mirror of
https://github.com/GOSTSec/sgminer
synced 2025-01-10 06:48:05 +00:00
421 lines
13 KiB
Common Lisp
421 lines
13 KiB
Common Lisp
// This file is taken and modified from the public-domain poclbm project, and
|
|
// I have therefore decided to keep it public-domain.
|
|
|
|
|
|
#define VECTORSX
|
|
#define BFI_INTX
|
|
#define BITALIGNX
|
|
|
|
#ifdef VECTORS4
|
|
typedef uint4 u;
|
|
#else
|
|
#ifdef VECTORS2
|
|
typedef uint2 u;
|
|
#else
|
|
typedef uint u;
|
|
#endif
|
|
#endif
|
|
|
|
__constant uint K[64] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
};
|
|
|
|
__constant uint ConstW[128] = {
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x80000000U, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000280U,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x80000000U, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000100U,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000
|
|
};
|
|
|
|
__constant uint H[8] = {
|
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
|
|
};
|
|
|
|
|
|
#ifdef BITALIGN
|
|
#pragma OPENCL EXTENSION cl_amd_media_ops : enable
|
|
#define rot(x, y) amd_bitalign(x, x, (uint)(32 - y))
|
|
#else
|
|
#define rot(x, y) rotate(x, (uint)y)
|
|
#endif
|
|
|
|
// This part is not from the stock poclbm kernel. It's part of an optimization
|
|
// added in the Phoenix Miner.
|
|
|
|
// Some AMD devices have Vals[0] BFI_INT opcode, which behaves exactly like the
|
|
// SHA-256 Ch function, but provides it in exactly one instruction. If
|
|
// detected, use it for Ch. Otherwise, construct Ch out of simpler logical
|
|
// primitives.
|
|
|
|
#ifdef BFI_INT
|
|
// Well, slight problem... It turns out BFI_INT isn't actually exposed to
|
|
// OpenCL (or CAL IL for that matter) in any way. However, there is
|
|
// a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via
|
|
// amd_bytealign, takes the same inputs, and provides the same output.
|
|
// We can use that as a placeholder for BFI_INT and have the application
|
|
// patch it after compilation.
|
|
|
|
// This is the BFI_INT function
|
|
#define Ch(x, y, z) amd_bytealign(x,y,z)
|
|
// Ma can also be implemented in terms of BFI_INT...
|
|
#define Ma(z, x, y) amd_bytealign(z^x,y,x)
|
|
#else
|
|
#define Ch(x, y, z) bitselect(x,y,z)
|
|
// Ma can also be implemented in terms of bitselect
|
|
#define Ma(z, x, y) bitselect(z^x,y,x)
|
|
#endif
|
|
|
|
|
|
//Various intermediate calculations for each SHA round
|
|
#define s0(n) (S0(Vals[(0 + 128 - (n)) % 8]))
|
|
#define S0(n) (rot(n, 30u)^rot(n, 19u)^rot(n,10u))
|
|
|
|
#define s1(n) (S1(Vals[(4 + 128 - (n)) % 8]))
|
|
#define S1(n) (rot(n, 26u)^rot(n, 21u)^rot(n, 7u))
|
|
|
|
#define ch(n) Ch(Vals[(4 + 128 - (n)) % 8],Vals[(5 + 128 - (n)) % 8],Vals[(6 + 128 - (n)) % 8])
|
|
#define maj(n) Ma(Vals[(1 + 128 - (n)) % 8],Vals[(2 + 128 - (n)) % 8],Vals[(0 + 128 - (n)) % 8])
|
|
|
|
//t1 calc when W is already calculated
|
|
#define t1(n) K[(n) % 64] + Vals[(7 + 128 - (n)) % 8] + W[(n)] + s1(n) + ch(n)
|
|
|
|
//t1 calc which calculates W
|
|
#define t1W(n) K[(n) % 64] + Vals[(7 + 128 - (n)) % 8] + W(n) + s1(n) + ch(n)
|
|
|
|
//Used for constant W Values (the compiler optimizes out zeros)
|
|
#define t1C(n) (K[(n) % 64]+ ConstW[(n)]) + Vals[(7 + 128 - (n)) % 8] + s1(n) + ch(n)
|
|
|
|
//t2 Calc
|
|
#define t2(n) maj(n) + s0(n)
|
|
|
|
#define rotC(x,n) (x<<n | x >> (32-n))
|
|
|
|
//W calculation used for SHA round
|
|
#define W(n) (W[n] = P4(n) + P3(n) + P2(n) + P1(n))
|
|
|
|
|
|
|
|
//Partial W calculations (used for the begining where only some values are nonzero)
|
|
#define P1(n) ((rot(W[(n)-2],15u)^rot(W[(n)-2],13u)^((W[(n)-2])>>10U)))
|
|
#define P2(n) ((rot(W[(n)-15],25u)^rot(W[(n)-15],14u)^((W[(n)-15])>>3U)))
|
|
|
|
|
|
#define p1(x) ((rot(x,15u)^rot(x,13u)^((x)>>10U)))
|
|
#define p2(x) ((rot(x,25u)^rot(x,14u)^((x)>>3U)))
|
|
|
|
|
|
#define P3(n) W[n-7]
|
|
#define P4(n) W[n-16]
|
|
|
|
|
|
//Partial Calcs for constant W values
|
|
#define P1C(n) ((rotC(ConstW[(n)-2],15)^rotC(ConstW[(n)-2],13)^((ConstW[(n)-2])>>10U)))
|
|
#define P2C(n) ((rotC(ConstW[(n)-15],25)^rotC(ConstW[(n)-15],14)^((ConstW[(n)-15])>>3U)))
|
|
#define P3C(x) ConstW[x-7]
|
|
#define P4C(x) ConstW[x-16]
|
|
|
|
//SHA round with built in W calc
|
|
#define sharoundW(n) Barrier1(n); Vals[(3 + 128 - (n)) % 8] += t1W(n); Vals[(7 + 128 - (n)) % 8] = t1W(n) + t2(n);
|
|
|
|
//SHA round without W calc
|
|
#define sharound(n) Barrier2(n); Vals[(3 + 128 - (n)) % 8] += t1(n); Vals[(7 + 128 - (n)) % 8] = t1(n) + t2(n);
|
|
|
|
//SHA round for constant W values
|
|
#define sharoundC(n) Barrier3(n); Vals[(3 + 128 - (n)) % 8] += t1C(n); Vals[(7 + 128 - (n)) % 8] = t1C(n) + t2(n);
|
|
|
|
//The compiler is stupid... I put this in there only to stop the compiler from (de)optimizing the order
|
|
#define Barrier1(n) t1 = t1C((n+1))
|
|
#define Barrier2(n) t1 = t1C((n))
|
|
#define Barrier3(n) t1 = t1C((n))
|
|
|
|
//#define WORKSIZE 256
|
|
#define MAXBUFFERS (4095)
|
|
|
|
__kernel
|
|
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
|
|
void search( const uint state0, const uint state1, const uint state2, const uint state3,
|
|
const uint state4, const uint state5, const uint state6, const uint state7,
|
|
const uint B1, const uint C1, const uint D1,
|
|
const uint F1, const uint G1, const uint H1,
|
|
const u base,
|
|
const uint W16, const uint W17,
|
|
const uint PreVal4, const uint PreVal0,
|
|
const uint PreW18, const uint PreW19,
|
|
const uint PreW31, const uint PreW32,
|
|
|
|
__global uint * output)
|
|
{
|
|
|
|
|
|
u W[124];
|
|
u Vals[8];
|
|
|
|
//Dummy Variable to prevent compiler from reordering between rounds
|
|
u t1;
|
|
|
|
//Vals[0]=state0;
|
|
Vals[1]=B1;
|
|
Vals[2]=C1;
|
|
Vals[3]=D1;
|
|
//Vals[4]=PreVal4;
|
|
Vals[5]=F1;
|
|
Vals[6]=G1;
|
|
Vals[7]=H1;
|
|
|
|
W[16] = W16;
|
|
W[17] = W17;
|
|
|
|
#ifdef VECTORS4
|
|
//Less dependencies to get both the local id and group id and then add them
|
|
W[3] = base + (uint)(get_local_id(0)) * 4u + (uint)(get_group_id(0)) * (WORKSIZE * 4u);
|
|
uint r = rot(W[3].x,25u)^rot(W[3].x,14u)^((W[3].x)>>3U);
|
|
//Since only the 2 LSB is opposite between the nonces, we can save an instruction by flipping the 4 bits in W18 rather than the 1 bit in W3
|
|
W[18] = PreW18 + (u){r, r ^ 0x2004000U, r ^ 0x4008000U, r ^ 0x600C000U};
|
|
#else
|
|
#ifdef VECTORS2
|
|
W[3] = base + (uint)(get_local_id(0)) * 2u + (uint)(get_group_id(0)) * (WORKSIZE * 2u);
|
|
uint r = rot(W[3].x,25u)^rot(W[3].x,14u)^((W[3].x)>>3U);
|
|
W[18] = PreW18 + (u){r, r ^ 0x2004000U};
|
|
#else
|
|
W[3] = base + get_local_id(0) + get_group_id(0) * (WORKSIZE);
|
|
u r = rot(W[3],25u)^rot(W[3],14u)^((W[3])>>3U);
|
|
W[18] = PreW18 + r;
|
|
#endif
|
|
#endif
|
|
//the order of the W calcs and Rounds is like this because the compiler needs help finding how to order the instructions
|
|
|
|
|
|
|
|
Vals[4] = PreVal4 + W[3];
|
|
Vals[0] = PreVal0 + W[3];
|
|
|
|
sharoundC(4);
|
|
W[19] = PreW19 + W[3];
|
|
sharoundC(5);
|
|
W[20] = P4C(20) + P1(20);
|
|
sharoundC(6);
|
|
W[21] = P1(21);
|
|
sharoundC(7);
|
|
W[22] = P3C(22) + P1(22);
|
|
sharoundC(8);
|
|
W[23] = W[16] + P1(23);
|
|
sharoundC(9);
|
|
W[24] = W[17] + P1(24);
|
|
sharoundC(10);
|
|
W[25] = P1(25) + P3(25);
|
|
W[26] = P1(26) + P3(26);
|
|
sharoundC(11);
|
|
W[27] = P1(27) + P3(27);
|
|
W[28] = P1(28) + P3(28);
|
|
sharoundC(12);
|
|
W[29] = P1(29) + P3(29);
|
|
sharoundC(13);
|
|
W[30] = P1(30) + P2C(30) + P3(30);
|
|
W[31] = PreW31 + (P1(31) + P3(31));
|
|
sharoundC(14);
|
|
W[32] = PreW32 + (P1(32) + P3(32));
|
|
sharoundC(15);
|
|
sharound(16);
|
|
sharound(17);
|
|
sharound(18);
|
|
sharound(19);
|
|
sharound(20);
|
|
sharound(21);
|
|
sharound(22);
|
|
sharound(23);
|
|
sharound(24);
|
|
sharound(25);
|
|
sharound(26);
|
|
sharound(27);
|
|
sharound(28);
|
|
sharound(29);
|
|
sharound(30);
|
|
sharound(31);
|
|
sharound(32);
|
|
sharoundW(33);
|
|
sharoundW(34);
|
|
sharoundW(35);
|
|
sharoundW(36);
|
|
sharoundW(37);
|
|
sharoundW(38);
|
|
sharoundW(39);
|
|
sharoundW(40);
|
|
sharoundW(41);
|
|
sharoundW(42);
|
|
sharoundW(43);
|
|
sharoundW(44);
|
|
sharoundW(45);
|
|
sharoundW(46);
|
|
sharoundW(47);
|
|
sharoundW(48);
|
|
sharoundW(49);
|
|
sharoundW(50);
|
|
sharoundW(51);
|
|
sharoundW(52);
|
|
sharoundW(53);
|
|
sharoundW(54);
|
|
sharoundW(55);
|
|
sharoundW(56);
|
|
sharoundW(57);
|
|
sharoundW(58);
|
|
sharoundW(59);
|
|
sharoundW(60);
|
|
sharoundW(61);
|
|
sharoundW(62);
|
|
sharoundW(63);
|
|
|
|
W[64]=state0+Vals[0];
|
|
W[65]=state1+Vals[1];
|
|
W[66]=state2+Vals[2];
|
|
W[67]=state3+Vals[3];
|
|
W[68]=state4+Vals[4];
|
|
W[69]=state5+Vals[5];
|
|
W[70]=state6+Vals[6];
|
|
W[71]=state7+Vals[7];
|
|
|
|
Vals[0]=H[0];
|
|
Vals[1]=H[1];
|
|
Vals[2]=H[2];
|
|
Vals[3]=H[3];
|
|
Vals[4]=H[4];
|
|
Vals[5]=H[5];
|
|
Vals[6]=H[6];
|
|
Vals[7]=H[7];
|
|
|
|
//sharound(64 + 0);
|
|
const u Temp = (0xb0edbdd0U + K[0]) + W[64];
|
|
Vals[7] = Temp + 0x08909ae5U;
|
|
Vals[3] = 0xa54ff53aU + Temp;
|
|
|
|
#define P124(n) P2(n) + P1(n) + P4(n)
|
|
|
|
|
|
W[64 + 16] = + P2(64 + 16) + P4(64 + 16);
|
|
sharound(64 + 1);
|
|
W[64 + 17] = P1C(64 + 17) + P2(64 + 17) + P4(64 + 17);
|
|
sharound(64 + 2);
|
|
W[64 + 18] = P124(64 + 18);
|
|
sharound(64 + 3);
|
|
W[64 + 19] = P124(64 + 19);
|
|
sharound(64 + 4);
|
|
W[64 + 20] = P124(64 + 20);
|
|
sharound(64 + 5);
|
|
W[64 + 21] = P124(64 + 21);
|
|
sharound(64 + 6);
|
|
W[64 + 22] = P4(64 + 22) + P3C(64 + 22) + P2(64 + 22) + P1(64 + 22);
|
|
sharound(64 + 7);
|
|
W[64 + 23] = P4(64 + 23) + P3(64 + 23) + P2C(64 + 23) + P1(64 + 23);
|
|
sharoundC(64 + 8);
|
|
W[64 + 24] = P1(64 + 24) + P4C(64 + 24) + P3(64 + 24);
|
|
sharoundC(64 + 9);
|
|
W[64 + 25] = P3(64 + 25) + P1(64 + 25);
|
|
sharoundC(64 + 10);
|
|
W[64 + 26] = P3(64 + 26) + P1(64 + 26);
|
|
sharoundC(64 + 11);
|
|
W[64 + 27] = P3(64 + 27) + P1(64 + 27);
|
|
sharoundC(64 + 12);
|
|
W[64 + 28] = P3(64 + 28) + P1(64 + 28);
|
|
sharoundC(64 + 13);
|
|
W[64 + 29] = P1(64 + 29) + P3(64 + 29);
|
|
W[64 + 30] = P3(64 + 30) + P2C(64 + 30) + P1(64 + 30);
|
|
sharoundC(64 + 14);
|
|
W[64 + 31] = P4C(64 + 31) + P3(64 + 31) + P2(64 + 31) + P1(64 + 31);
|
|
sharoundC(64 + 15);
|
|
sharound(64 + 16);
|
|
sharound(64 + 17);
|
|
sharound(64 + 18);
|
|
sharound(64 + 19);
|
|
sharound(64 + 20);
|
|
sharound(64 + 21);
|
|
sharound(64 + 22);
|
|
sharound(64 + 23);
|
|
sharound(64 + 24);
|
|
sharound(64 + 25);
|
|
sharound(64 + 26);
|
|
sharound(64 + 27);
|
|
sharound(64 + 28);
|
|
sharound(64 + 29);
|
|
sharound(64 + 30);
|
|
sharound(64 + 31);
|
|
sharoundW(64 + 32);
|
|
sharoundW(64 + 33);
|
|
sharoundW(64 + 34);
|
|
sharoundW(64 + 35);
|
|
sharoundW(64 + 36);
|
|
sharoundW(64 + 37);
|
|
sharoundW(64 + 38);
|
|
sharoundW(64 + 39);
|
|
sharoundW(64 + 40);
|
|
sharoundW(64 + 41);
|
|
sharoundW(64 + 42);
|
|
sharoundW(64 + 43);
|
|
sharoundW(64 + 44);
|
|
sharoundW(64 + 45);
|
|
sharoundW(64 + 46);
|
|
sharoundW(64 + 47);
|
|
sharoundW(64 + 48);
|
|
sharoundW(64 + 49);
|
|
sharoundW(64 + 50);
|
|
sharoundW(64 + 51);
|
|
sharoundW(64 + 52);
|
|
sharoundW(64 + 53);
|
|
sharoundW(64 + 54);
|
|
sharoundW(64 + 55);
|
|
sharoundW(64 + 56);
|
|
sharoundW(64 + 57);
|
|
sharoundW(64 + 58);
|
|
|
|
u v = W[117] + W[108] + Vals[3] + Vals[7] + P2(124) + P1(124) + Ch((Vals[0] + Vals[4]) + (K[59] + W(59+64)) + s1(64+59)+ ch(59+64),Vals[1],Vals[2]) ^
|
|
-(K[60] + H[7]) - S1((Vals[0] + Vals[4]) + (K[59] + W(59+64)) + s1(64+59)+ ch(59+64));
|
|
|
|
#define FOUND (0x80)
|
|
#define NFLAG (0x7F)
|
|
|
|
#ifdef VECTORS4
|
|
bool result = v.x & v.y & v.z & v.w;
|
|
if (!result) {
|
|
if (!v.x)
|
|
output[FOUND] = output[NFLAG & W[3].x] = W[3].x;
|
|
if (!v.y)
|
|
output[FOUND] = output[NFLAG & W[3].y] = W[3].y;
|
|
if (!v.z)
|
|
output[FOUND] = output[NFLAG & W[3].z] = W[3].z;
|
|
if (!v.w)
|
|
output[FOUND] = output[NFLAG & W[3].w] = W[3].w;
|
|
}
|
|
#else
|
|
#ifdef VECTORS2
|
|
bool result = v.x & v.y;
|
|
if (!result) {
|
|
if (!v.x)
|
|
output[FOUND] = output[NFLAG & W[3].x] = W[3].x;
|
|
if (!v.y)
|
|
output[FOUND] = output[NFLAG & W[3].y] = W[3].y;
|
|
}
|
|
#else
|
|
if (!v)
|
|
output[FOUND] = output[NFLAG & W[3]] = W[3];
|
|
#endif
|
|
#endif
|
|
}
|