mirror of https://github.com/GOSTSec/sgminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
416 lines
13 KiB
416 lines
13 KiB
// This file is taken and modified from the public-domain poclbm project, and |
|
// I have therefore decided to keep it public-domain. |
|
|
|
|
|
#ifdef VECTORS4 |
|
typedef uint4 u; |
|
#else |
|
#ifdef VECTORS2 |
|
typedef uint2 u; |
|
#else |
|
typedef uint u; |
|
#endif |
|
#endif |
|
|
|
__constant uint K[64] = { |
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
|
}; |
|
|
|
__constant uint ConstW[128] = { |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x80000000U, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000280U, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x80000000U, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000100U, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 |
|
}; |
|
|
|
__constant uint H[8] = { |
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 |
|
}; |
|
|
|
|
|
#ifdef BITALIGN |
|
#pragma OPENCL EXTENSION cl_amd_media_ops : enable |
|
#define rot(x, y) amd_bitalign(x, x, (uint)(32 - y)) |
|
#else |
|
#define rot(x, y) rotate(x, (uint)y) |
|
#endif |
|
|
|
// This part is not from the stock poclbm kernel. It's part of an optimization |
|
// added in the Phoenix Miner. |
|
|
|
// Some AMD devices have Vals[0] BFI_INT opcode, which behaves exactly like the |
|
// SHA-256 Ch function, but provides it in exactly one instruction. If |
|
// detected, use it for Ch. Otherwise, construct Ch out of simpler logical |
|
// primitives. |
|
|
|
#ifdef BFI_INT |
|
// Well, slight problem... It turns out BFI_INT isn't actually exposed to |
|
// OpenCL (or CAL IL for that matter) in any way. However, there is |
|
// a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via |
|
// amd_bytealign, takes the same inputs, and provides the same output. |
|
// We can use that as a placeholder for BFI_INT and have the application |
|
// patch it after compilation. |
|
|
|
// This is the BFI_INT function |
|
#define Ch(x, y, z) amd_bytealign(x,y,z) |
|
// Ma can also be implemented in terms of BFI_INT... |
|
#define Ma(z, x, y) amd_bytealign(z^x,y,x) |
|
#else |
|
#define Ch(x, y, z) bitselect(x,y,z) |
|
// Ma can also be implemented in terms of bitselect |
|
#define Ma(z, x, y) bitselect(z^x,y,x) |
|
#endif |
|
|
|
|
|
//Various intermediate calculations for each SHA round |
|
#define s0(n) (S0(Vals[(0 + 128 - (n)) % 8])) |
|
#define S0(n) (rot(n, 30u)^rot(n, 19u)^rot(n,10u)) |
|
|
|
#define s1(n) (S1(Vals[(4 + 128 - (n)) % 8])) |
|
#define S1(n) (rot(n, 26u)^rot(n, 21u)^rot(n, 7u)) |
|
|
|
#define ch(n) Ch(Vals[(4 + 128 - (n)) % 8],Vals[(5 + 128 - (n)) % 8],Vals[(6 + 128 - (n)) % 8]) |
|
#define maj(n) Ma(Vals[(1 + 128 - (n)) % 8],Vals[(2 + 128 - (n)) % 8],Vals[(0 + 128 - (n)) % 8]) |
|
|
|
//t1 calc when W is already calculated |
|
#define t1(n) K[(n) % 64] + Vals[(7 + 128 - (n)) % 8] + W[(n)] + s1(n) + ch(n) |
|
|
|
//t1 calc which calculates W |
|
#define t1W(n) K[(n) % 64] + Vals[(7 + 128 - (n)) % 8] + W(n) + s1(n) + ch(n) |
|
|
|
//Used for constant W Values (the compiler optimizes out zeros) |
|
#define t1C(n) (K[(n) % 64]+ ConstW[(n)]) + Vals[(7 + 128 - (n)) % 8] + s1(n) + ch(n) |
|
|
|
//t2 Calc |
|
#define t2(n) maj(n) + s0(n) |
|
|
|
#define rotC(x,n) (x<<n | x >> (32-n)) |
|
|
|
//W calculation used for SHA round |
|
#define W(n) (W[n] = P4(n) + P3(n) + P2(n) + P1(n)) |
|
|
|
|
|
|
|
//Partial W calculations (used for the begining where only some values are nonzero) |
|
#define P1(n) ((rot(W[(n)-2],15u)^rot(W[(n)-2],13u)^((W[(n)-2])>>10U))) |
|
#define P2(n) ((rot(W[(n)-15],25u)^rot(W[(n)-15],14u)^((W[(n)-15])>>3U))) |
|
|
|
|
|
#define p1(x) ((rot(x,15u)^rot(x,13u)^((x)>>10U))) |
|
#define p2(x) ((rot(x,25u)^rot(x,14u)^((x)>>3U))) |
|
|
|
|
|
#define P3(n) W[n-7] |
|
#define P4(n) W[n-16] |
|
|
|
|
|
//Partial Calcs for constant W values |
|
#define P1C(n) ((rotC(ConstW[(n)-2],15)^rotC(ConstW[(n)-2],13)^((ConstW[(n)-2])>>10U))) |
|
#define P2C(n) ((rotC(ConstW[(n)-15],25)^rotC(ConstW[(n)-15],14)^((ConstW[(n)-15])>>3U))) |
|
#define P3C(x) ConstW[x-7] |
|
#define P4C(x) ConstW[x-16] |
|
|
|
//SHA round with built in W calc |
|
#define sharoundW(n) Barrier1(n); Vals[(3 + 128 - (n)) % 8] += t1W(n); Vals[(7 + 128 - (n)) % 8] = t1W(n) + t2(n); |
|
|
|
//SHA round without W calc |
|
#define sharound(n) Barrier2(n); Vals[(3 + 128 - (n)) % 8] += t1(n); Vals[(7 + 128 - (n)) % 8] = t1(n) + t2(n); |
|
|
|
//SHA round for constant W values |
|
#define sharoundC(n) Barrier3(n); Vals[(3 + 128 - (n)) % 8] += t1C(n); Vals[(7 + 128 - (n)) % 8] = t1C(n) + t2(n); |
|
|
|
//The compiler is stupid... I put this in there only to stop the compiler from (de)optimizing the order |
|
#define Barrier1(n) t1 = t1C((n+1)) |
|
#define Barrier2(n) t1 = t1C((n)) |
|
#define Barrier3(n) t1 = t1C((n)) |
|
|
|
//#define WORKSIZE 256 |
|
#define MAXBUFFERS (4095) |
|
|
|
__kernel |
|
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) |
|
void search( const uint state0, const uint state1, const uint state2, const uint state3, |
|
const uint state4, const uint state5, const uint state6, const uint state7, |
|
const uint B1, const uint C1, const uint D1, |
|
const uint F1, const uint G1, const uint H1, |
|
const u base, |
|
const uint W16, const uint W17, |
|
const uint PreVal4, const uint PreVal0, |
|
const uint PreW18, const uint PreW19, |
|
const uint PreW31, const uint PreW32, |
|
|
|
__global uint * output) |
|
{ |
|
|
|
|
|
u W[124]; |
|
u Vals[8]; |
|
|
|
//Dummy Variable to prevent compiler from reordering between rounds |
|
u t1; |
|
|
|
//Vals[0]=state0; |
|
Vals[1]=B1; |
|
Vals[2]=C1; |
|
Vals[3]=D1; |
|
//Vals[4]=PreVal4; |
|
Vals[5]=F1; |
|
Vals[6]=G1; |
|
Vals[7]=H1; |
|
|
|
W[16] = W16; |
|
W[17] = W17; |
|
|
|
#ifdef VECTORS4 |
|
//Less dependencies to get both the local id and group id and then add them |
|
W[3] = base + (uint)(get_local_id(0)) * 4u + (uint)(get_group_id(0)) * (WORKSIZE * 4u); |
|
uint r = rot(W[3].x,25u)^rot(W[3].x,14u)^((W[3].x)>>3U); |
|
//Since only the 2 LSB is opposite between the nonces, we can save an instruction by flipping the 4 bits in W18 rather than the 1 bit in W3 |
|
W[18] = PreW18 + (u){r, r ^ 0x2004000U, r ^ 0x4008000U, r ^ 0x600C000U}; |
|
#else |
|
#ifdef VECTORS2 |
|
W[3] = base + (uint)(get_local_id(0)) * 2u + (uint)(get_group_id(0)) * (WORKSIZE * 2u); |
|
uint r = rot(W[3].x,25u)^rot(W[3].x,14u)^((W[3].x)>>3U); |
|
W[18] = PreW18 + (u){r, r ^ 0x2004000U}; |
|
#else |
|
W[3] = base + get_local_id(0) + get_group_id(0) * (WORKSIZE); |
|
u r = rot(W[3],25u)^rot(W[3],14u)^((W[3])>>3U); |
|
W[18] = PreW18 + r; |
|
#endif |
|
#endif |
|
//the order of the W calcs and Rounds is like this because the compiler needs help finding how to order the instructions |
|
|
|
|
|
|
|
Vals[4] = PreVal4 + W[3]; |
|
Vals[0] = PreVal0 + W[3]; |
|
|
|
sharoundC(4); |
|
W[19] = PreW19 + W[3]; |
|
sharoundC(5); |
|
W[20] = P4C(20) + P1(20); |
|
sharoundC(6); |
|
W[21] = P1(21); |
|
sharoundC(7); |
|
W[22] = P3C(22) + P1(22); |
|
sharoundC(8); |
|
W[23] = W[16] + P1(23); |
|
sharoundC(9); |
|
W[24] = W[17] + P1(24); |
|
sharoundC(10); |
|
W[25] = P1(25) + P3(25); |
|
W[26] = P1(26) + P3(26); |
|
sharoundC(11); |
|
W[27] = P1(27) + P3(27); |
|
W[28] = P1(28) + P3(28); |
|
sharoundC(12); |
|
W[29] = P1(29) + P3(29); |
|
sharoundC(13); |
|
W[30] = P1(30) + P2C(30) + P3(30); |
|
W[31] = PreW31 + (P1(31) + P3(31)); |
|
sharoundC(14); |
|
W[32] = PreW32 + (P1(32) + P3(32)); |
|
sharoundC(15); |
|
sharound(16); |
|
sharound(17); |
|
sharound(18); |
|
sharound(19); |
|
sharound(20); |
|
sharound(21); |
|
sharound(22); |
|
sharound(23); |
|
sharound(24); |
|
sharound(25); |
|
sharound(26); |
|
sharound(27); |
|
sharound(28); |
|
sharound(29); |
|
sharound(30); |
|
sharound(31); |
|
sharound(32); |
|
sharoundW(33); |
|
sharoundW(34); |
|
sharoundW(35); |
|
sharoundW(36); |
|
sharoundW(37); |
|
sharoundW(38); |
|
sharoundW(39); |
|
sharoundW(40); |
|
sharoundW(41); |
|
sharoundW(42); |
|
sharoundW(43); |
|
sharoundW(44); |
|
sharoundW(45); |
|
sharoundW(46); |
|
sharoundW(47); |
|
sharoundW(48); |
|
sharoundW(49); |
|
sharoundW(50); |
|
sharoundW(51); |
|
sharoundW(52); |
|
sharoundW(53); |
|
sharoundW(54); |
|
sharoundW(55); |
|
sharoundW(56); |
|
sharoundW(57); |
|
sharoundW(58); |
|
sharoundW(59); |
|
sharoundW(60); |
|
sharoundW(61); |
|
sharoundW(62); |
|
sharoundW(63); |
|
|
|
W[64]=state0+Vals[0]; |
|
W[65]=state1+Vals[1]; |
|
W[66]=state2+Vals[2]; |
|
W[67]=state3+Vals[3]; |
|
W[68]=state4+Vals[4]; |
|
W[69]=state5+Vals[5]; |
|
W[70]=state6+Vals[6]; |
|
W[71]=state7+Vals[7]; |
|
|
|
Vals[0]=H[0]; |
|
Vals[1]=H[1]; |
|
Vals[2]=H[2]; |
|
Vals[3]=H[3]; |
|
Vals[4]=H[4]; |
|
Vals[5]=H[5]; |
|
Vals[6]=H[6]; |
|
Vals[7]=H[7]; |
|
|
|
//sharound(64 + 0); |
|
const u Temp = (0xb0edbdd0U + K[0]) + W[64]; |
|
Vals[7] = Temp + 0x08909ae5U; |
|
Vals[3] = 0xa54ff53aU + Temp; |
|
|
|
#define P124(n) P2(n) + P1(n) + P4(n) |
|
|
|
|
|
W[64 + 16] = + P2(64 + 16) + P4(64 + 16); |
|
sharound(64 + 1); |
|
W[64 + 17] = P1C(64 + 17) + P2(64 + 17) + P4(64 + 17); |
|
sharound(64 + 2); |
|
W[64 + 18] = P124(64 + 18); |
|
sharound(64 + 3); |
|
W[64 + 19] = P124(64 + 19); |
|
sharound(64 + 4); |
|
W[64 + 20] = P124(64 + 20); |
|
sharound(64 + 5); |
|
W[64 + 21] = P124(64 + 21); |
|
sharound(64 + 6); |
|
W[64 + 22] = P4(64 + 22) + P3C(64 + 22) + P2(64 + 22) + P1(64 + 22); |
|
sharound(64 + 7); |
|
W[64 + 23] = P4(64 + 23) + P3(64 + 23) + P2C(64 + 23) + P1(64 + 23); |
|
sharoundC(64 + 8); |
|
W[64 + 24] = P1(64 + 24) + P4C(64 + 24) + P3(64 + 24); |
|
sharoundC(64 + 9); |
|
W[64 + 25] = P3(64 + 25) + P1(64 + 25); |
|
sharoundC(64 + 10); |
|
W[64 + 26] = P3(64 + 26) + P1(64 + 26); |
|
sharoundC(64 + 11); |
|
W[64 + 27] = P3(64 + 27) + P1(64 + 27); |
|
sharoundC(64 + 12); |
|
W[64 + 28] = P3(64 + 28) + P1(64 + 28); |
|
sharoundC(64 + 13); |
|
W[64 + 29] = P1(64 + 29) + P3(64 + 29); |
|
W[64 + 30] = P3(64 + 30) + P2C(64 + 30) + P1(64 + 30); |
|
sharoundC(64 + 14); |
|
W[64 + 31] = P4C(64 + 31) + P3(64 + 31) + P2(64 + 31) + P1(64 + 31); |
|
sharoundC(64 + 15); |
|
sharound(64 + 16); |
|
sharound(64 + 17); |
|
sharound(64 + 18); |
|
sharound(64 + 19); |
|
sharound(64 + 20); |
|
sharound(64 + 21); |
|
sharound(64 + 22); |
|
sharound(64 + 23); |
|
sharound(64 + 24); |
|
sharound(64 + 25); |
|
sharound(64 + 26); |
|
sharound(64 + 27); |
|
sharound(64 + 28); |
|
sharound(64 + 29); |
|
sharound(64 + 30); |
|
sharound(64 + 31); |
|
sharoundW(64 + 32); |
|
sharoundW(64 + 33); |
|
sharoundW(64 + 34); |
|
sharoundW(64 + 35); |
|
sharoundW(64 + 36); |
|
sharoundW(64 + 37); |
|
sharoundW(64 + 38); |
|
sharoundW(64 + 39); |
|
sharoundW(64 + 40); |
|
sharoundW(64 + 41); |
|
sharoundW(64 + 42); |
|
sharoundW(64 + 43); |
|
sharoundW(64 + 44); |
|
sharoundW(64 + 45); |
|
sharoundW(64 + 46); |
|
sharoundW(64 + 47); |
|
sharoundW(64 + 48); |
|
sharoundW(64 + 49); |
|
sharoundW(64 + 50); |
|
sharoundW(64 + 51); |
|
sharoundW(64 + 52); |
|
sharoundW(64 + 53); |
|
sharoundW(64 + 54); |
|
sharoundW(64 + 55); |
|
sharoundW(64 + 56); |
|
sharoundW(64 + 57); |
|
sharoundW(64 + 58); |
|
|
|
u v = W[117] + W[108] + Vals[3] + Vals[7] + P2(124) + P1(124) + Ch((Vals[0] + Vals[4]) + (K[59] + W(59+64)) + s1(64+59)+ ch(59+64),Vals[1],Vals[2]) ^ |
|
-(K[60] + H[7]) - S1((Vals[0] + Vals[4]) + (K[59] + W(59+64)) + s1(64+59)+ ch(59+64)); |
|
|
|
#define FOUND (0x80) |
|
#define NFLAG (0x7F) |
|
|
|
#ifdef VECTORS4 |
|
bool result = v.x & v.y & v.z & v.w; |
|
if (!result) { |
|
if (!v.x) |
|
output[FOUND] = output[NFLAG & W[3].x] = W[3].x; |
|
if (!v.y) |
|
output[FOUND] = output[NFLAG & W[3].y] = W[3].y; |
|
if (!v.z) |
|
output[FOUND] = output[NFLAG & W[3].z] = W[3].z; |
|
if (!v.w) |
|
output[FOUND] = output[NFLAG & W[3].w] = W[3].w; |
|
} |
|
#else |
|
#ifdef VECTORS2 |
|
bool result = v.x & v.y; |
|
if (!result) { |
|
if (!v.x) |
|
output[FOUND] = output[NFLAG & W[3].x] = W[3].x; |
|
if (!v.y) |
|
output[FOUND] = output[NFLAG & W[3].y] = W[3].y; |
|
} |
|
#else |
|
if (!v) |
|
output[FOUND] = output[NFLAG & W[3]] = W[3]; |
|
#endif |
|
#endif |
|
}
|
|
|