OpenCL GPU miner
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

900 lines
32 KiB

/*
* Copyright 2011-2012 Con Kolivas
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <limits.h>
#include <sys/types.h>
#ifdef WIN32
#include <winsock2.h>
#else
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#endif
#include <time.h>
#include <sys/time.h>
#include <pthread.h>
#include <unistd.h>
#include "findnonce.h"
#include "algorithm.h"
#include "ocl.h"
#include "ocl/build_kernel.h"
#include "ocl/binary_kernel.h"
#include "algorithm/neoscrypt.h"
#include "algorithm/pluck.h"
#include "algorithm/yescrypt.h"
#include "algorithm/lyra2re.h"
/* FIXME: only here for global config vars, replace with configuration.h
* or similar as soon as config is in a struct instead of littered all
* over the global namespace.
*/
#include "miner.h"
int opt_platform_id = -1;
bool get_opencl_platform(int preferred_platform_id, cl_platform_id *platform) {
cl_int status;
cl_uint numPlatforms;
cl_platform_id *platforms = NULL;
unsigned int i;
bool ret = false;
status = clGetPlatformIDs(0, NULL, &numPlatforms);
/* If this fails, assume no GPUs. */
if (status != CL_SUCCESS) {
applog(LOG_ERR, "Error %d: clGetPlatformsIDs failed (no OpenCL SDK installed?)", status);
goto out;
}
if (numPlatforms == 0) {
applog(LOG_ERR, "clGetPlatformsIDs returned no platforms (no OpenCL SDK installed?)");
goto out;
}
if (preferred_platform_id >= (int)numPlatforms) {
applog(LOG_ERR, "Specified platform that does not exist");
goto out;
}
platforms = (cl_platform_id *)malloc(numPlatforms*sizeof(cl_platform_id));
status = clGetPlatformIDs(numPlatforms, platforms, NULL);
if (status != CL_SUCCESS) {
applog(LOG_ERR, "Error %d: Getting Platform Ids. (clGetPlatformsIDs)", status);
goto out;
}
for (i = 0; i < numPlatforms; i++) {
if (preferred_platform_id >= 0 && (int)i != preferred_platform_id)
continue;
*platform = platforms[i];
ret = true;
break;
}
out:
if (platforms) free(platforms);
return ret;
}
int clDevicesNum(void) {
cl_int status;
char pbuff[256];
cl_uint numDevices;
cl_platform_id platform = NULL;
int ret = -1;
if (!get_opencl_platform(opt_platform_id, &platform)) {
goto out;
}
status = clGetPlatformInfo(platform, CL_PLATFORM_VENDOR, sizeof(pbuff), pbuff, NULL);
if (status != CL_SUCCESS) {
applog(LOG_ERR, "Error %d: Getting Platform Info. (clGetPlatformInfo)", status);
goto out;
}
applog(LOG_INFO, "CL Platform vendor: %s", pbuff);
status = clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(pbuff), pbuff, NULL);
if (status == CL_SUCCESS)
applog(LOG_INFO, "CL Platform name: %s", pbuff);
status = clGetPlatformInfo(platform, CL_PLATFORM_VERSION, sizeof(pbuff), pbuff, NULL);
if (status == CL_SUCCESS)
applog(LOG_INFO, "CL Platform version: %s", pbuff);
status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 0, NULL, &numDevices);
if (status != CL_SUCCESS) {
applog(LOG_INFO, "Error %d: Getting Device IDs (num)", status);
goto out;
}
applog(LOG_INFO, "Platform devices: %d", numDevices);
if (numDevices) {
unsigned int j;
cl_device_id *devices = (cl_device_id *)malloc(numDevices*sizeof(cl_device_id));
clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, numDevices, devices, NULL);
for (j = 0; j < numDevices; j++) {
clGetDeviceInfo(devices[j], CL_DEVICE_NAME, sizeof(pbuff), pbuff, NULL);
applog(LOG_INFO, "\t%i\t%s", j, pbuff);
}
free(devices);
}
ret = numDevices;
out:
return ret;
}
static cl_int create_opencl_context(cl_context *context, cl_platform_id *platform)
{
cl_context_properties cps[3] = { CL_CONTEXT_PLATFORM, (cl_context_properties)*platform, 0 };
cl_int status;
*context = clCreateContextFromType(cps, CL_DEVICE_TYPE_GPU, NULL, NULL, &status);
return status;
}
static float get_opencl_version(cl_device_id device)
{
/* Check for OpenCL >= 1.0 support, needed for global offset parameter usage. */
char devoclver[1024];
char *find;
float version = 1.0;
cl_int status;
status = clGetDeviceInfo(device, CL_DEVICE_VERSION, 1024, (void *)devoclver, NULL);
if (status != CL_SUCCESS) {
quit(1, "Failed to clGetDeviceInfo when trying to get CL_DEVICE_VERSION");
}
find = strstr(devoclver, "OpenCL 1.0");
if (!find) {
version = 1.1;
find = strstr(devoclver, "OpenCL 1.1");
if (!find)
version = 1.2;
}
return version;
}
static cl_int create_opencl_command_queue(cl_command_queue *command_queue, cl_context *context, cl_device_id *device, cl_command_queue_properties cq_properties)
{
cl_int status;
*command_queue = clCreateCommandQueue(*context, *device,
cq_properties, &status);
if (status != CL_SUCCESS) /* Try again without OOE enable */
*command_queue = clCreateCommandQueue(*context, *device, 0, &status);
return status;
}
_clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *algorithm)
{
cl_int status = 0;
size_t compute_units = 0;
cl_platform_id platform = NULL;
struct cgpu_info *cgpu = &gpus[gpu];
_clState *clState = (_clState *)calloc(1, sizeof(_clState));
cl_uint preferred_vwidth, slot = 0, cpnd = 0, numDevices = clDevicesNum();
cl_device_id *devices = (cl_device_id *)alloca(numDevices * sizeof(cl_device_id));
build_kernel_data *build_data = (build_kernel_data *)alloca(sizeof(struct _build_kernel_data));
char **pbuff = (char **)alloca(sizeof(char *) * numDevices), filename[256];
// sanity check
if (!get_opencl_platform(opt_platform_id, &platform)) {
return NULL;
}
if (numDevices <= 0) {
return NULL;
}
if (gpu >= numDevices) {
applog(LOG_ERR, "Invalid GPU %i", gpu);
return NULL;
}
/* Now, get the device list data */
status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, numDevices, devices, NULL);
if (status != CL_SUCCESS) {
applog(LOG_ERR, "Error %d: Getting Device IDs (list)", status);
return NULL;
}
applog(LOG_INFO, "List of devices:");
for (int i = 0; i < numDevices; ++i) {
size_t tmpsize;
if (clGetDeviceInfo(devices[i], CL_DEVICE_NAME, 0, NULL, &tmpsize) != CL_SUCCESS) {
applog(LOG_ERR, "Error while getting the length of the name for GPU #%d.", i);
return NULL;
}
// Does the size include the NULL terminator? Who knows, just add one, it's faster than looking it up.
pbuff[i] = (char *)alloca(sizeof(char) * (tmpsize + 1));
if (clGetDeviceInfo(devices[i], CL_DEVICE_NAME, sizeof(char) * tmpsize, pbuff[i], NULL) != CL_SUCCESS) {
applog(LOG_ERR, "Error while attempting to get device information.");
return NULL;
}
applog(LOG_INFO, "\t%i\t%s", i, pbuff[i]);
}
applog(LOG_INFO, "Selected %d: %s", gpu, pbuff[gpu]);
strncpy(name, pbuff[gpu], nameSize);
status = create_opencl_context(&clState->context, &platform);
if (status != CL_SUCCESS) {
applog(LOG_ERR, "Error %d: Creating Context. (clCreateContextFromType)", status);
return NULL;
}
status = create_opencl_command_queue(&clState->commandQueue, &clState->context, &devices[gpu], cgpu->algorithm.cq_properties);
if (status != CL_SUCCESS) {
applog(LOG_ERR, "Error %d: Creating Command Queue. (clCreateCommandQueue)", status);
return NULL;
}
status = clGetDeviceInfo(devices[gpu], CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT, sizeof(cl_uint), (void *)&preferred_vwidth, NULL);
if (status != CL_SUCCESS) {
applog(LOG_ERR, "Error %d: Failed to clGetDeviceInfo when trying to get CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT", status);
return NULL;
}
applog(LOG_DEBUG, "Preferred vector width reported %d", preferred_vwidth);
status = clGetDeviceInfo(devices[gpu], CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), (void *)&clState->max_work_size, NULL);
if (status != CL_SUCCESS) {
applog(LOG_ERR, "Error %d: Failed to clGetDeviceInfo when trying to get CL_DEVICE_MAX_WORK_GROUP_SIZE", status);
return NULL;
}
applog(LOG_DEBUG, "Max work group size reported %d", (int)(clState->max_work_size));
status = clGetDeviceInfo(devices[gpu], CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(size_t), (void *)&compute_units, NULL);
if (status != CL_SUCCESS) {
applog(LOG_ERR, "Error %d: Failed to clGetDeviceInfo when trying to get CL_DEVICE_MAX_COMPUTE_UNITS", status);
return NULL;
}
// AMD architechture got 64 compute shaders per compute unit.
// Source: http://www.amd.com/us/Documents/GCN_Architecture_whitepaper.pdf
clState->compute_shaders = compute_units << 6;
applog(LOG_INFO, "Maximum work size for this GPU (%d) is %d.", gpu, clState->max_work_size);
applog(LOG_INFO, "Your GPU (#%d) has %d compute units, and all AMD cards in the 7 series or newer (GCN cards) \
have 64 shaders per compute unit - this means it has %d shaders.", gpu, compute_units, clState->compute_shaders);
status = clGetDeviceInfo(devices[gpu], CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(cl_ulong), (void *)&cgpu->max_alloc, NULL);
if (status != CL_SUCCESS) {
applog(LOG_ERR, "Error %d: Failed to clGetDeviceInfo when trying to get CL_DEVICE_MAX_MEM_ALLOC_SIZE", status);
return NULL;
}
applog(LOG_DEBUG, "Max mem alloc size is %lu", (long unsigned int)(cgpu->max_alloc));
/* Create binary filename based on parameters passed to opencl
* compiler to ensure we only load a binary that matches what
* would have otherwise created. The filename is:
* name + g + lg + lookup_gap + tc + thread_concurrency + nf + nfactor + w + work_size + l + sizeof(long) + .bin
*/
sprintf(filename, "%s.cl", (!empty_string(cgpu->algorithm.kernelfile) ? cgpu->algorithm.kernelfile : cgpu->algorithm.name));
applog(LOG_DEBUG, "Using source file %s", filename);
/* For some reason 2 vectors is still better even if the card says
* otherwise, and many cards lie about their max so use 256 as max
* unless explicitly set on the command line. Tahiti prefers 1 */
if (strstr(name, "Tahiti"))
preferred_vwidth = 1;
else if (preferred_vwidth > 2)
preferred_vwidth = 2;
/* All available kernels only support vector 1 */
cgpu->vwidth = 1;
/* Vectors are hard-set to 1 above. */
if (likely(cgpu->vwidth))
clState->vwidth = cgpu->vwidth;
else {
clState->vwidth = preferred_vwidth;
cgpu->vwidth = preferred_vwidth;
}
clState->goffset = true;
clState->wsize = (cgpu->work_size && cgpu->work_size <= clState->max_work_size) ? cgpu->work_size : 256;
if (!cgpu->opt_lg) {
applog(LOG_DEBUG, "GPU %d: selecting lookup gap of 2", gpu);
cgpu->lookup_gap = 2;
}
else
cgpu->lookup_gap = cgpu->opt_lg;
if ((strcmp(cgpu->algorithm.name, "zuikkis") == 0) && (cgpu->lookup_gap != 2)) {
applog(LOG_WARNING, "Kernel zuikkis only supports lookup-gap = 2 (currently %d), forcing.", cgpu->lookup_gap);
cgpu->lookup_gap = 2;
}
if ((strcmp(cgpu->algorithm.name, "bufius") == 0) && ((cgpu->lookup_gap != 2) && (cgpu->lookup_gap != 4) && (cgpu->lookup_gap != 8))) {
applog(LOG_WARNING, "Kernel bufius only supports lookup-gap of 2, 4 or 8 (currently %d), forcing to 2", cgpu->lookup_gap);
cgpu->lookup_gap = 2;
}
// neoscrypt TC
if (cgpu->algorithm.type == ALGO_NEOSCRYPT && !cgpu->opt_tc) {
size_t glob_thread_count;
long max_int;
unsigned char type = 0;
// determine which intensity type to use
if (cgpu->rawintensity > 0) {
glob_thread_count = cgpu->rawintensity;
max_int = glob_thread_count;
type = 2;
}
else if (cgpu->xintensity > 0) {
glob_thread_count = clState->compute_shaders * ((cgpu->algorithm.xintensity_shift) ? (1UL << (cgpu->algorithm.xintensity_shift + cgpu->xintensity)) : cgpu->xintensity);
max_int = cgpu->xintensity;
type = 1;
}
else {
glob_thread_count = 1UL << (cgpu->algorithm.intensity_shift + cgpu->intensity);
max_int = ((cgpu->dynamic) ? MAX_INTENSITY : cgpu->intensity);
}
glob_thread_count = ((glob_thread_count < cgpu->work_size) ? cgpu->work_size : glob_thread_count);
// if TC * scratchbuf size is too big for memory... reduce to max
if ((glob_thread_count * NEOSCRYPT_SCRATCHBUF_SIZE) >= (uint64_t)cgpu->max_alloc) {
/* Selected intensity will not run on this GPU. Not enough memory.
* Adapt the memory setting. */
// depending on intensity type used, reduce the intensity until it fits into the GPU max_alloc
switch (type) {
//raw intensity
case 2:
while ((glob_thread_count * NEOSCRYPT_SCRATCHBUF_SIZE) > (uint64_t)cgpu->max_alloc) {
--glob_thread_count;
}
max_int = glob_thread_count;
cgpu->rawintensity = glob_thread_count;
break;
//x intensity
case 1:
glob_thread_count = cgpu->max_alloc / NEOSCRYPT_SCRATCHBUF_SIZE;
max_int = glob_thread_count / clState->compute_shaders;
while (max_int && ((clState->compute_shaders * (1UL << max_int)) > glob_thread_count)) {
--max_int;
}
/* Check if max_intensity is >0. */
if (max_int < MIN_XINTENSITY) {
applog(LOG_ERR, "GPU %d: Max xintensity is below minimum.", gpu);
max_int = MIN_XINTENSITY;
}
cgpu->xintensity = max_int;
glob_thread_count = clState->compute_shaders * (1UL << max_int);
break;
default:
glob_thread_count = cgpu->max_alloc / NEOSCRYPT_SCRATCHBUF_SIZE;
while (max_int && ((1UL << max_int) & glob_thread_count) == 0) {
--max_int;
}
/* Check if max_intensity is >0. */
if (max_int < MIN_INTENSITY) {
applog(LOG_ERR, "GPU %d: Max intensity is below minimum.", gpu);
max_int = MIN_INTENSITY;
}
cgpu->intensity = max_int;
glob_thread_count = 1UL << max_int;
break;
}
}
// TC is glob thread count
cgpu->thread_concurrency = glob_thread_count;
applog(LOG_DEBUG, "GPU %d: computing max. global thread count to %u", gpu, (unsigned)(cgpu->thread_concurrency));
}
// pluck TC
else if (cgpu->algorithm.type == ALGO_PLUCK && !cgpu->opt_tc) {
size_t glob_thread_count;
long max_int;
unsigned char type = 0;
// determine which intensity type to use
if (cgpu->rawintensity > 0) {
glob_thread_count = cgpu->rawintensity;
max_int = glob_thread_count;
type = 2;
}
else if (cgpu->xintensity > 0) {
glob_thread_count = clState->compute_shaders * ((cgpu->algorithm.xintensity_shift) ? (1UL << (cgpu->algorithm.xintensity_shift + cgpu->xintensity)) : cgpu->xintensity);
max_int = cgpu->xintensity;
type = 1;
}
else {
glob_thread_count = 1UL << (cgpu->algorithm.intensity_shift + cgpu->intensity);
max_int = ((cgpu->dynamic) ? MAX_INTENSITY : cgpu->intensity);
}
glob_thread_count = ((glob_thread_count < cgpu->work_size) ? cgpu->work_size : glob_thread_count);
// if TC * scratchbuf size is too big for memory... reduce to max
if ((glob_thread_count * PLUCK_SCRATCHBUF_SIZE) >= (uint64_t)cgpu->max_alloc) {
/* Selected intensity will not run on this GPU. Not enough memory.
* Adapt the memory setting. */
// depending on intensity type used, reduce the intensity until it fits into the GPU max_alloc
switch (type) {
//raw intensity
case 2:
while ((glob_thread_count * PLUCK_SCRATCHBUF_SIZE) > (uint64_t)cgpu->max_alloc) {
--glob_thread_count;
}
max_int = glob_thread_count;
cgpu->rawintensity = glob_thread_count;
break;
//x intensity
case 1:
glob_thread_count = cgpu->max_alloc / PLUCK_SCRATCHBUF_SIZE;
max_int = glob_thread_count / clState->compute_shaders;
while (max_int && ((clState->compute_shaders * (1UL << max_int)) > glob_thread_count)) {
--max_int;
}
/* Check if max_intensity is >0. */
if (max_int < MIN_XINTENSITY) {
applog(LOG_ERR, "GPU %d: Max xintensity is below minimum.", gpu);
max_int = MIN_XINTENSITY;
}
cgpu->xintensity = max_int;
glob_thread_count = clState->compute_shaders * (1UL << max_int);
break;
default:
glob_thread_count = cgpu->max_alloc / PLUCK_SCRATCHBUF_SIZE;
while (max_int && ((1UL << max_int) & glob_thread_count) == 0) {
--max_int;
}
/* Check if max_intensity is >0. */
if (max_int < MIN_INTENSITY) {
applog(LOG_ERR, "GPU %d: Max intensity is below minimum.", gpu);
max_int = MIN_INTENSITY;
}
cgpu->intensity = max_int;
glob_thread_count = 1UL << max_int;
break;
}
}
// TC is glob thread count
cgpu->thread_concurrency = glob_thread_count;
applog(LOG_DEBUG, "GPU %d: computing max. global thread count to %u", gpu, (unsigned)(cgpu->thread_concurrency));
}
// Yescrypt TC
else if ((cgpu->algorithm.type == ALGO_YESCRYPT ||
algorithm->type == ALGO_YESCRYPT_MULTI) && !cgpu->opt_tc) {
size_t glob_thread_count;
long max_int;
unsigned char type = 0;
// determine which intensity type to use
if (cgpu->rawintensity > 0) {
glob_thread_count = cgpu->rawintensity;
max_int = glob_thread_count;
type = 2;
}
else if (cgpu->xintensity > 0) {
glob_thread_count = clState->compute_shaders * ((cgpu->algorithm.xintensity_shift) ? (1UL << (cgpu->algorithm.xintensity_shift + cgpu->xintensity)) : cgpu->xintensity);
max_int = cgpu->xintensity;
type = 1;
}
else {
glob_thread_count = 1UL << (cgpu->algorithm.intensity_shift + cgpu->intensity);
max_int = ((cgpu->dynamic) ? MAX_INTENSITY : cgpu->intensity);
}
glob_thread_count = ((glob_thread_count < cgpu->work_size) ? cgpu->work_size : glob_thread_count);
// if TC * scratchbuf size is too big for memory... reduce to max
if ((glob_thread_count * YESCRYPT_SCRATCHBUF_SIZE) >= (uint64_t)cgpu->max_alloc) {
/* Selected intensity will not run on this GPU. Not enough memory.
* Adapt the memory setting. */
// depending on intensity type used, reduce the intensity until it fits into the GPU max_alloc
switch (type) {
//raw intensity
case 2:
while ((glob_thread_count * YESCRYPT_SCRATCHBUF_SIZE) > (uint64_t)cgpu->max_alloc) {
--glob_thread_count;
}
max_int = glob_thread_count;
cgpu->rawintensity = glob_thread_count;
break;
//x intensity
case 1:
glob_thread_count = cgpu->max_alloc / YESCRYPT_SCRATCHBUF_SIZE;
max_int = glob_thread_count / clState->compute_shaders;
while (max_int && ((clState->compute_shaders * (1UL << max_int)) > glob_thread_count)) {
--max_int;
}
/* Check if max_intensity is >0. */
if (max_int < MIN_XINTENSITY) {
applog(LOG_ERR, "GPU %d: Max xintensity is below minimum.", gpu);
max_int = MIN_XINTENSITY;
}
cgpu->xintensity = max_int;
glob_thread_count = clState->compute_shaders * (1UL << max_int);
break;
default:
glob_thread_count = cgpu->max_alloc / YESCRYPT_SCRATCHBUF_SIZE;
while (max_int && ((1UL << max_int) & glob_thread_count) == 0) {
--max_int;
}
/* Check if max_intensity is >0. */
if (max_int < MIN_INTENSITY) {
applog(LOG_ERR, "GPU %d: Max intensity is below minimum.", gpu);
max_int = MIN_INTENSITY;
}
cgpu->intensity = max_int;
glob_thread_count = 1UL << max_int;
break;
}
}
// TC is glob thread count
cgpu->thread_concurrency = glob_thread_count;
applog(LOG_DEBUG, "GPU %d: computing max. global thread count to %u", gpu, (unsigned)(cgpu->thread_concurrency));
}
// Lyra2re v2 TC
else if (cgpu->algorithm.type == ALGO_LYRA2REv2 && !cgpu->opt_tc) {
size_t glob_thread_count;
long max_int;
unsigned char type = 0;
// determine which intensity type to use
if (cgpu->rawintensity > 0) {
glob_thread_count = cgpu->rawintensity;
max_int = glob_thread_count;
type = 2;
}
else if (cgpu->xintensity > 0) {
glob_thread_count = clState->compute_shaders * ((cgpu->algorithm.xintensity_shift) ? (1UL << (cgpu->algorithm.xintensity_shift + cgpu->xintensity)) : cgpu->xintensity);
max_int = cgpu->xintensity;
type = 1;
}
else {
glob_thread_count = 1UL << (cgpu->algorithm.intensity_shift + cgpu->intensity);
max_int = ((cgpu->dynamic) ? MAX_INTENSITY : cgpu->intensity);
}
glob_thread_count = ((glob_thread_count < cgpu->work_size) ? cgpu->work_size : glob_thread_count);
// if TC * scratchbuf size is too big for memory... reduce to max
if ((glob_thread_count * LYRA_SCRATCHBUF_SIZE) >= (uint64_t)cgpu->max_alloc) {
/* Selected intensity will not run on this GPU. Not enough memory.
* Adapt the memory setting. */
// depending on intensity type used, reduce the intensity until it fits into the GPU max_alloc
switch (type) {
//raw intensity
case 2:
while ((glob_thread_count * LYRA_SCRATCHBUF_SIZE) > (uint64_t)cgpu->max_alloc) {
--glob_thread_count;
}
max_int = glob_thread_count;
cgpu->rawintensity = glob_thread_count;
break;
//x intensity
case 1:
glob_thread_count = cgpu->max_alloc / LYRA_SCRATCHBUF_SIZE;
max_int = glob_thread_count / clState->compute_shaders;
while (max_int && ((clState->compute_shaders * (1UL << max_int)) > glob_thread_count)) {
--max_int;
}
/* Check if max_intensity is >0. */
if (max_int < MIN_XINTENSITY) {
applog(LOG_ERR, "GPU %d: Max xintensity is below minimum.", gpu);
max_int = MIN_XINTENSITY;
}
cgpu->xintensity = max_int;
glob_thread_count = clState->compute_shaders * (1UL << max_int);
break;
default:
glob_thread_count = cgpu->max_alloc / LYRA_SCRATCHBUF_SIZE;
while (max_int && ((1UL << max_int) & glob_thread_count) == 0) {
--max_int;
}
/* Check if max_intensity is >0. */
if (max_int < MIN_INTENSITY) {
applog(LOG_ERR, "GPU %d: Max intensity is below minimum.", gpu);
max_int = MIN_INTENSITY;
}
cgpu->intensity = max_int;
glob_thread_count = 1UL << max_int;
break;
}
}
// TC is glob thread count
cgpu->thread_concurrency = glob_thread_count;
applog(LOG_DEBUG, "GPU %d: computing max. global thread count to %u", gpu, (unsigned)(cgpu->thread_concurrency));
}
else if (!cgpu->opt_tc) {
unsigned int sixtyfours;
sixtyfours = cgpu->max_alloc / 131072 / 64 / (algorithm->n / 1024) - 1;
cgpu->thread_concurrency = sixtyfours * 64;
if (cgpu->shaders && cgpu->thread_concurrency > cgpu->shaders) {
cgpu->thread_concurrency -= cgpu->thread_concurrency % cgpu->shaders;
if (cgpu->thread_concurrency > cgpu->shaders * 5) {
cgpu->thread_concurrency = cgpu->shaders * 5;
}
}
applog(LOG_DEBUG, "GPU %d: selecting thread concurrency of %d", gpu, (int)(cgpu->thread_concurrency));
}
else {
cgpu->thread_concurrency = cgpu->opt_tc;
}
build_data->context = clState->context;
build_data->device = &devices[gpu];
// Build information
strcpy(build_data->source_filename, filename);
strcpy(build_data->platform, name);
strcpy(build_data->sgminer_path, sgminer_path);
build_data->kernel_path = (*opt_kernel_path) ? opt_kernel_path : NULL;
build_data->work_size = clState->wsize;
build_data->opencl_version = get_opencl_version(devices[gpu]);
strcpy(build_data->binary_filename, filename);
build_data->binary_filename[strlen(filename) - 3] = 0x00; // And one NULL terminator, cutting off the .cl suffix.
strcat(build_data->binary_filename, pbuff[gpu]);
if (clState->goffset) {
strcat(build_data->binary_filename, "g");
}
set_base_compiler_options(build_data);
if (algorithm->set_compile_options) {
algorithm->set_compile_options(build_data, cgpu, algorithm);
}
strcat(build_data->binary_filename, ".bin");
applog(LOG_DEBUG, "Using binary file %s", build_data->binary_filename);
// Load program from file or build it if it doesn't exist
if (!(clState->program = load_opencl_binary_kernel(build_data))) {
applog(LOG_NOTICE, "Building binary %s", build_data->binary_filename);
if (!(clState->program = build_opencl_kernel(build_data, filename))) {
return NULL;
}
// If it doesn't work, oh well, build it again next run
save_opencl_kernel(build_data, clState->program);
}
// Load kernels
applog(LOG_NOTICE, "Initialising kernel %s with nfactor %d, n %d",
filename, algorithm->nfactor, algorithm->n);
/* get a kernel object handle for a kernel with the given name */
clState->kernel = clCreateKernel(clState->program, "search", &status);
if (status != CL_SUCCESS) {
applog(LOG_ERR, "Error %d: Creating Kernel from program. (clCreateKernel)", status);
return NULL;
}
clState->n_extra_kernels = algorithm->n_extra_kernels;
if (clState->n_extra_kernels > 0) {
unsigned int i;
char kernel_name[9]; // max: search99 + 0x0
clState->extra_kernels = (cl_kernel *)malloc(sizeof(cl_kernel)* clState->n_extra_kernels);
for (i = 0; i < clState->n_extra_kernels; i++) {
snprintf(kernel_name, 9, "%s%d", "search", i + 1);
clState->extra_kernels[i] = clCreateKernel(clState->program, kernel_name, &status);
if (status != CL_SUCCESS) {
applog(LOG_ERR, "Error %d: Creating ExtraKernel #%d from program. (clCreateKernel)", status, i);
return NULL;
}
}
}
size_t bufsize;
size_t buf1size;
size_t buf3size;
size_t buf2size;
size_t readbufsize = (algorithm->type == ALGO_CRE) ? 168 : 128;
if (algorithm->rw_buffer_size < 0) {
// calc buffer size for neoscrypt
if (algorithm->type == ALGO_NEOSCRYPT) {
/* The scratch/pad-buffer needs 32kBytes memory per thread. */
bufsize = NEOSCRYPT_SCRATCHBUF_SIZE * cgpu->thread_concurrency;
/* This is the input buffer. For neoscrypt this is guaranteed to be
* 80 bytes only. */
readbufsize = 80;
applog(LOG_DEBUG, "Neoscrypt buffer sizes: %lu RW, %lu R", (unsigned long)bufsize, (unsigned long)readbufsize);
// scrypt/n-scrypt
}
else if (algorithm->type == ALGO_PLUCK) {
/* The scratch/pad-buffer needs 32kBytes memory per thread. */
bufsize = PLUCK_SCRATCHBUF_SIZE * cgpu->thread_concurrency;
/* This is the input buffer. For pluck this is guaranteed to be
* 80 bytes only. */
readbufsize = 80;
applog(LOG_DEBUG, "pluck buffer sizes: %lu RW, %lu R", (unsigned long)bufsize, (unsigned long)readbufsize);
// scrypt/n-scrypt
}
else if (algorithm->type == ALGO_YESCRYPT || algorithm->type == ALGO_YESCRYPT_MULTI) {
/* The scratch/pad-buffer needs 32kBytes memory per thread. */
bufsize = YESCRYPT_SCRATCHBUF_SIZE * cgpu->thread_concurrency;
buf1size = PLUCK_SECBUF_SIZE * cgpu->thread_concurrency;
buf2size = 128 * 8 * 8 * cgpu->thread_concurrency;
buf3size= 8 * 8 * 4 * cgpu->thread_concurrency;
/* This is the input buffer. For yescrypt this is guaranteed to be
* 80 bytes only. */
readbufsize = 80;
applog(LOG_DEBUG, "yescrypt buffer sizes: %lu RW, %lu R", (unsigned long)bufsize, (unsigned long)readbufsize);
// scrypt/n-scrypt
}
else if (algorithm->type == ALGO_LYRA2REv2) {
/* The scratch/pad-buffer needs 32kBytes memory per thread. */
bufsize = LYRA_SCRATCHBUF_SIZE * cgpu->thread_concurrency;
buf1size = 4* 8 * cgpu->thread_concurrency; //matrix
/* This is the input buffer. For yescrypt this is guaranteed to be
* 80 bytes only. */
readbufsize = 80;
applog(LOG_DEBUG, "lyra2REv2 buffer sizes: %lu RW, %lu RW", (unsigned long)bufsize, (unsigned long)buf1size);
// scrypt/n-scrypt
}
else {
size_t ipt = (algorithm->n / cgpu->lookup_gap + (algorithm->n % cgpu->lookup_gap > 0));
bufsize = 128 * ipt * cgpu->thread_concurrency;
applog(LOG_DEBUG, "Scrypt buffer sizes: %lu RW, %lu R", (unsigned long)bufsize, (unsigned long)readbufsize);
}
}
else {
bufsize = (size_t)algorithm->rw_buffer_size;
applog(LOG_DEBUG, "Buffer sizes: %lu RW, %lu R", (unsigned long)bufsize, (unsigned long)readbufsize);
}
clState->padbuffer8 = NULL;
clState->buffer1 = NULL;
clState->buffer2 = NULL;
clState->buffer3 = NULL;
if (bufsize > 0) {
applog(LOG_DEBUG, "Creating read/write buffer sized %lu", (unsigned long)bufsize);
/* Use the max alloc value which has been rounded to a power of
* 2 greater >= required amount earlier */
if (bufsize > cgpu->max_alloc) {
applog(LOG_WARNING, "Maximum buffer memory device %d supports says %lu",
gpu, (unsigned long)(cgpu->max_alloc));
applog(LOG_WARNING, "Your settings come to %lu", (unsigned long)bufsize);
}
if (algorithm->type == ALGO_YESCRYPT || algorithm->type == ALGO_YESCRYPT_MULTI) {
// need additionnal buffers
clState->buffer1 = clCreateBuffer(clState->context, CL_MEM_READ_WRITE, buf1size, NULL, &status);
if (status != CL_SUCCESS && !clState->buffer1) {
applog(LOG_DEBUG, "Error %d: clCreateBuffer (buffer1), decrease TC or increase LG", status);
return NULL;
}
clState->buffer2 = clCreateBuffer(clState->context, CL_MEM_READ_WRITE, buf2size, NULL, &status);
if (status != CL_SUCCESS && !clState->buffer2) {
applog(LOG_DEBUG, "Error %d: clCreateBuffer (buffer2), decrease TC or increase LG", status);
return NULL;
}
clState->buffer3 = clCreateBuffer(clState->context, CL_MEM_READ_WRITE, buf3size, NULL, &status);
if (status != CL_SUCCESS && !clState->buffer3) {
applog(LOG_DEBUG, "Error %d: clCreateBuffer (buffer3), decrease TC or increase LG", status);
return NULL;
}
}
else if (algorithm->type == ALGO_LYRA2REv2) {
// need additionnal buffers
clState->buffer1 = clCreateBuffer(clState->context, CL_MEM_READ_WRITE, buf1size, NULL, &status);
if (status != CL_SUCCESS && !clState->buffer1) {
applog(LOG_DEBUG, "Error %d: clCreateBuffer (buffer1), decrease TC or increase LG", status);
return NULL;
}
}
else {
clState->buffer1 = clCreateBuffer(clState->context, CL_MEM_READ_WRITE, bufsize, NULL, &status); // we don't need that much just tired...
if (status != CL_SUCCESS && !clState->buffer1) {
applog(LOG_DEBUG, "Error %d: clCreateBuffer (buffer1), decrease TC or increase LG", status);
return NULL;
}
}
/* This buffer is weird and might work to some degree even if
* the create buffer call has apparently failed, so check if we
* get anything back before we call it a failure. */
clState->padbuffer8 = clCreateBuffer(clState->context, CL_MEM_READ_WRITE, bufsize, NULL, &status);
if (status != CL_SUCCESS && !clState->padbuffer8) {
applog(LOG_ERR, "Error %d: clCreateBuffer (padbuffer8), decrease TC or increase LG", status);
return NULL;
}
}
applog(LOG_DEBUG, "Using read buffer sized %lu", (unsigned long)readbufsize);
clState->CLbuffer0 = clCreateBuffer(clState->context, CL_MEM_READ_ONLY, readbufsize, NULL, &status);
if (status != CL_SUCCESS) {
applog(LOG_ERR, "Error %d: clCreateBuffer (CLbuffer0)", status);
return NULL;
}
applog(LOG_DEBUG, "Using output buffer sized %lu", BUFFERSIZE);
clState->outputBuffer = clCreateBuffer(clState->context, CL_MEM_WRITE_ONLY, BUFFERSIZE, NULL, &status);
if (status != CL_SUCCESS) {
applog(LOG_ERR, "Error %d: clCreateBuffer (outputBuffer)", status);
return NULL;
}
return clState;
}