OpenCL GPU miner
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

1146 lines
39 KiB

/*
* Copyright 2014 sgminer developers
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version. See COPYING for more details.
*/
#include "algorithm.h"
#include "sph/sph_sha2.h"
#include "ocl.h"
#include "ocl/build_kernel.h"
#include "algorithm/scrypt.h"
#include "algorithm/animecoin.h"
#include "algorithm/inkcoin.h"
#include "algorithm/quarkcoin.h"
#include "algorithm/qubitcoin.h"
#include "algorithm/sifcoin.h"
#include "algorithm/darkcoin.h"
#include "algorithm/myriadcoin-groestl.h"
#include "algorithm/fuguecoin.h"
#include "algorithm/groestlcoin.h"
#include "algorithm/twecoin.h"
#include "algorithm/marucoin.h"
#include "algorithm/maxcoin.h"
#include "algorithm/talkcoin.h"
#include "algorithm/bitblock.h"
#include "algorithm/x14.h"
#include "algorithm/fresh.h"
#include "algorithm/whirlcoin.h"
#include "algorithm/neoscrypt.h"
#include "algorithm/whirlpoolx.h"
#include "algorithm/lyra2re.h"
#include "algorithm/lyra2re_old.h"
#include "algorithm/pluck.h"
#include "algorithm/yescrypt.h"
#include "algorithm/credits.h"
#include "compat.h"
#include <inttypes.h>
#include <string.h>
const char *algorithm_type_str[] = {
"Unknown",
"Credits",
"Scrypt",
"NScrypt",
"X11",
"X13",
"X14",
"X15",
"Keccak",
"Quarkcoin",
"Twecoin",
"Fugue256",
"NIST",
"Fresh",
"Whirlcoin",
"Neoscrypt",
"WhirlpoolX",
"Lyra2RE",
"Lyra2REv2"
"Pluck"
"Yescrypt",
"Yescrypt-multi"
};
void sha256(const unsigned char *message, unsigned int len, unsigned char *digest)
{
sph_sha256_context ctx_sha2;
sph_sha256_init(&ctx_sha2);
sph_sha256(&ctx_sha2, message, len);
sph_sha256_close(&ctx_sha2, (void*)digest);
}
void gen_hash(const unsigned char *data, unsigned int len, unsigned char *hash)
{
unsigned char hash1[32];
sph_sha256_context ctx_sha2;
sph_sha256_init(&ctx_sha2);
sph_sha256(&ctx_sha2, data, len);
sph_sha256_close(&ctx_sha2, hash1);
sph_sha256(&ctx_sha2, hash1, 32);
sph_sha256_close(&ctx_sha2, hash);
}
#define CL_SET_BLKARG(blkvar) status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->blkvar)
#define CL_SET_VARG(args, var) status |= clSetKernelArg(*kernel, num++, args * sizeof(uint), (void *)var)
#define CL_SET_ARG_N(n, var) do { status |= clSetKernelArg(*kernel, n, sizeof(var), (void *)&var); } while (0)
#define CL_SET_ARG_0(var) CL_SET_ARG_N(0, var)
#define CL_SET_ARG(var) CL_SET_ARG_N(num++, var)
#define CL_NEXTKERNEL_SET_ARG_N(n, var) do { kernel++; CL_SET_ARG_N(n, var); } while (0)
#define CL_NEXTKERNEL_SET_ARG_0(var) CL_NEXTKERNEL_SET_ARG_N(0, var)
#define CL_NEXTKERNEL_SET_ARG(var) CL_NEXTKERNEL_SET_ARG_N(num++, var)
static void append_scrypt_compiler_options(struct _build_kernel_data *data, struct cgpu_info *cgpu, struct _algorithm_t *algorithm)
{
char buf[255];
sprintf(buf, " -D LOOKUP_GAP=%d -D CONCURRENT_THREADS=%u -D NFACTOR=%d",
cgpu->lookup_gap, (unsigned int)cgpu->thread_concurrency, algorithm->nfactor);
strcat(data->compiler_options, buf);
sprintf(buf, "lg%utc%unf%u", cgpu->lookup_gap, (unsigned int)cgpu->thread_concurrency, algorithm->nfactor);
strcat(data->binary_filename, buf);
}
static void append_neoscrypt_compiler_options(struct _build_kernel_data *data, struct cgpu_info *cgpu, struct _algorithm_t *algorithm)
{
char buf[255];
sprintf(buf, " %s-D MAX_GLOBAL_THREADS=%lu ",
((cgpu->lookup_gap > 0) ? " -D LOOKUP_GAP=2 " : ""), (unsigned long)cgpu->thread_concurrency);
strcat(data->compiler_options, buf);
sprintf(buf, "%stc%lu", ((cgpu->lookup_gap > 0) ? "lg" : ""), (unsigned long)cgpu->thread_concurrency);
strcat(data->binary_filename, buf);
}
static void append_x11_compiler_options(struct _build_kernel_data *data, struct cgpu_info *cgpu, struct _algorithm_t *algorithm)
{
char buf[255];
sprintf(buf, " -D SPH_COMPACT_BLAKE_64=%d -D SPH_LUFFA_PARALLEL=%d -D SPH_KECCAK_UNROLL=%u ",
((opt_blake_compact) ? 1 : 0), ((opt_luffa_parallel) ? 1 : 0), (unsigned int)opt_keccak_unroll);
strcat(data->compiler_options, buf);
sprintf(buf, "ku%u%s%s", (unsigned int)opt_keccak_unroll, ((opt_blake_compact) ? "bc" : ""), ((opt_luffa_parallel) ? "lp" : ""));
strcat(data->binary_filename, buf);
}
static void append_x13_compiler_options(struct _build_kernel_data *data, struct cgpu_info *cgpu, struct _algorithm_t *algorithm)
{
char buf[255];
append_x11_compiler_options(data, cgpu, algorithm);
sprintf(buf, " -D SPH_HAMSI_EXPAND_BIG=%d -D SPH_HAMSI_SHORT=%d ",
(unsigned int)opt_hamsi_expand_big, ((opt_hamsi_short) ? 1 : 0));
strcat(data->compiler_options, buf);
sprintf(buf, "big%u%s", (unsigned int)opt_hamsi_expand_big, ((opt_hamsi_short) ? "hs" : ""));
strcat(data->binary_filename, buf);
}
static cl_int queue_scrypt_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
unsigned char *midstate = blk->work->midstate;
cl_kernel *kernel = &clState->kernel;
unsigned int num = 0;
cl_uint le_target;
cl_int status = 0;
le_target = *(cl_uint *)(blk->work->device_target + 28);
memcpy(clState->cldata, blk->work->data, 80);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(clState->padbuffer8);
CL_SET_VARG(4, &midstate[0]);
CL_SET_VARG(4, &midstate[16]);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_neoscrypt_kernel(_clState *clState, dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel = &clState->kernel;
unsigned int num = 0;
cl_uint le_target;
cl_int status = 0;
/* This looks like a unnecessary double cast, but to make sure, that
* the target's most significant entry is adressed as a 32-bit value
* and not accidently by something else the double cast seems wise.
* The compiler will get rid of it anyway. */
le_target = (cl_uint)le32toh(((uint32_t *)blk->work->/*device_*/target)[7]);
memcpy(clState->cldata, blk->work->data, 80);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_credits_kernel(_clState *clState, dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel = &clState->kernel;
unsigned int num = 0;
cl_ulong le_target;
cl_int status = 0;
// le_target = (*(cl_uint *)(blk->work->device_target + 24));
le_target = (cl_ulong)le64toh(((uint64_t *)blk->work->/*device_*/target)[3]);
// le_target = (cl_uint)((uint32_t *)blk->work->target)[6];
memcpy(clState->cldata, blk->work->data, 168);
// flip168(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 168, clState->cldata, 0, NULL, NULL);
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(le_target);
CL_SET_ARG(blk->work->midstate);
return status;
}
static cl_int queue_yescrypt_kernel(_clState *clState, dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel = &clState->kernel;
unsigned int num = 0;
cl_uint le_target;
cl_int status = 0;
// le_target = (*(cl_uint *)(blk->work->device_target + 28));
le_target = (cl_uint)le32toh(((uint32_t *)blk->work->/*device_*/target)[7]);
// le_target = (cl_uint)((uint32_t *)blk->work->target)[7];
// memcpy(clState->cldata, blk->work->data, 80);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(clState->buffer1);
CL_SET_ARG(clState->buffer2);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_yescrypt_multikernel(_clState *clState, dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
// cl_kernel *kernel = &clState->kernel;
cl_kernel *kernel;
unsigned int num = 0;
cl_uint le_target;
cl_int status = 0;
// le_target = (*(cl_uint *)(blk->work->device_target + 28));
le_target = (cl_uint)le32toh(((uint32_t *)blk->work->/*device_*/target)[7]);
memcpy(clState->cldata, blk->work->data, 80);
// flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
//pbkdf and initial sha
kernel = &clState->kernel;
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(clState->buffer1);
CL_SET_ARG(clState->buffer2);
CL_SET_ARG(clState->buffer3);
CL_SET_ARG(le_target);
//inactive kernel
num = 0;
kernel = clState->extra_kernels;
CL_SET_ARG_N(0,clState->buffer1);
CL_SET_ARG_N(1,clState->buffer2);
// CL_SET_ARG_N(3, clState->buffer3);
//mix2_2
num = 0;
CL_NEXTKERNEL_SET_ARG_N(0, clState->padbuffer8);
CL_SET_ARG_N(1,clState->buffer1);
CL_SET_ARG_N(2,clState->buffer2);
//mix2_2
//inactive kernel
num = 0;
CL_NEXTKERNEL_SET_ARG_N(0, clState->buffer1);
CL_SET_ARG_N(1, clState->buffer2);
//mix2_2
num = 0;
CL_NEXTKERNEL_SET_ARG_N(0, clState->padbuffer8);
CL_SET_ARG_N(1, clState->buffer1);
CL_SET_ARG_N(2, clState->buffer2);
//inactive kernel
num = 0;
CL_NEXTKERNEL_SET_ARG_N(0, clState->buffer1);
CL_SET_ARG_N(1, clState->buffer2);
//mix2_2
//pbkdf and finalization
num=0;
CL_NEXTKERNEL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(clState->buffer2);
CL_SET_ARG(clState->buffer3);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_maxcoin_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel = &clState->kernel;
unsigned int num = 0;
cl_int status = 0;
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer);
return status;
}
static cl_int queue_sph_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel = &clState->kernel;
unsigned int num = 0;
cl_ulong le_target;
cl_int status = 0;
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_darkcoin_mod_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel;
unsigned int num;
cl_ulong le_target;
cl_int status = 0;
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
num = 0;
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->padbuffer8);
// bmw - search1
kernel = clState->extra_kernels;
CL_SET_ARG_0(clState->padbuffer8);
// groestl - search2
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// skein - search3
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// jh - search4
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// keccak - search5
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// luffa - search6
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// cubehash - search7
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// shavite - search8
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// simd - search9
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// echo - search10
num = 0;
CL_NEXTKERNEL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_bitblock_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel;
unsigned int num;
cl_ulong le_target;
cl_int status = 0;
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
num = 0;
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->padbuffer8);
// bmw - search1
kernel = clState->extra_kernels;
CL_SET_ARG_0(clState->padbuffer8);
// groestl - search2
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// skein - search3
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// jh - search4
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// keccak - search5
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// luffa - search6
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// cubehash - search7
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// shavite - search8
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// simd - search9
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// echo - search10
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// hamsi - search11
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// fugue - search12
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// hamsi - search11
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// fugue - search12
num = 0;
CL_NEXTKERNEL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_bitblockold_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel;
unsigned int num;
cl_ulong le_target;
cl_int status = 0;
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
num = 0;
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->padbuffer8);
// bmw - search1
kernel = clState->extra_kernels;
CL_SET_ARG_0(clState->padbuffer8);
// groestl - search2
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// skein - search3
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// jh - search4
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// keccak - search5
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// luffa - search6
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// cubehash - search7
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// shavite - search8
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// simd - search9
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// combined echo, hamsi, fugue - shabal - whirlpool - search10
num = 0;
CL_NEXTKERNEL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_marucoin_mod_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel;
unsigned int num;
cl_ulong le_target;
cl_int status = 0;
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
num = 0;
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->padbuffer8);
// bmw - search1
kernel = clState->extra_kernels;
CL_SET_ARG_0(clState->padbuffer8);
// groestl - search2
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// skein - search3
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// jh - search4
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// keccak - search5
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// luffa - search6
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// cubehash - search7
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// shavite - search8
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// simd - search9
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// echo - search10
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// hamsi - search11
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// fugue - search12
num = 0;
CL_NEXTKERNEL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_marucoin_mod_old_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel;
unsigned int num;
cl_ulong le_target;
cl_int status = 0;
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
num = 0;
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->padbuffer8);
// bmw - search1
kernel = clState->extra_kernels;
CL_SET_ARG_0(clState->padbuffer8);
// groestl - search2
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// skein - search3
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// jh - search4
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// keccak - search5
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// luffa - search6
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// cubehash - search7
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// shavite - search8
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// simd - search9
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// combined echo, hamsi, fugue - search10
num = 0;
CL_NEXTKERNEL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_talkcoin_mod_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel;
unsigned int num;
cl_ulong le_target;
cl_int status = 0;
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
num = 0;
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->padbuffer8);
// groestl - search1
kernel = clState->extra_kernels;
CL_SET_ARG_0(clState->padbuffer8);
// jh - search2
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// keccak - search3
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// skein - search4
num = 0;
CL_NEXTKERNEL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_x14_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel;
unsigned int num;
cl_ulong le_target;
cl_int status = 0;
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
num = 0;
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->padbuffer8);
// bmw - search1
kernel = clState->extra_kernels;
CL_SET_ARG_0(clState->padbuffer8);
// groestl - search2
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// skein - search3
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// jh - search4
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// keccak - search5
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// luffa - search6
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// cubehash - search7
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// shavite - search8
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// simd - search9
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// echo - search10
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// hamsi - search11
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// fugue - search12
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// shabal - search13
num = 0;
CL_NEXTKERNEL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_x14_old_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel;
unsigned int num;
cl_ulong le_target;
cl_int status = 0;
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
num = 0;
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->padbuffer8);
// bmw - search1
kernel = clState->extra_kernels;
CL_SET_ARG_0(clState->padbuffer8);
// groestl - search2
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// skein - search3
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// jh - search4
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// keccak - search5
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// luffa - search6
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// cubehash - search7
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// shavite - search8
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// simd - search9
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// combined echo, hamsi, fugue - shabal - search10
num = 0;
CL_NEXTKERNEL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_fresh_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel;
unsigned int num;
cl_ulong le_target;
cl_int status = 0;
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// shavite 1 - search
kernel = &clState->kernel;
num = 0;
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->padbuffer8);
// smid 1 - search1
kernel = clState->extra_kernels;
CL_SET_ARG_0(clState->padbuffer8);
// shavite 2 - search2
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// smid 2 - search3
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// echo - search4
num = 0;
CL_NEXTKERNEL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_whirlcoin_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel;
cl_ulong le_target;
cl_int status = 0;
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
//clbuffer, hashes
kernel = &clState->kernel;
CL_SET_ARG_N(0, clState->CLbuffer0);
CL_SET_ARG_N(1, clState->padbuffer8);
kernel = clState->extra_kernels;
CL_SET_ARG_N(0, clState->padbuffer8);
CL_NEXTKERNEL_SET_ARG_N(0, clState->padbuffer8);
//hashes, output, target
CL_NEXTKERNEL_SET_ARG_N(0, clState->padbuffer8);
CL_SET_ARG_N(1, clState->outputBuffer);
CL_SET_ARG_N(2, le_target);
return status;
}
static cl_int queue_whirlpoolx_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
uint64_t midblock[8], key[8] = { 0 }, tmp[8] = { 0 };
cl_ulong le_target;
cl_int status;
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
memcpy(midblock, clState->cldata, 64);
// midblock = n, key = h
for (int i = 0; i < 10; ++i) {
tmp[0] = WHIRLPOOL_ROUND_CONSTANTS[i];
whirlpool_round(key, tmp);
tmp[0] = 0;
whirlpool_round(midblock, tmp);
for (int x = 0; x < 8; ++x) {
midblock[x] ^= key[x];
}
}
for (int i = 0; i < 8; ++i) {
midblock[i] ^= ((uint64_t *)(clState->cldata))[i];
}
status = clSetKernelArg(clState->kernel, 0, sizeof(cl_ulong8), (cl_ulong8 *)&midblock);
status |= clSetKernelArg(clState->kernel, 1, sizeof(cl_ulong), (void *)(((uint64_t *)clState->cldata) + 8));
status |= clSetKernelArg(clState->kernel, 2, sizeof(cl_ulong), (void *)(((uint64_t *)clState->cldata) + 9));
status |= clSetKernelArg(clState->kernel, 3, sizeof(cl_mem), (void *)&clState->outputBuffer);
status |= clSetKernelArg(clState->kernel, 4, sizeof(cl_ulong), (void *)&le_target);
return status;
}
static cl_int queue_lyra2RE_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel;
unsigned int num;
cl_int status = 0;
cl_ulong le_target;
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
num = 0;
CL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(blk->work->blk.ctx_a);
CL_SET_ARG(blk->work->blk.ctx_b);
CL_SET_ARG(blk->work->blk.ctx_c);
CL_SET_ARG(blk->work->blk.ctx_d);
CL_SET_ARG(blk->work->blk.ctx_e);
CL_SET_ARG(blk->work->blk.ctx_f);
CL_SET_ARG(blk->work->blk.ctx_g);
CL_SET_ARG(blk->work->blk.ctx_h);
CL_SET_ARG(blk->work->blk.cty_a);
CL_SET_ARG(blk->work->blk.cty_b);
CL_SET_ARG(blk->work->blk.cty_c);
// bmw - search1
kernel = clState->extra_kernels;
CL_SET_ARG_0(clState->padbuffer8);
// groestl - search2
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// skein - search3
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
// jh - search4
num = 0;
CL_NEXTKERNEL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_lyra2REv2_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel;
unsigned int num;
cl_int status = 0;
cl_ulong le_target;
// le_target = *(cl_uint *)(blk->work->device_target + 28);
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
num = 0;
// CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->buffer1);
CL_SET_ARG(blk->work->blk.ctx_a);
CL_SET_ARG(blk->work->blk.ctx_b);
CL_SET_ARG(blk->work->blk.ctx_c);
CL_SET_ARG(blk->work->blk.ctx_d);
CL_SET_ARG(blk->work->blk.ctx_e);
CL_SET_ARG(blk->work->blk.ctx_f);
CL_SET_ARG(blk->work->blk.ctx_g);
CL_SET_ARG(blk->work->blk.ctx_h);
CL_SET_ARG(blk->work->blk.cty_a);
CL_SET_ARG(blk->work->blk.cty_b);
CL_SET_ARG(blk->work->blk.cty_c);
// keccak - search1
kernel = clState->extra_kernels;
CL_SET_ARG_0(clState->buffer1);
// cubehash - search2
num = 0;
CL_NEXTKERNEL_SET_ARG_0(clState->buffer1);
// lyra - search3
num = 0;
CL_NEXTKERNEL_SET_ARG_N(0, clState->buffer1);
CL_SET_ARG_N(1, clState->padbuffer8);
// skein -search4
num = 0;
CL_NEXTKERNEL_SET_ARG_0(clState->buffer1);
// cubehash - search5
num = 0;
CL_NEXTKERNEL_SET_ARG_0(clState->buffer1);
// bmw - search6
num = 0;
CL_NEXTKERNEL_SET_ARG(clState->buffer1);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_pluck_kernel(_clState *clState, dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel = &clState->kernel;
unsigned int num = 0;
cl_uint le_target;
cl_int status = 0;
le_target = (cl_uint)le32toh(((uint32_t *)blk->work->/*device_*/target)[7]);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(le_target);
return status;
}
static algorithm_settings_t algos[] = {
// kernels starting from this will have difficulty calculated by using litecoin algorithm
#define A_SCRYPT(a) \
{ a, ALGO_SCRYPT, "", 1, 65536, 65536, 0, 0, 0xFF, 0xFFFFFFFFULL, 0x0000ffffUL, 0, -1, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, scrypt_regenhash, queue_scrypt_kernel, gen_hash, append_scrypt_compiler_options }
A_SCRYPT("ckolivas"),
A_SCRYPT("alexkarnew"),
A_SCRYPT("alexkarnold"),
A_SCRYPT("bufius"),
A_SCRYPT("psw"),
A_SCRYPT("zuikkis"),
A_SCRYPT("arebyp"),
#undef A_SCRYPT
#define A_NEOSCRYPT(a) \
{ a, ALGO_NEOSCRYPT, "", 1, 65536, 65536, 0, 0, 0xFF, 0xFFFF000000000000ULL, 0x0000ffffUL, 0, -1, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, neoscrypt_regenhash, queue_neoscrypt_kernel, gen_hash, append_neoscrypt_compiler_options }
A_NEOSCRYPT("neoscrypt"),
#undef A_NEOSCRYPT
#define A_PLUCK(a) \
{ a, ALGO_PLUCK, "", 1, 65536, 65536, 0, 0, 0xFF, 0xFFFF000000000000ULL, 0x0000ffffUL, 0, -1, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, pluck_regenhash, queue_pluck_kernel, gen_hash, append_neoscrypt_compiler_options }
A_PLUCK("pluck"),
#undef A_PLUCK
#define A_CREDITS(a) \
{ a, ALGO_CRE, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFF000000000000ULL, 0x0000ffffUL, 0, -1, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, credits_regenhash, queue_credits_kernel, gen_hash, NULL}
A_CREDITS("credits"),
#undef A_CREDITS
#define A_YESCRYPT(a) \
{ a, ALGO_YESCRYPT, "", 1, 65536, 65536, 0, 0, 0xFF, 0xFFFF000000000000ULL, 0x0000ffffUL, 0, -1, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, yescrypt_regenhash, queue_yescrypt_kernel, gen_hash, append_neoscrypt_compiler_options}
A_YESCRYPT("yescrypt"),
#undef A_YESCRYPT
#define A_YESCRYPT_MULTI(a) \
{ a, ALGO_YESCRYPT_MULTI, "", 1, 65536, 65536, 0, 0, 0xFF, 0xFFFF000000000000ULL, 0x0000ffffUL, 6,-1,CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE , yescrypt_regenhash, queue_yescrypt_multikernel, gen_hash, append_neoscrypt_compiler_options}
A_YESCRYPT_MULTI("yescrypt-multi"),
#undef A_YESCRYPT_MULTI
// kernels starting from this will have difficulty calculated by using quarkcoin algorithm
#define A_QUARK(a, b) \
{ a, ALGO_QUARK, "", 256, 256, 256, 0, 0, 0xFF, 0xFFFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, b, queue_sph_kernel, gen_hash, append_x11_compiler_options }
A_QUARK("quarkcoin", quarkcoin_regenhash),
A_QUARK("qubitcoin", qubitcoin_regenhash),
A_QUARK("animecoin", animecoin_regenhash),
A_QUARK("sifcoin", sifcoin_regenhash),
#undef A_QUARK
// kernels starting from this will have difficulty calculated by using bitcoin algorithm
#define A_DARK(a, b) \
{ a, ALGO_X11, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, b, queue_sph_kernel, gen_hash, append_x11_compiler_options }
A_DARK("darkcoin", darkcoin_regenhash),
A_DARK("inkcoin", inkcoin_regenhash),
A_DARK("myriadcoin-groestl", myriadcoin_groestl_regenhash),
#undef A_DARK
{ "twecoin", ALGO_TWE, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, twecoin_regenhash, queue_sph_kernel, sha256, NULL },
{ "maxcoin", ALGO_KECCAK, "", 1, 256, 1, 4, 15, 0x0F, 0xFFFFULL, 0x000000ffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, maxcoin_regenhash, queue_maxcoin_kernel, sha256, NULL },
{ "darkcoin-mod", ALGO_X11, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 10, 8 * 16 * 4194304, 0, darkcoin_regenhash, queue_darkcoin_mod_kernel, gen_hash, append_x11_compiler_options },
{ "marucoin", ALGO_X13, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, marucoin_regenhash, queue_sph_kernel, gen_hash, append_x13_compiler_options },
{ "marucoin-mod", ALGO_X13, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 12, 8 * 16 * 4194304, 0, marucoin_regenhash, queue_marucoin_mod_kernel, gen_hash, append_x13_compiler_options },
{ "marucoin-modold", ALGO_X13, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 10, 8 * 16 * 4194304, 0, marucoin_regenhash, queue_marucoin_mod_old_kernel, gen_hash, append_x13_compiler_options },
{ "x14", ALGO_X14, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 13, 8 * 16 * 4194304, 0, x14_regenhash, queue_x14_kernel, gen_hash, append_x13_compiler_options },
{ "x14old", ALGO_X14, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 10, 8 * 16 * 4194304, 0, x14_regenhash, queue_x14_old_kernel, gen_hash, append_x13_compiler_options },
{ "bitblock", ALGO_X15, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 14, 4 * 16 * 4194304, 0, bitblock_regenhash, queue_bitblock_kernel, gen_hash, append_x13_compiler_options },
{ "bitblockold", ALGO_X15, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 10, 4 * 16 * 4194304, 0, bitblock_regenhash, queue_bitblockold_kernel, gen_hash, append_x13_compiler_options },
{ "talkcoin-mod", ALGO_NIST, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 4, 8 * 16 * 4194304, 0, talkcoin_regenhash, queue_talkcoin_mod_kernel, gen_hash, append_x11_compiler_options },
{ "fresh", ALGO_FRESH, "", 1, 256, 256, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 4, 4 * 16 * 4194304, 0, fresh_regenhash, queue_fresh_kernel, gen_hash, NULL },
{ "lyra2re", ALGO_LYRA2RE, "", 1, 128, 128, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 4, 2 * 8 * 4194304, 0, lyra2reold_regenhash, queue_lyra2RE_kernel, gen_hash, NULL },
{ "lyra2rev2", ALGO_LYRA2REv2, "", 1, 256, 256, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 6, -1, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, lyra2re_regenhash, queue_lyra2REv2_kernel, gen_hash, append_neoscrypt_compiler_options },
// kernels starting from this will have difficulty calculated by using fuguecoin algorithm
#define A_FUGUE(a, b, c) \
{ a, ALGO_FUGUE, "", 1, 256, 256, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, b, queue_sph_kernel, c, NULL }
A_FUGUE("fuguecoin", fuguecoin_regenhash, sha256),
A_FUGUE("groestlcoin", groestlcoin_regenhash, sha256),
A_FUGUE("diamond", groestlcoin_regenhash, gen_hash),
#undef A_FUGUE
{ "whirlcoin", ALGO_WHIRL, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 3, 8 * 16 * 4194304, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, whirlcoin_regenhash, queue_whirlcoin_kernel, sha256, NULL },
{ "whirlpoolx", ALGO_WHIRLPOOLX, "", 1, 1, 1, 0, 0, 0xFFU, 0xFFFFULL, 0x0000FFFFUL, 0, 0, 0, whirlpoolx_regenhash, queue_whirlpoolx_kernel, gen_hash, NULL },
// Terminator (do not remove)
{ NULL, ALGO_UNK, "", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL }
};
void copy_algorithm_settings(algorithm_t* dest, const char* algo)
{
algorithm_settings_t* src;
// Find algorithm settings and copy
for (src = algos; src->name; src++)
{
if (strcmp(src->name, algo) == 0)
{
strcpy(dest->name, src->name);
dest->kernelfile = src->kernelfile;
dest->type = src->type;
dest->diff_multiplier1 = src->diff_multiplier1;
dest->diff_multiplier2 = src->diff_multiplier2;
dest->share_diff_multiplier = src->share_diff_multiplier;
dest->xintensity_shift = src->xintensity_shift;
dest->intensity_shift = src->intensity_shift;
dest->found_idx = src->found_idx;
dest->diff_numerator = src->diff_numerator;
dest->diff1targ = src->diff1targ;
dest->n_extra_kernels = src->n_extra_kernels;
dest->rw_buffer_size = src->rw_buffer_size;
dest->cq_properties = src->cq_properties;
dest->regenhash = src->regenhash;
dest->queue_kernel = src->queue_kernel;
dest->gen_hash = src->gen_hash;
dest->set_compile_options = src->set_compile_options;
break;
}
}
// if not found
if (src->name == NULL)
{
applog(LOG_WARNING, "Algorithm %s not found, using %s.", algo, algos->name);
copy_algorithm_settings(dest, algos->name);
}
}
static const char *lookup_algorithm_alias(const char *lookup_alias, uint8_t *nfactor)
{
#define ALGO_ALIAS_NF(alias, name, nf) \
if (strcasecmp(alias, lookup_alias) == 0) { *nfactor = nf; return name; }
#define ALGO_ALIAS(alias, name) \
if (strcasecmp(alias, lookup_alias) == 0) return name;
ALGO_ALIAS_NF("scrypt", "ckolivas", 10);
ALGO_ALIAS_NF("scrypt", "ckolivas", 10);
ALGO_ALIAS_NF("adaptive-n-factor", "ckolivas", 11);
ALGO_ALIAS_NF("adaptive-nfactor", "ckolivas", 11);
ALGO_ALIAS_NF("nscrypt", "ckolivas", 11);
ALGO_ALIAS_NF("adaptive-nscrypt", "ckolivas", 11);
ALGO_ALIAS_NF("adaptive-n-scrypt", "ckolivas", 11);
ALGO_ALIAS("x11mod", "darkcoin-mod");
ALGO_ALIAS("x11", "darkcoin-mod");
ALGO_ALIAS("x13mod", "marucoin-mod");
ALGO_ALIAS("x13", "marucoin-mod");
ALGO_ALIAS("x13old", "marucoin-modold");
ALGO_ALIAS("x13modold", "marucoin-modold");
ALGO_ALIAS("x15mod", "bitblock");
ALGO_ALIAS("x15", "bitblock");
ALGO_ALIAS("x15modold", "bitblockold");
ALGO_ALIAS("x15old", "bitblockold");
ALGO_ALIAS("nist5", "talkcoin-mod");
ALGO_ALIAS("keccak", "maxcoin");
ALGO_ALIAS("whirlpool", "whirlcoin");
ALGO_ALIAS("lyra2", "lyra2re");
ALGO_ALIAS("lyra2v2", "lyra2rev2");
#undef ALGO_ALIAS
#undef ALGO_ALIAS_NF
return NULL;
}
void set_algorithm(algorithm_t* algo, const char* newname_alias)
{
const char *newname;
//load previous algorithm nfactor in case nfactor was applied before algorithm... or default to 10
uint8_t old_nfactor = ((algo->nfactor) ? algo->nfactor : 0);
//load previous kernel file name if was applied before algorithm...
const char *kernelfile = algo->kernelfile;
uint8_t nfactor = 10;
if (!(newname = lookup_algorithm_alias(newname_alias, &nfactor)))
newname = newname_alias;
copy_algorithm_settings(algo, newname);
// use old nfactor if it was previously set and is different than the one set by alias
if ((old_nfactor > 0) && (old_nfactor != nfactor))
nfactor = old_nfactor;
set_algorithm_nfactor(algo, nfactor);
//reapply kernelfile if was set
if (!empty_string(kernelfile)) {
algo->kernelfile = kernelfile;
}
}
void set_algorithm_nfactor(algorithm_t* algo, const uint8_t nfactor)
{
algo->nfactor = nfactor;
algo->n = (1 << nfactor);
//adjust algo type accordingly
switch (algo->type)
{
case ALGO_SCRYPT:
//if nfactor isnt 10, switch to NSCRYPT
if (algo->nfactor != 10)
algo->type = ALGO_NSCRYPT;
break;
//nscrypt
case ALGO_NSCRYPT:
//if nfactor is 10, switch to SCRYPT
if (algo->nfactor == 10)
algo->type = ALGO_SCRYPT;
break;
//ignore rest
default:
break;
}
}
bool cmp_algorithm(const algorithm_t* algo1, const algorithm_t* algo2)
{
return (!safe_cmp(algo1->name, algo2->name) && !safe_cmp(algo1->kernelfile, algo2->kernelfile) && (algo1->nfactor == algo2->nfactor));
}