}
static void usb_full(ssize_t *count, libusb_device *dev, char **buf, size_t *off, size_t *len, int level)
{
struct libusb_device_descriptor desc;
uint8_t bus_number;
uint8_t device_address;
struct libusb_device_handle *handle;
struct libusb_config_descriptor *config;
const struct libusb_interface_descriptor *idesc;
const struct libusb_endpoint_descriptor *epdesc;
unsigned char man[STRBUFLEN+1];
unsigned char prod[STRBUFLEN+1];
unsigned char ser[STRBUFLEN+1];
char tmp[512];
int err, i, j, k;
err = libusb_get_device_descriptor(dev, &desc);
if (opt_usb_list_all && err) {
sprintf(tmp, EOL ".USB dev %d: Failed to get descriptor, err %d",
(int)(++(*count)), err);
append(buf, tmp, off, len);
return;
}
bus_number = libusb_get_bus_number(dev);
device_address = libusb_get_device_address(dev);
if (!opt_usb_list_all) {
bool known = false;
for (i = 0; find_dev[i].drv != DRV_LAST; i++)
if ((find_dev[i].idVendor == desc.idVendor) &&
(find_dev[i].idProduct == desc.idProduct)) {
known = true;
break;
}
if (!known)
return;
}
(*count)++;
if (level == 0) {
sprintf(tmp, EOL ".USB dev %d: Bus %d Device %d ID: %04x:%04x",
(int)(*count), (int)bus_number, (int)device_address,
desc.idVendor, desc.idProduct);
} else {
sprintf(tmp, EOL ".USB dev %d: Bus %d Device %d Device Descriptor:" EOL "\tLength: %d" EOL
"\tDescriptor Type: %s" EOL "\tUSB: %04x" EOL "\tDeviceClass: %d" EOL
"\tDeviceSubClass: %d" EOL "\tDeviceProtocol: %d" EOL "\tMaxPacketSize0: %d" EOL
"\tidVendor: %04x" EOL "\tidProduct: %04x" EOL "\tDeviceRelease: %x" EOL
"\tNumConfigurations: %d",
(int)(*count), (int)bus_number, (int)device_address,
(int)(desc.bLength), destype(desc.bDescriptorType),
desc.bcdUSB, (int)(desc.bDeviceClass), (int)(desc.bDeviceSubClass),
(int)(desc.bDeviceProtocol), (int)(desc.bMaxPacketSize0),
desc.idVendor, desc.idProduct, desc.bcdDevice,
(int)(desc.bNumConfigurations));
}
append(buf, tmp, off, len);
err = libusb_open(dev, &handle);
if (err) {
sprintf(tmp, EOL " ** dev %d: Failed to open, err %d", (int)(*count), err);
append(buf, tmp, off, len);
return;
}
err = libusb_get_string_descriptor_ascii(handle, desc.iManufacturer, man, STRBUFLEN);
if (err < 0)
sprintf((char *)man, "** err(%d)%s", err, usberrstr(err));
err = libusb_get_string_descriptor_ascii(handle, desc.iProduct, prod, STRBUFLEN);
if (err < 0)
sprintf((char *)prod, "** err(%d)%s", err, usberrstr(err));
if (level == 0) {
libusb_close(handle);
sprintf(tmp, EOL " Manufacturer: '%s'" EOL " Product: '%s'", man, prod);
append(buf, tmp, off, len);
return;
}
if (libusb_kernel_driver_active(handle, 0) == 1) {
sprintf(tmp, EOL " * dev %d: kernel attached", (int)(*count));
append(buf, tmp, off, len);
}
err = libusb_get_active_config_descriptor(dev, &config);
if (err) {
if (!setgetdes(*count, dev, handle, &config, 1, buf, off, len)
&& !setgetdes(*count, dev, handle, &config, 0, buf, off, len)) {
libusb_close(handle);
sprintf(tmp, EOL " ** dev %d: Failed to set config descriptor to %d or %d",
(int)(*count), 1, 0);
append(buf, tmp, off, len);
return;
}
}
sprintf(tmp, EOL " dev %d: Active Config:" EOL "\tDescriptorType: %s" EOL
"\tNumInterfaces: %d" EOL "\tConfigurationValue: %d" EOL
"\tAttributes: %d" EOL "\tMaxPower: %d",
(int)(*count), destype(config->bDescriptorType),
(int)(config->bNumInterfaces), (int)(config->iConfiguration),
(int)(config->bmAttributes), (int)(config->MaxPower));
append(buf, tmp, off, len);
for (i = 0; i < (int)(config->bNumInterfaces); i++) {
for (j = 0; j < config->interface[i].num_altsetting; j++) {
idesc = &(config->interface[i].altsetting[j]);
sprintf(tmp, EOL " _dev %d: Interface Descriptor %d:" EOL
"\tDescriptorType: %s" EOL "\tInterfaceNumber: %d" EOL
"\tNumEndpoints: %d" EOL "\tInterfaceClass: %d" EOL
"\tInterfaceSubClass: %d" EOL "\tInterfaceProtocol: %d",
(int)(*count), j, destype(idesc->bDescriptorType),
(int)(idesc->bInterfaceNumber),
(int)(idesc->bNumEndpoints),
(int)(idesc->bInterfaceClass),
(int)(idesc->bInterfaceSubClass),
(int)(idesc->bInterfaceProtocol));
append(buf, tmp, off, len);
for (k = 0; k < (int)(idesc->bNumEndpoints); k++) {
epdesc = &(idesc->endpoint[k]);
sprintf(tmp, EOL " __dev %d: Interface %d Endpoint %d:" EOL
"\tDescriptorType: %s" EOL
"\tEndpointAddress: %s0x%x" EOL
"\tAttributes: %s" EOL "\tMaxPacketSize: %d" EOL
"\tInterval: %d" EOL "\tRefresh: %d",
(int)(*count), (int)(idesc->bInterfaceNumber), k,
destype(epdesc->bDescriptorType),
epdir(epdesc->bEndpointAddress),
(int)(epdesc->bEndpointAddress),
epatt(epdesc->bmAttributes),
epdesc->wMaxPacketSize,
(int)(epdesc->bInterval),
(int)(epdesc->bRefresh));
append(buf, tmp, off, len);
}
}
}
libusb_free_config_descriptor(config);
config = NULL;
err = libusb_get_string_descriptor_ascii(handle, desc.iSerialNumber, ser, STRBUFLEN);
if (err < 0)
sprintf((char *)ser, "** err(%d)%s", err, usberrstr(err));
sprintf(tmp, EOL " dev %d: More Info:" EOL "\tManufacturer: '%s'" EOL
"\tProduct: '%s'" EOL "\tSerial '%s'",
(int)(*count), man, prod, ser);
append(buf, tmp, off, len);
libusb_close(handle);
}
// Function to dump all USB devices
void usb_all(int level)
{
libusb_device **list;
ssize_t count, i, j;
char *buf;
size_t len, off;
count = libusb_get_device_list(NULL, &list);
if (count < 0) {
applog(LOG_ERR, "USB all: failed, err %d%s", (int)count, usberrstr((int)count));
return;
}
if (count == 0)
applog(LOG_WARNING, "USB all: found no devices");
else
{
len = 10000;
buf = malloc(len+1);
sprintf(buf, "USB all: found %d devices", (int)count);
off = strlen(buf);
if (!opt_usb_list_all)
append(&buf, " - listing known devices", &off, &len);
j = -1;
for (i = 0; i < count; i++)
usb_full(&j, list[i], &buf, &off, &len, level);
applog(LOG_WARNING, "%s", buf);
free(buf);
if (j == -1)
applog(LOG_WARNING, "No known USB devices");
else
applog(LOG_WARNING, "%d %sUSB devices",
(int)(++j), opt_usb_list_all ? BLANK : "known ");
}
libusb_free_device_list(list, 1);
}
static void cgusb_check_init()
{
mutex_lock(&cgusb_lock);
if (stats_initialised == false) {
// N.B. environment LIBUSB_DEBUG also sets libusb_set_debug()
if (opt_usbdump >= 0) {
libusb_set_debug(NULL, opt_usbdump);
usb_all(opt_usbdump);
}
usb_commands = malloc(sizeof(*usb_commands) * C_MAX);
// use constants so the stat generation is very quick
// and the association between number and name can't
// be missalined easily
usb_commands[C_REJECTED] = C_REJECTED_S;
usb_commands[C_PING] = C_PING_S;
usb_commands[C_CLEAR] = C_CLEAR_S;
usb_commands[C_REQUESTVERSION] = C_REQUESTVERSION_S;
usb_commands[C_GETVERSION] = C_GETVERSION_S;
usb_commands[C_REQUESTFPGACOUNT] = C_REQUESTFPGACOUNT_S;
usb_commands[C_GETFPGACOUNT] = C_GETFPGACOUNT_S;
usb_commands[C_STARTPROGRAM] = C_STARTPROGRAM_S;
usb_commands[C_STARTPROGRAMSTATUS] = C_STARTPROGRAMSTATUS_S;
usb_commands[C_PROGRAM] = C_PROGRAM_S;
usb_commands[C_PROGRAMSTATUS] = C_PROGRAMSTATUS_S;
usb_commands[C_PROGRAMSTATUS2] = C_PROGRAMSTATUS2_S;
usb_commands[C_FINALPROGRAMSTATUS] = C_FINALPROGRAMSTATUS_S;
usb_commands[C_SETCLOCK] = C_SETCLOCK_S;
usb_commands[C_REPLYSETCLOCK] = C_REPLYSETCLOCK_S;
usb_commands[C_REQUESTUSERCODE] = C_REQUESTUSERCODE_S;
usb_commands[C_GETUSERCODE] = C_GETUSERCODE_S;
usb_commands[C_REQUESTTEMPERATURE] = C_REQUESTTEMPERATURE_S;
usb_commands[C_GETTEMPERATURE] = C_GETTEMPERATURE_S;
usb_commands[C_SENDWORK] = C_SENDWORK_S;
usb_commands[C_SENDWORKSTATUS] = C_SENDWORKSTATUS_S;
usb_commands[C_REQUESTWORKSTATUS] = C_REQUESTWORKSTATUS_S;
usb_commands[C_GETWORKSTATUS] = C_GETWORKSTATUS_S;
usb_commands[C_REQUESTIDENTIFY] = C_REQUESTIDENTIFY_S;
usb_commands[C_GETIDENTIFY] = C_GETIDENTIFY_S;
usb_commands[C_REQUESTFLASH] = C_REQUESTFLASH_S;
usb_commands[C_REQUESTSENDWORK] = C_REQUESTSENDWORK_S;
usb_commands[C_REQUESTSENDWORKSTATUS] = C_REQUESTSENDWORKSTATUS_S;
usb_commands[C_RESET] = C_RESET_S;
usb_commands[C_SETBAUD] = C_SETBAUD_S;
usb_commands[C_SETDATA] = C_SETDATA_S;
usb_commands[C_SETFLOW] = C_SETFLOW_S;
usb_commands[C_SETMODEM] = C_SETMODEM_S;
usb_commands[C_PURGERX] = C_PURGERX_S;
usb_commands[C_PURGETX] = C_PURGETX_S;
usb_commands[C_FLASHREPLY] = C_FLASHREPLY_S;
usb_commands[C_REQUESTDETAILS] = C_REQUESTDETAILS_S;
usb_commands[C_GETDETAILS] = C_GETDETAILS_S;
stats_initialised = true;
}
mutex_unlock(&cgusb_lock);
}
#ifndef WIN32
#include <errno.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
union semun {
int sem;
struct semid_ds *seminfo;
ushort *all;
};
#endif
// Any errors should always be printed since they will rarely if ever occur
// and thus it is best to always display them
static bool cgminer_usb_lock_bd(struct device_drv *drv, uint8_t bus_number, uint8_t device_address)
{
#ifdef WIN32
struct cgpu_info *cgpu;
HANDLE usbMutex;
char name[64];
DWORD res;
int i;
sprintf(name, "cgminer-usb-%d-%d", (int)bus_number, (int)device_address);
usbMutex = CreateMutex(NULL, FALSE, name);
if (usbMutex == NULL) {
applog(LOG_ERR,
"MTX: %s USB failed to get '%s' err (%d)",
drv->dname, name, GetLastError());
return false;
}
res = WaitForSingleObject(usbMutex, 0);
switch(res) {
case WAIT_OBJECT_0:
case WAIT_ABANDONED:
// Am I using it already?
for (i = 0; i < total_devices; i++) {
cgpu = get_devices(i);
if (cgpu->usbinfo.bus_number == bus_number &&
cgpu->usbinfo.device_address == device_address &&
cgpu->usbinfo.nodev == false) {
if (ReleaseMutex(usbMutex)) {
applog(LOG_WARNING,
"MTX: %s USB can't get '%s' - device in use",
drv->dname, name);
goto fail;
}
applog(LOG_ERR,
"MTX: %s USB can't get '%s' - device in use - failure (%d)",
drv->dname, name, GetLastError());
goto fail;
}
}
return true;
case WAIT_TIMEOUT:
if (!hotplug_mode)
applog(LOG_WARNING,
"MTX: %s USB failed to get '%s' - device in use",
drv->dname, name);
goto fail;
case WAIT_FAILED:
applog(LOG_ERR,
"MTX: %s USB failed to get '%s' err (%d)",
drv->dname, name, GetLastError());
goto fail;
default:
applog(LOG_ERR,
"MTX: %s USB failed to get '%s' unknown reply (%d)",
drv->dname, name, res);
goto fail;
}
CloseHandle(usbMutex);
return true;
fail:
CloseHandle(usbMutex);
return false;
#else
struct semid_ds seminfo;
union semun opt;
char name[64];
key_t key;
int fd, sem, count;
sprintf(name, "/tmp/cgminer-usb-%d-%d", (int)bus_number, (int)device_address);
fd = open(name, O_CREAT|O_RDONLY, S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH);
if (fd == -1) {
applog(LOG_ERR,
"SEM: %s USB open failed '%s' err (%d) %s",
drv->dname, name, errno, strerror(errno));
return false;
}
close(fd);
key = ftok(name, 'K');
sem = semget(key, 1, IPC_CREAT | IPC_EXCL | 438);
if (sem < 0) {
if (errno != EEXIST) {
applog(LOG_ERR,
"SEM: %s USB failed to get '%s' err (%d) %s",
drv->dname, name, errno, strerror(errno));
return false;
}
sem = semget(key, 1, 0);
if (sem < 0) {
applog(LOG_ERR,
"SEM: %s USB failed to access '%s' err (%d) %s",
drv->dname, name, errno, strerror(errno));
return false;
}
opt.seminfo = &seminfo;
count = 0;
while (++count) {
// Should NEVER take 100ms
if (count > 99) {
applog(LOG_ERR,
"SEM: %s USB timeout waiting for (%d) '%s'",
drv->dname, sem, name);
return false;
}
if (semctl(sem, 0, IPC_STAT, opt) == -1) {
applog(LOG_ERR,
"SEM: %s USB failed to wait for (%d) '%s' count %d err (%d) %s",
drv->dname, sem, name, count, errno, strerror(errno));
return false;
}
if (opt.seminfo->sem_otime != 0)
break;
nmsleep(1);
}
}
struct sembuf sops[] = {
{ 0, 0, IPC_NOWAIT | SEM_UNDO },
{ 0, 1, IPC_NOWAIT | SEM_UNDO }
};
if (semop(sem, sops, 2)) {
if (errno == EAGAIN) {
if (!hotplug_mode)
applog(LOG_WARNING,
"SEM: %s USB failed to get (%d) '%s' - device in use",
drv->dname, sem, name);
} else {
applog(LOG_DEBUG,
"SEM: %s USB failed to get (%d) '%s' err (%d) %s",
drv->dname, sem, name, errno, strerror(errno));
}
return false;
}
return true;
#endif
}
static bool cgminer_usb_lock(struct device_drv *drv, libusb_device *dev)
{
return cgminer_usb_lock_bd(drv, libusb_get_bus_number(dev), libusb_get_device_address(dev));
}
// Any errors should always be printed since they will rarely if ever occur
// and thus it is best to always display them
static void cgminer_usb_unlock_bd(struct device_drv *drv, uint8_t bus_number, uint8_t device_address)
{
#ifdef WIN32
HANDLE usbMutex;
char name[64];
sprintf(name, "cgminer-usb-%d-%d", (int)bus_number, (int)device_address);
usbMutex = CreateMutex(NULL, FALSE, name);
if (usbMutex == NULL) {
applog(LOG_ERR,
"MTX: %s USB failed to get '%s' for release err (%d)",
drv->dname, name, GetLastError());
return;
}
if (!ReleaseMutex(usbMutex))
applog(LOG_ERR,
"MTX: %s USB failed to release '%s' err (%d)",
drv->dname, name, GetLastError());
CloseHandle(usbMutex);
return;
#else
char name[64];
key_t key;
int fd, sem;
sprintf(name, "/tmp/cgminer-usb-%d-%d", (int)bus_number, (int)device_address);
fd = open(name, O_CREAT|O_RDONLY, S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH);
if (fd == -1) {
applog(LOG_ERR,
"SEM: %s USB open failed '%s' for release err (%d) %s",
drv->dname, name, errno, strerror(errno));
return;
}
close(fd);
key = ftok(name, 'K');
sem = semget(key, 1, 0);
if (sem < 0) {
applog(LOG_ERR,
"SEM: %s USB failed to get '%s' for release err (%d) %s",
drv->dname, name, errno, strerror(errno));
return;
}
struct sembuf sops[] = {
{ 0, -1, SEM_UNDO }
};
// Allow a 10ms timeout
// exceeding this timeout means it would probably never succeed anyway
struct timespec timeout = { 0, 10000000 };
// Wait forever since we shoud be the one who has it
if (semtimedop(sem, sops, 1, &timeout)) {
applog(LOG_ERR,
"SEM: %d USB failed to release '%s' err (%d) %s",
drv->dname, name, errno, strerror(errno));
}
return;
#endif
}
static void cgminer_usb_unlock(struct device_drv *drv, libusb_device *dev)
{
cgminer_usb_unlock_bd(drv, libusb_get_bus_number(dev), libusb_get_device_address(dev));
}
static struct cg_usb_device *free_cgusb(struct cg_usb_device *cgusb)
{
if (cgusb->serial_string && cgusb->serial_string != BLANK)
free(cgusb->serial_string);
if (cgusb->manuf_string && cgusb->manuf_string != BLANK)
free(cgusb->manuf_string);
if (cgusb->prod_string && cgusb->prod_string != BLANK)
free(cgusb->prod_string);
free(cgusb->descriptor);
free(cgusb->found);
free(cgusb);
return NULL;
}
void usb_uninit(struct cgpu_info *cgpu)
{
// May have happened already during a failed initialisation
// if release_cgpu() was called due to a USB NODEV(err)
if (!cgpu->usbdev)
return;
libusb_release_interface(cgpu->usbdev->handle, cgpu->usbdev->found->interface);
libusb_close(cgpu->usbdev->handle);
cgpu->usbdev = free_cgusb(cgpu->usbdev);
}
static void release_cgpu(struct cgpu_info *cgpu)
{
struct cg_usb_device *cgusb = cgpu->usbdev;
struct cgpu_info *lookcgpu;
int i;
// It has already been done
if (cgpu->usbinfo.nodev)
return;
total_count--;
drv_count[cgpu->drv->drv_id].count--;
cgpu->usbinfo.nodev = true;
cgpu->usbinfo.nodev_count++;
gettimeofday(&(cgpu->usbinfo.last_nodev), NULL);
// Any devices sharing the same USB device should be marked also
// Currently only MMQ shares a USB device
for (i = 0; i < total_devices; i++) {
lookcgpu = get_devices(i);
if (lookcgpu != cgpu && lookcgpu->usbdev == cgusb) {
total_count--;
drv_count[lookcgpu->drv->drv_id].count--;
lookcgpu->usbinfo.nodev = true;
lookcgpu->usbinfo.nodev_count++;
memcpy(&(lookcgpu->usbinfo.last_nodev),
&(cgpu->usbinfo.last_nodev), sizeof(struct timeval));
lookcgpu->usbdev = NULL;
}
}
usb_uninit(cgpu);
cgminer_usb_unlock_bd(cgpu->drv, cgpu->usbinfo.bus_number, cgpu->usbinfo.device_address);
}
bool usb_init(struct cgpu_info *cgpu, struct libusb_device *dev, struct usb_find_devices *found)
{
struct cg_usb_device *cgusb = NULL;
struct libusb_config_descriptor *config = NULL;
const struct libusb_interface_descriptor *idesc;
const struct libusb_endpoint_descriptor *epdesc;
unsigned char strbuf[STRBUFLEN+1];
char devstr[STRBUFLEN+1];
int err, i, j, k;
cgpu->usbinfo.bus_number = libusb_get_bus_number(dev);
cgpu->usbinfo.device_address = libusb_get_device_address(dev);
sprintf(devstr, "- %s device %d:%d", found->name,
cgpu->usbinfo.bus_number, cgpu->usbinfo.device_address);
cgusb = calloc(1, sizeof(*cgusb));
cgusb->found = found;
cgusb->descriptor = calloc(1, sizeof(*(cgusb->descriptor)));
err = libusb_get_device_descriptor(dev, cgusb->descriptor);
if (err) {
applog(LOG_DEBUG,
"USB init failed to get descriptor, err %d %s",
err, devstr);
goto dame;
}
err = libusb_open(dev, &(cgusb->handle));
if (err) {
switch (err) {
case LIBUSB_ERROR_ACCESS:
applog(LOG_ERR,
"USB init open device failed, err %d, "
"you dont have priviledge to access %s",
err, devstr);
break;
#ifdef WIN32
// Windows specific message
case LIBUSB_ERROR_NOT_SUPPORTED:
applog(LOG_ERR,
"USB init, open device failed, err %d, "
"you need to install a Windows USB driver for %s",
err, devstr);
break;
#endif
default:
applog(LOG_DEBUG,
"USB init, open failed, err %d %s",
err, devstr);
}
goto dame;
}
#ifndef WIN32
if (libusb_kernel_driver_active(cgusb->handle, found->kernel) == 1) {
applog(LOG_DEBUG, "USB init, kernel attached ... %s", devstr);
err = libusb_detach_kernel_driver(cgusb->handle, found->kernel);
if (err == 0) {
applog(LOG_DEBUG,
"USB init, kernel detached successfully %s",
devstr);
} else {
applog(LOG_WARNING,
"USB init, kernel detach failed, err %d in use? %s",
err, devstr);
goto cldame;
}
}
#endif
err = libusb_set_configuration(cgusb->handle, found->config);
if (err) {
switch(err) {
case LIBUSB_ERROR_BUSY:
applog(LOG_WARNING,
"USB init, set config %d in use %s",
found->config, devstr);
break;
default:
applog(LOG_DEBUG,
"USB init, failed to set config to %d, err %d %s",
found->config, err, devstr);
}
goto cldame;
}
err = libusb_get_active_config_descriptor(dev, &config);
if (err) {
applog(LOG_DEBUG,
"USB init, failed to get config descriptor, err %d %s",
err, devstr);
goto cldame;
}
if ((int)(config->bNumInterfaces) <= found->interface)
goto cldame;
for (i = 0; i < found->epcount; i++)
found->eps[i].found = false;
for (i = 0; i < config->interface[found->interface].num_altsetting; i++) {
idesc = &(config->interface[found->interface].altsetting[i]);
for (j = 0; j < (int)(idesc->bNumEndpoints); j++) {
epdesc = &(idesc->endpoint[j]);
for (k = 0; k < found->epcount; k++) {
if (!found->eps[k].found) {
if (epdesc->bmAttributes == found->eps[k].att
&& epdesc->wMaxPacketSize >= found->eps[k].size
&& epdesc->bEndpointAddress == found->eps[k].ep) {
found->eps[k].found = true;
break;
}
}
}
}
}
for (i = 0; i < found->epcount; i++)
if (found->eps[i].found == false)
goto cldame;
err = libusb_claim_interface(cgusb->handle, found->interface);
if (err) {
switch(err) {
case LIBUSB_ERROR_BUSY:
applog(LOG_WARNING,
"USB init, claim interface %d in use %s",
found->interface, devstr);
break;
default:
applog(LOG_DEBUG,
"USB init, claim interface %d failed, err %d %s",
found->interface, err, devstr);
}
goto cldame;
}
cgusb->usbver = cgusb->descriptor->bcdUSB;
// TODO: allow this with the right version of the libusb include and running library
// cgusb->speed = libusb_get_device_speed(dev);
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iProduct, strbuf, STRBUFLEN);
if (err > 0)
cgusb->prod_string = strdup((char *)strbuf);
else
cgusb->prod_string = (char *)BLANK;
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iManufacturer, strbuf, STRBUFLEN);
if (err > 0)
cgusb->manuf_string = strdup((char *)strbuf);
else
cgusb->manuf_string = (char *)BLANK;
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iSerialNumber, strbuf, STRBUFLEN);
if (err > 0)
cgusb->serial_string = strdup((char *)strbuf);
else
cgusb->serial_string = (char *)BLANK;
// TODO: ?
// cgusb->fwVersion <- for temp1/temp2 decision? or serial? (driver-modminer.c)
// cgusb->interfaceVersion
applog(LOG_DEBUG,
"USB init %s usbver=%04x prod='%s' manuf='%s' serial='%s'",
devstr, cgusb->usbver, cgusb->prod_string,
cgusb->manuf_string, cgusb->serial_string);
cgpu->usbdev = cgusb;
libusb_free_config_descriptor(config);
// Allow a name change based on the idVendor+idProduct
// N.B. must be done before calling add_cgpu()
if (strcmp(cgpu->drv->name, found->name)) {
if (!cgpu->drv->copy)
cgpu->drv = copy_drv(cgpu->drv);
cgpu->drv->name = (char *)(found->name);
}
return true;
cldame:
libusb_close(cgusb->handle);
dame:
if (config)
libusb_free_config_descriptor(config);
cgusb = free_cgusb(cgusb);
return false;
}
static bool usb_check_device(struct device_drv *drv, struct libusb_device *dev, struct usb_find_devices *look)
{
struct libusb_device_descriptor desc;
int bus_number, device_address;
int err, i;
bool ok;
err = libusb_get_device_descriptor(dev, &desc);
if (err) {
applog(LOG_DEBUG, "USB check device: Failed to get descriptor, err %d", err);
return false;
}
if (desc.idVendor != look->idVendor || desc.idProduct != look->idProduct) {
applog(LOG_DEBUG, "%s looking for %s %04x:%04x but found %04x:%04x instead",
drv->name, look->name, look->idVendor, look->idProduct, desc.idVendor, desc.idProduct);
return false;
}
if (busdev_count > 0) {
bus_number = (int)libusb_get_bus_number(dev);
device_address = (int)libusb_get_device_address(dev);
ok = false;
for (i = 0; i < busdev_count; i++) {
if (bus_number == busdev[i].bus_number) {
if (busdev[i].device_address == -1 ||
device_address == busdev[i].device_address) {
ok = true;
break;
}
}
}
if (!ok) {
applog(LOG_DEBUG, "%s rejected %s %04x:%04x with bus:dev (%d:%d)",
drv->name, look->name, look->idVendor, look->idProduct,
bus_number, device_address);
return false;
}
}
applog(LOG_DEBUG, "%s looking for and found %s %04x:%04x",
drv->name, look->name, look->idVendor, look->idProduct);
return true;
}
static struct usb_find_devices *usb_check_each(int drvnum, struct device_drv *drv, struct libusb_device *dev)
{
struct usb_find_devices *found;
int i;
for (i = 0; find_dev[i].drv != DRV_LAST; i++)
if (find_dev[i].drv == drvnum) {
if (usb_check_device(drv, dev, &(find_dev[i]))) {
found = malloc(sizeof(*found));
memcpy(found, &(find_dev[i]), sizeof(*found));
return found;
}
}
return NULL;
}
static struct usb_find_devices *usb_check(__maybe_unused struct device_drv *drv, __maybe_unused struct libusb_device *dev)
{
if (drv_count[drv->drv_id].count >= drv_count[drv->drv_id].limit) {
applog(LOG_DEBUG,
"USB scan devices3: %s limit %d reached",
drv->dname, drv_count[drv->drv_id].limit);
return NULL;
}
#ifdef USE_BFLSC
if (drv->drv_id == DRIVER_BFLSC)
return usb_check_each(DRV_BFLSC, drv, dev);
#endif
#ifdef USE_BITFORCE
if (drv->drv_id == DRIVER_BITFORCE)
return usb_check_each(DRV_BITFORCE, drv, dev);
#endif
#ifdef USE_ICARUS
if (drv->drv_id == DRIVER_ICARUS)
return usb_check_each(DRV_ICARUS, drv, dev);
#endif
#ifdef USE_MODMINER
if (drv->drv_id == DRIVER_MODMINER)
return usb_check_each(DRV_MODMINER, drv, dev);
#endif
#ifdef USE_AVALON
if (drv->drv_id == DRIVER_AVALON)
return usb_check_each(DRV_AVALON, drv, dev);
#endif
return NULL;
}
void usb_detect(struct device_drv *drv, bool (*device_detect)(struct libusb_device *, struct usb_find_devices *))
{
libusb_device **list;
ssize_t count, i;
struct usb_find_devices *found;
applog(LOG_DEBUG, "USB scan devices: checking for %s devices", drv->name);
if (total_count >= total_limit) {
applog(LOG_DEBUG, "USB scan devices: total limit %d reached", total_limit);
return;
}
if (drv_count[drv->drv_id].count >= drv_count[drv->drv_id].limit) {
applog(LOG_DEBUG,
"USB scan devices: %s limit %d reached",
drv->dname, drv_count[drv->drv_id].limit);
return;
}
count = libusb_get_device_list(NULL, &list);
if (count < 0) {
applog(LOG_DEBUG, "USB scan devices: failed, err %d", count);
return;
}
if (count == 0)
applog(LOG_DEBUG, "USB scan devices: found no devices");
for (i = 0; i < count; i++) {
if (total_count >= total_limit) {
applog(LOG_DEBUG, "USB scan devices2: total limit %d reached", total_limit);
break;
}
if (drv_count[drv->drv_id].count >= drv_count[drv->drv_id].limit) {
applog(LOG_DEBUG,
"USB scan devices2: %s limit %d reached",
drv->dname, drv_count[drv->drv_id].limit);
break;
}
found = usb_check(drv, list[i]);
if (found != NULL) {
if (cgminer_usb_lock(drv, list[i]) == false)
free(found);
else {
if (!device_detect(list[i], found))
cgminer_usb_unlock(drv, list[i]);
else {
total_count++;
drv_count[drv->drv_id].count++;
}
}
}
}
libusb_free_device_list(list, 1);
}
// Set this to 0 to remove stats processing
#define DO_USB_STATS 1
#if DO_USB_STATS
#define USB_STATS(sgpu, sta, fin, err, cmd, seq) stats(cgpu, sta, fin, err, cmd, seq)
#define STATS_TIMEVAL(tv) gettimeofday(tv, NULL)
#else
#define USB_STATS(sgpu, sta, fin, err, cmd, seq)
#define STATS_TIMEVAL(tv)
#endif
// The stat data can be spurious due to not locking it before copying it -
// however that would require the stat() function to also lock and release
// a mutex every time a usb read or write is called which would slow
// things down more
struct api_data *api_usb_stats(__maybe_unused int *count)
{
#if DO_USB_STATS
struct cg_usb_stats_details *details;
struct cg_usb_stats *sta;
struct api_data *root = NULL;
int device;
int cmdseq;
if (next_stat == 0)
return NULL;
while (*count < next_stat * C_MAX * 2) {
device = *count / (C_MAX * 2);
cmdseq = *count % (C_MAX * 2);
(*count)++;
sta = &(usb_stats[device]);
details = &(sta->details[cmdseq]);
// Only show stats that have results
if (details->item[CMD_CMD].count == 0 &&
details->item[CMD_TIMEOUT].count == 0 &&
details->item[CMD_ERROR].count == 0)
continue;
root = api_add_string(root, "Name", sta->name, false);
root = api_add_int(root, "ID", &(sta->device_id), false);
root = api_add_const(root, "Stat", usb_commands[cmdseq/2], false);
root = api_add_int(root, "Seq", &(details->seq), true);
root = api_add_uint64(root, "Count",
&(details->item[CMD_CMD].count), true);
root = api_add_double(root, "Total Delay",
&(details->item[CMD_CMD].total_delay), true);
root = api_add_double(root, "Min Delay",
&(details->item[CMD_CMD].min_delay), true);
root = api_add_double(root, "Max Delay",
&(details->item[CMD_CMD].max_delay), true);
root = api_add_uint64(root, "Timeout Count",
&(details->item[CMD_TIMEOUT].count), true);
root = api_add_double(root, "Timeout Total Delay",
&(details->item[CMD_TIMEOUT].total_delay), true);
root = api_add_double(root, "Timeout Min Delay",
&(details->item[CMD_TIMEOUT].min_delay), true);
root = api_add_double(root, "Timeout Max Delay",
&(details->item[CMD_TIMEOUT].max_delay), true);
root = api_add_uint64(root, "Error Count",
&(details->item[CMD_ERROR].count), true);
root = api_add_double(root, "Error Total Delay",
&(details->item[CMD_ERROR].total_delay), true);
root = api_add_double(root, "Error Min Delay",
&(details->item[CMD_ERROR].min_delay), true);
root = api_add_double(root, "Error Max Delay",
&(details->item[CMD_ERROR].max_delay), true);
root = api_add_timeval(root, "First Command",
&(details->item[CMD_CMD].first), true);
root = api_add_timeval(root, "Last Command",
&(details->item[CMD_CMD].last), true);
root = api_add_timeval(root, "First Timeout",
&(details->item[CMD_TIMEOUT].first), true);
root = api_add_timeval(root, "Last Timeout",
&(details->item[CMD_TIMEOUT].last), true);
root = api_add_timeval(root, "First Error",
&(details->item[CMD_ERROR].first), true);
root = api_add_timeval(root, "Last Error",
&(details->item[CMD_ERROR].last), true);
return root;
}
#endif
return NULL;
}
#if DO_USB_STATS
static void newstats(struct cgpu_info *cgpu)
{
int i;
mutex_lock(&cgusb_lock);
cgpu->usbinfo.usbstat = ++next_stat;
mutex_unlock(&cgusb_lock);
usb_stats = realloc(usb_stats, sizeof(*usb_stats) * next_stat);
usb_stats[next_stat-1].name = cgpu->drv->name;
usb_stats[next_stat-1].device_id = -1;
usb_stats[next_stat-1].details = calloc(1, sizeof(struct cg_usb_stats_details) * C_MAX * 2);
for (i = 1; i < C_MAX * 2; i += 2)
usb_stats[next_stat-1].details[i].seq = 1;
}
#endif
void update_usb_stats(__maybe_unused struct cgpu_info *cgpu)
{
#if DO_USB_STATS
if (cgpu->usbinfo.usbstat < 1)
newstats(cgpu);
// we don't know the device_id until after add_cgpu()
usb_stats[cgpu->usbinfo.usbstat - 1].device_id = cgpu->device_id;
#endif
}
#if DO_USB_STATS
static void stats(struct cgpu_info *cgpu, struct timeval *tv_start, struct timeval *tv_finish, int err, enum usb_cmds cmd, int seq)
{
struct cg_usb_stats_details *details;
double diff;
int item;
if (cgpu->usbinfo.usbstat < 1)
newstats(cgpu);
details = &(usb_stats[cgpu->usbinfo.usbstat - 1].details[cmd * 2 + seq]);
diff = tdiff(tv_finish, tv_start);
switch (err) {
case LIBUSB_SUCCESS:
item = CMD_CMD;
break;
case LIBUSB_ERROR_TIMEOUT:
item = CMD_TIMEOUT;
break;
default:
item = CMD_ERROR;
break;
}
if (details->item[item].count == 0) {
details->item[item].min_delay = diff;
memcpy(&(details->item[item].first), tv_start, sizeof(*tv_start));
} else if (diff < details->item[item].min_delay)
details->item[item].min_delay = diff;
if (diff > details->item[item].max_delay)
details->item[item].max_delay = diff;
details->item[item].total_delay += diff;
memcpy(&(details->item[item].last), tv_start, sizeof(*tv_start));
details->item[item].count++;
}
static void rejected_inc(struct cgpu_info *cgpu)
{
struct cg_usb_stats_details *details;
int item = CMD_ERROR;
if (cgpu->usbinfo.usbstat < 1)
newstats(cgpu);
details = &(usb_stats[cgpu->usbinfo.usbstat - 1].details[C_REJECTED * 2 + 0]);
details->item[item].count++;
}
#endif
#define USB_MAX_READ 8192
int _usb_read(struct cgpu_info *cgpu, int ep, char *buf, size_t bufsiz, int *processed, unsigned int timeout, const char *end, enum usb_cmds cmd, bool ftdi)
{
struct cg_usb_device *usbdev = cgpu->usbdev;
#if DO_USB_STATS
struct timeval tv_start;
#endif
struct timeval read_start, tv_finish;
unsigned int initial_timeout;
double max, done;
int err, got, tot;
bool first = true;
unsigned char *search;
int endlen;
// We add 4: 1 for null, 2 for FTDI status and 1 to round to 4 bytes
unsigned char usbbuf[USB_MAX_READ+4], *ptr;
size_t usbbufread;
if (bufsiz > USB_MAX_READ)
quit(1, "%s USB read request %d too large (max=%d)", cgpu->drv->name, bufsiz, USB_MAX_READ);
if (cgpu->usbinfo.nodev) {
*buf = '\0';
*processed = 0;
#if DO_USB_STATS
rejected_inc(cgpu);
#endif
return LIBUSB_ERROR_NO_DEVICE;
}
if (timeout == DEVTIMEOUT)
timeout = usbdev->found->timeout;
if (end == NULL) {
if (ftdi)
usbbufread = bufsiz + 2;
else
usbbufread = bufsiz;
got = 0;
STATS_TIMEVAL(&tv_start);
err = libusb_bulk_transfer(usbdev->handle,
usbdev->found->eps[ep].ep,
usbbuf, usbbufread, &got, timeout);
STATS_TIMEVAL(&tv_finish);
USB_STATS(cgpu, &tv_start, &tv_finish, err, cmd, SEQ0);
usbbuf[got] = '\0';
if (ftdi) {
// first 2 bytes returned are an FTDI status
if (got > 2) {
got -= 2;
memmove(usbbuf, usbbuf+2, got+1);
} else {
got = 0;
usbbuf[0] = '\0';
}
}
*processed = got;
memcpy((char *)buf, (const char *)usbbuf, (got < (int)bufsiz) ? got + 1 : (int)bufsiz);
if (NODEV(err))
release_cgpu(cgpu);
return err;
}
tot = 0;
ptr = usbbuf;
endlen = strlen(end);
err = LIBUSB_SUCCESS;
initial_timeout = timeout;
max = ((double)timeout) / 1000.0;
gettimeofday(&read_start, NULL);
while (bufsiz) {
if (ftdi)
usbbufread = bufsiz + 2;
else
usbbufread = bufsiz;
got = 0;
STATS_TIMEVAL(&tv_start);
err = libusb_bulk_transfer(usbdev->handle,
usbdev->found->eps[ep].ep,
ptr, usbbufread, &got, timeout);
gettimeofday(&tv_finish, NULL);
USB_STATS(cgpu, &tv_start, &tv_finish, err, cmd, first ? SEQ0 : SEQ1);
ptr[got] = '\0';
if (ftdi) {
// first 2 bytes returned are an FTDI status
if (got > 2) {
got -= 2;
memmove(ptr, ptr+2, got+1);
} else {
got = 0;
*ptr = '\0';
}
}
tot += got;
if (err)
break;
// WARNING - this will return data past END ('if' there is extra data)
if (endlen <= tot) {
// If END is only 1 char - do a faster search
if (endlen == 1) {
if (strchr((char *)ptr, *end))
break;
} else {
// must allow END to have been chopped in 2 transfers
if ((tot - got) >= (endlen - 1))
search = ptr - (endlen - 1);
else
search = ptr - (tot - got);
if (strstr((char *)search, end))
break;
}
}
ptr += got;
bufsiz -= got;
first = false;
done = tdiff(&tv_finish, &read_start);
// N.B. this is return LIBUSB_SUCCESS with whatever size has already been read
if (unlikely(done >= max))
break;
timeout = initial_timeout - (done * 1000);
}
*processed = tot;
memcpy((char *)buf, (const char *)usbbuf, (tot < (int)bufsiz) ? tot + 1 : (int)bufsiz);
if (NODEV(err))
release_cgpu(cgpu);
return err;
}
int _usb_write(struct cgpu_info *cgpu, int ep, char *buf, size_t bufsiz, int *processed, unsigned int timeout, enum usb_cmds cmd)
{
struct cg_usb_device *usbdev = cgpu->usbdev;
#if DO_USB_STATS
struct timeval tv_start, tv_finish;
#endif
int err, sent;
if (cgpu->usbinfo.nodev) {
*processed = 0;
#if DO_USB_STATS
rejected_inc(cgpu);
#endif
return LIBUSB_ERROR_NO_DEVICE;
}
sent = 0;
STATS_TIMEVAL(&tv_start);
err = libusb_bulk_transfer(usbdev->handle,
usbdev->found->eps[ep].ep,
(unsigned char *)buf,
bufsiz, &sent,
timeout == DEVTIMEOUT ? usbdev->found->timeout : timeout);
STATS_TIMEVAL(&tv_finish);
USB_STATS(cgpu, &tv_start, &tv_finish, err, cmd, SEQ0);
*processed = sent;
if (NODEV(err))
release_cgpu(cgpu);
return err;
}
int _usb_transfer(struct cgpu_info *cgpu, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, unsigned int timeout, enum usb_cmds cmd)
{
struct cg_usb_device *usbdev = cgpu->usbdev;
#if DO_USB_STATS
struct timeval tv_start, tv_finish;
#endif
int err;
if (cgpu->usbinfo.nodev) {
#if DO_USB_STATS
rejected_inc(cgpu);
#endif
return LIBUSB_ERROR_NO_DEVICE;
}
STATS_TIMEVAL(&tv_start);
err = libusb_control_transfer(usbdev->handle, request_type,
bRequest, wValue, wIndex, NULL, 0,
timeout == DEVTIMEOUT ? usbdev->found->timeout : timeout);
STATS_TIMEVAL(&tv_finish);
USB_STATS(cgpu, &tv_start, &tv_finish, err, cmd, SEQ0);
if (NODEV(err))
release_cgpu(cgpu);
return err;
}
void usb_cleanup()
{
struct cgpu_info *cgpu;
int i;
hotplug_time = 0;
nmsleep(10);
for (i = 0; i < total_devices; i++) {
cgpu = devices[i];
switch (cgpu->drv->drv_id) {
case DRIVER_BFLSC:
case DRIVER_BITFORCE:
case DRIVER_MODMINER:
case DRIVER_AVALON:
release_cgpu(cgpu);
break;
default:
break;
}
}
}
void usb_initialise()
{
char *fre, *ptr, *comma, *colon;
int bus, dev, lim, i;
bool found;
for (i = 0; i < DRIVER_MAX; i++) {
drv_count[i].count = 0;
drv_count[i].limit = 999999;
}
cgusb_check_init();
if (opt_usb_select && *opt_usb_select) {
// Absolute device limit
if (*opt_usb_select == ':') {
total_limit = atoi(opt_usb_select+1);
if (total_limit < 0)
quit(1, "Invalid --usb total limit");
// Comma list of bus:dev devices to match
} else if (isdigit(*opt_usb_select)) {
fre = ptr = strdup(opt_usb_select);
do {
comma = strchr(ptr, ',');
if (comma)
*(comma++) = '\0';
colon = strchr(ptr, ':');
if (!colon)
quit(1, "Invalid --usb bus:dev missing ':'");
*(colon++) = '\0';
if (!isdigit(*ptr))
quit(1, "Invalid --usb bus:dev - bus must be a number");
if (!isdigit(*colon) && *colon != '*')
quit(1, "Invalid --usb bus:dev - dev must be a number or '*'");
bus = atoi(ptr);
if (bus <= 0)
quit(1, "Invalid --usb bus:dev - bus must be > 0");
if (!colon == '*')
dev = -1;
else {
dev = atoi(colon);
if (dev <= 0)
quit(1, "Invalid --usb bus:dev - dev must be > 0 or '*'");
}
busdev = realloc(busdev, sizeof(*busdev) * (++busdev_count));
busdev[busdev_count-1].bus_number = bus;
busdev[busdev_count-1].device_address = dev;
ptr = comma;
} while (ptr);
free(fre);
// Comma list of DRV:limit
} else {
fre = ptr = strdup(opt_usb_select);
do {
comma = strchr(ptr, ',');
if (comma)
*(comma++) = '\0';
colon = strchr(ptr, ':');
if (!colon)
quit(1, "Invalid --usb DRV:limit missing ':'");
*(colon++) = '\0';
if (!isdigit(*colon))
quit(1, "Invalid --usb DRV:limit - limit must be a number");
lim = atoi(colon);
if (lim < 0)
quit(1, "Invalid --usb DRV:limit - limit must be >= 0");
found = false;
#ifdef USE_BFLSC
if (strcasecmp(ptr, bflsc_drv.name) == 0) {
drv_count[bflsc_drv.drv_id].limit = lim;
found = true;
}
#endif
#ifdef USE_BITFORCE
if (!found && strcasecmp(ptr, bitforce_drv.name) == 0) {
drv_count[bitforce_drv.drv_id].limit = lim;
found = true;
}
#endif
#ifdef USE_MODMINER
if (!found && strcasecmp(ptr, modminer_drv.name) == 0) {
drv_count[modminer_drv.drv_id].limit = lim;
found = true;
}
#endif
#ifdef USE_AVALON
if (!found && strcasecmp(ptr, avalon_drv.name) == 0) {
drv_count[avalon_drv.drv_id].limit = lim;
found = true;
}
#endif
if (!found)
quit(1, "Invalid --usb DRV:limit - unknown DRV='%s'", ptr);
ptr = comma;
} while (ptr);
free(fre);
}
}
}