1
0
mirror of https://github.com/GOSTSec/sgminer synced 2025-01-17 18:20:51 +00:00
2013-09-30 11:43:39 +10:00

1027 lines
33 KiB
C

/*
* Windows CE backend for libusbx 1.0
* Copyright © 2011-2013 RealVNC Ltd.
* Large portions taken from Windows backend, which is
* Copyright © 2009-2010 Pete Batard <pbatard@gmail.com>
* With contributions from Michael Plante, Orin Eman et al.
* Parts of this code adapted from libusb-win32-v1 by Stephan Meyer
* Major code testing contribution by Xiaofan Chen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <libusbi.h>
#include <stdint.h>
#include <errno.h>
#include <inttypes.h>
#include "wince_usb.h"
// Forward declares
static int wince_clock_gettime(int clk_id, struct timespec *tp);
unsigned __stdcall wince_clock_gettime_threaded(void* param);
// Global variables
uint64_t hires_frequency, hires_ticks_to_ps;
int errno;
const uint64_t epoch_time = UINT64_C(116444736000000000); // 1970.01.01 00:00:000 in MS Filetime
enum windows_version windows_version = WINDOWS_CE;
static int concurrent_usage = -1;
// Timer thread
// NB: index 0 is for monotonic and 1 is for the thread exit event
HANDLE timer_thread = NULL;
HANDLE timer_mutex = NULL;
struct timespec timer_tp;
volatile LONG request_count[2] = {0, 1}; // last one must be > 0
HANDLE timer_request[2] = { NULL, NULL };
HANDLE timer_response = NULL;
HANDLE driver_handle = INVALID_HANDLE_VALUE;
/*
* Converts a windows error to human readable string
* uses retval as errorcode, or, if 0, use GetLastError()
*/
#if defined(ENABLE_LOGGING)
static char* windows_error_str(uint32_t retval)
{
static TCHAR wErr_string[ERR_BUFFER_SIZE];
static char err_string[ERR_BUFFER_SIZE];
DWORD size;
size_t i;
uint32_t error_code, format_error;
error_code = retval?retval:GetLastError();
safe_stprintf(wErr_string, ERR_BUFFER_SIZE, _T("[%d] "), error_code);
size = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, NULL, error_code,
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), &wErr_string[safe_tcslen(wErr_string)],
ERR_BUFFER_SIZE - (DWORD)safe_tcslen(wErr_string), NULL);
if (size == 0) {
format_error = GetLastError();
if (format_error)
safe_stprintf(wErr_string, ERR_BUFFER_SIZE,
_T("Windows error code %u (FormatMessage error code %u)"), error_code, format_error);
else
safe_stprintf(wErr_string, ERR_BUFFER_SIZE, _T("Unknown error code %u"), error_code);
} else {
// Remove CR/LF terminators
for (i=safe_tcslen(wErr_string)-1; ((wErr_string[i]==0x0A) || (wErr_string[i]==0x0D)); i--) {
wErr_string[i] = 0;
}
}
if (WideCharToMultiByte(CP_ACP, 0, wErr_string, -1, err_string, ERR_BUFFER_SIZE, NULL, NULL) < 0)
{
strcpy(err_string, "Unable to convert error string");
}
return err_string;
}
#endif
static struct wince_device_priv *_device_priv(struct libusb_device *dev)
{
return (struct wince_device_priv *) dev->os_priv;
}
// ceusbkwrapper to libusb error code mapping
static int translate_driver_error(int error)
{
switch (error) {
case ERROR_INVALID_PARAMETER:
return LIBUSB_ERROR_INVALID_PARAM;
case ERROR_CALL_NOT_IMPLEMENTED:
case ERROR_NOT_SUPPORTED:
return LIBUSB_ERROR_NOT_SUPPORTED;
case ERROR_NOT_ENOUGH_MEMORY:
return LIBUSB_ERROR_NO_MEM;
case ERROR_INVALID_HANDLE:
return LIBUSB_ERROR_NO_DEVICE;
case ERROR_BUSY:
return LIBUSB_ERROR_BUSY;
// Error codes that are either unexpected, or have
// no suitable LIBUSB_ERROR equivilant.
case ERROR_CANCELLED:
case ERROR_INTERNAL_ERROR:
default:
return LIBUSB_ERROR_OTHER;
}
}
static int init_dllimports()
{
DLL_LOAD(ceusbkwrapper.dll, UkwOpenDriver, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwGetDeviceList, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwReleaseDeviceList, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwGetDeviceAddress, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwGetDeviceDescriptor, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwGetConfigDescriptor, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwCloseDriver, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwCancelTransfer, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwIssueControlTransfer, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwClaimInterface, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwReleaseInterface, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwSetInterfaceAlternateSetting, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwClearHaltHost, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwClearHaltDevice, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwGetConfig, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwSetConfig, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwResetDevice, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwKernelDriverActive, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwAttachKernelDriver, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwDetachKernelDriver, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwIssueBulkTransfer, TRUE);
DLL_LOAD(ceusbkwrapper.dll, UkwIsPipeHalted, TRUE);
return LIBUSB_SUCCESS;
}
static int init_device(struct libusb_device *dev, UKW_DEVICE drv_dev,
unsigned char bus_addr, unsigned char dev_addr)
{
struct wince_device_priv *priv = _device_priv(dev);
int r = LIBUSB_SUCCESS;
dev->bus_number = bus_addr;
dev->device_address = dev_addr;
priv->dev = drv_dev;
if (!UkwGetDeviceDescriptor(priv->dev, &(priv->desc))) {
r = translate_driver_error(GetLastError());
}
return r;
}
// Internal API functions
static int wince_init(struct libusb_context *ctx)
{
int i, r = LIBUSB_ERROR_OTHER;
HANDLE semaphore;
TCHAR sem_name[11+1+8]; // strlen(libusb_init)+'\0'+(32-bit hex PID)
_stprintf(sem_name, _T("libusb_init%08X"), (unsigned int)GetCurrentProcessId()&0xFFFFFFFF);
semaphore = CreateSemaphore(NULL, 1, 1, sem_name);
if (semaphore == NULL) {
usbi_err(ctx, "could not create semaphore: %s", windows_error_str(0));
return LIBUSB_ERROR_NO_MEM;
}
// A successful wait brings our semaphore count to 0 (unsignaled)
// => any concurent wait stalls until the semaphore's release
if (WaitForSingleObject(semaphore, INFINITE) != WAIT_OBJECT_0) {
usbi_err(ctx, "failure to access semaphore: %s", windows_error_str(0));
CloseHandle(semaphore);
return LIBUSB_ERROR_NO_MEM;
}
// NB: concurrent usage supposes that init calls are equally balanced with
// exit calls. If init is called more than exit, we will not exit properly
if ( ++concurrent_usage == 0 ) { // First init?
// Initialize pollable file descriptors
init_polling();
// Load DLL imports
if (init_dllimports() != LIBUSB_SUCCESS) {
usbi_err(ctx, "could not resolve DLL functions");
r = LIBUSB_ERROR_NOT_SUPPORTED;
goto init_exit;
}
// try to open a handle to the driver
driver_handle = UkwOpenDriver();
if (driver_handle == INVALID_HANDLE_VALUE) {
usbi_err(ctx, "could not connect to driver");
r = LIBUSB_ERROR_NOT_SUPPORTED;
goto init_exit;
}
// Windows CE doesn't have a way of specifying thread affinity, so this code
// just has to hope QueryPerformanceCounter doesn't report different values when
// running on different cores.
r = LIBUSB_ERROR_NO_MEM;
for (i = 0; i < 2; i++) {
timer_request[i] = CreateEvent(NULL, TRUE, FALSE, NULL);
if (timer_request[i] == NULL) {
usbi_err(ctx, "could not create timer request event %d - aborting", i);
goto init_exit;
}
}
timer_response = CreateSemaphore(NULL, 0, MAX_TIMER_SEMAPHORES, NULL);
if (timer_response == NULL) {
usbi_err(ctx, "could not create timer response semaphore - aborting");
goto init_exit;
}
timer_mutex = CreateMutex(NULL, FALSE, NULL);
if (timer_mutex == NULL) {
usbi_err(ctx, "could not create timer mutex - aborting");
goto init_exit;
}
timer_thread = CreateThread(NULL, 0, wince_clock_gettime_threaded, NULL, 0, NULL);
if (timer_thread == NULL) {
usbi_err(ctx, "Unable to create timer thread - aborting");
goto init_exit;
}
// Wait for timer thread to init before continuing.
if (WaitForSingleObject(timer_response, INFINITE) != WAIT_OBJECT_0) {
usbi_err(ctx, "Failed to wait for timer thread to become ready - aborting");
goto init_exit;
}
}
// At this stage, either we went through full init successfully, or didn't need to
r = LIBUSB_SUCCESS;
init_exit: // Holds semaphore here.
if (!concurrent_usage && r != LIBUSB_SUCCESS) { // First init failed?
if (driver_handle != INVALID_HANDLE_VALUE) {
UkwCloseDriver(driver_handle);
driver_handle = INVALID_HANDLE_VALUE;
}
if (timer_thread) {
SetEvent(timer_request[1]); // actually the signal to quit the thread.
if (WAIT_OBJECT_0 != WaitForSingleObject(timer_thread, INFINITE)) {
usbi_warn(ctx, "could not wait for timer thread to quit");
TerminateThread(timer_thread, 1); // shouldn't happen, but we're destroying
// all objects it might have held anyway.
}
CloseHandle(timer_thread);
timer_thread = NULL;
}
for (i = 0; i < 2; i++) {
if (timer_request[i]) {
CloseHandle(timer_request[i]);
timer_request[i] = NULL;
}
}
if (timer_response) {
CloseHandle(timer_response);
timer_response = NULL;
}
if (timer_mutex) {
CloseHandle(timer_mutex);
timer_mutex = NULL;
}
}
if (r != LIBUSB_SUCCESS)
--concurrent_usage; // Not expected to call libusb_exit if we failed.
ReleaseSemaphore(semaphore, 1, NULL); // increase count back to 1
CloseHandle(semaphore);
return r;
}
static void wince_exit(void)
{
int i;
HANDLE semaphore;
TCHAR sem_name[11+1+8]; // strlen(libusb_init)+'\0'+(32-bit hex PID)
_stprintf(sem_name, _T("libusb_init%08X"), (unsigned int)GetCurrentProcessId()&0xFFFFFFFF);
semaphore = CreateSemaphore(NULL, 1, 1, sem_name);
if (semaphore == NULL) {
return;
}
// A successful wait brings our semaphore count to 0 (unsignaled)
// => any concurent wait stalls until the semaphore release
if (WaitForSingleObject(semaphore, INFINITE) != WAIT_OBJECT_0) {
CloseHandle(semaphore);
return;
}
// Only works if exits and inits are balanced exactly
if (--concurrent_usage < 0) { // Last exit
exit_polling();
if (timer_thread) {
SetEvent(timer_request[1]); // actually the signal to quit the thread.
if (WAIT_OBJECT_0 != WaitForSingleObject(timer_thread, INFINITE)) {
usbi_dbg("could not wait for timer thread to quit");
TerminateThread(timer_thread, 1);
}
CloseHandle(timer_thread);
timer_thread = NULL;
}
for (i = 0; i < 2; i++) {
if (timer_request[i]) {
CloseHandle(timer_request[i]);
timer_request[i] = NULL;
}
}
if (timer_response) {
CloseHandle(timer_response);
timer_response = NULL;
}
if (timer_mutex) {
CloseHandle(timer_mutex);
timer_mutex = NULL;
}
if (driver_handle != INVALID_HANDLE_VALUE) {
UkwCloseDriver(driver_handle);
driver_handle = INVALID_HANDLE_VALUE;
}
}
ReleaseSemaphore(semaphore, 1, NULL); // increase count back to 1
CloseHandle(semaphore);
}
static int wince_get_device_list(
struct libusb_context *ctx,
struct discovered_devs **discdevs)
{
UKW_DEVICE devices[MAX_DEVICE_COUNT];
struct discovered_devs * new_devices = *discdevs;
DWORD count = 0, i;
struct libusb_device *dev = NULL;
unsigned char bus_addr, dev_addr;
unsigned long session_id;
BOOL success;
DWORD release_list_offset = 0;
int r = LIBUSB_SUCCESS;
success = UkwGetDeviceList(driver_handle, devices, MAX_DEVICE_COUNT, &count);
if (!success) {
int libusbErr = translate_driver_error(GetLastError());
usbi_err(ctx, "could not get devices: %s", windows_error_str(0));
return libusbErr;
}
for(i = 0; i < count; ++i) {
release_list_offset = i;
success = UkwGetDeviceAddress(devices[i], &bus_addr, &dev_addr, &session_id);
if (!success) {
r = translate_driver_error(GetLastError());
usbi_err(ctx, "could not get device address for %d: %s", i, windows_error_str(0));
goto err_out;
}
dev = usbi_get_device_by_session_id(ctx, session_id);
if (dev) {
usbi_dbg("using existing device for %d/%d (session %ld)",
bus_addr, dev_addr, session_id);
libusb_ref_device(dev);
// Release just this element in the device list (as we already hold a
// reference to it).
UkwReleaseDeviceList(driver_handle, &devices[i], 1);
release_list_offset++;
} else {
usbi_dbg("allocating new device for %d/%d (session %ld)",
bus_addr, dev_addr, session_id);
dev = usbi_alloc_device(ctx, session_id);
if (!dev) {
r = LIBUSB_ERROR_NO_MEM;
goto err_out;
}
r = init_device(dev, devices[i], bus_addr, dev_addr);
if (r < 0)
goto err_out;
r = usbi_sanitize_device(dev);
if (r < 0)
goto err_out;
}
new_devices = discovered_devs_append(new_devices, dev);
if (!discdevs) {
r = LIBUSB_ERROR_NO_MEM;
goto err_out;
}
safe_unref_device(dev);
}
*discdevs = new_devices;
return r;
err_out:
*discdevs = new_devices;
safe_unref_device(dev);
// Release the remainder of the unprocessed device list.
// The devices added to new_devices already will still be passed up to libusb,
// which can dispose of them at its leisure.
UkwReleaseDeviceList(driver_handle, &devices[release_list_offset], count - release_list_offset);
return r;
}
static int wince_open(struct libusb_device_handle *handle)
{
// Nothing to do to open devices as a handle to it has
// been retrieved by wince_get_device_list
return LIBUSB_SUCCESS;
}
static void wince_close(struct libusb_device_handle *handle)
{
// Nothing to do as wince_open does nothing.
}
static int wince_get_device_descriptor(
struct libusb_device *device,
unsigned char *buffer, int *host_endian)
{
struct wince_device_priv *priv = _device_priv(device);
*host_endian = 1;
memcpy(buffer, &priv->desc, DEVICE_DESC_LENGTH);
return LIBUSB_SUCCESS;
}
static int wince_get_active_config_descriptor(
struct libusb_device *device,
unsigned char *buffer, size_t len, int *host_endian)
{
struct wince_device_priv *priv = _device_priv(device);
DWORD actualSize = len;
*host_endian = 0;
if (!UkwGetConfigDescriptor(priv->dev, UKW_ACTIVE_CONFIGURATION, buffer, len, &actualSize)) {
return translate_driver_error(GetLastError());
}
return actualSize;
}
static int wince_get_config_descriptor(
struct libusb_device *device,
uint8_t config_index,
unsigned char *buffer, size_t len, int *host_endian)
{
struct wince_device_priv *priv = _device_priv(device);
DWORD actualSize = len;
*host_endian = 0;
if (!UkwGetConfigDescriptor(priv->dev, config_index, buffer, len, &actualSize)) {
return translate_driver_error(GetLastError());
}
return actualSize;
}
static int wince_get_configuration(
struct libusb_device_handle *handle,
int *config)
{
struct wince_device_priv *priv = _device_priv(handle->dev);
UCHAR cv = 0;
if (!UkwGetConfig(priv->dev, &cv)) {
return translate_driver_error(GetLastError());
}
(*config) = cv;
return LIBUSB_SUCCESS;
}
static int wince_set_configuration(
struct libusb_device_handle *handle,
int config)
{
struct wince_device_priv *priv = _device_priv(handle->dev);
// Setting configuration 0 places the device in Address state.
// This should correspond to the "unconfigured state" required by
// libusb when the specified configuration is -1.
UCHAR cv = (config < 0) ? 0 : config;
if (!UkwSetConfig(priv->dev, cv)) {
return translate_driver_error(GetLastError());
}
return LIBUSB_SUCCESS;
}
static int wince_claim_interface(
struct libusb_device_handle *handle,
int interface_number)
{
struct wince_device_priv *priv = _device_priv(handle->dev);
if (!UkwClaimInterface(priv->dev, interface_number)) {
return translate_driver_error(GetLastError());
}
return LIBUSB_SUCCESS;
}
static int wince_release_interface(
struct libusb_device_handle *handle,
int interface_number)
{
struct wince_device_priv *priv = _device_priv(handle->dev);
if (!UkwSetInterfaceAlternateSetting(priv->dev, interface_number, 0)) {
return translate_driver_error(GetLastError());
}
if (!UkwReleaseInterface(priv->dev, interface_number)) {
return translate_driver_error(GetLastError());
}
return LIBUSB_SUCCESS;
}
static int wince_set_interface_altsetting(
struct libusb_device_handle *handle,
int interface_number, int altsetting)
{
struct wince_device_priv *priv = _device_priv(handle->dev);
if (!UkwSetInterfaceAlternateSetting(priv->dev, interface_number, altsetting)) {
return translate_driver_error(GetLastError());
}
return LIBUSB_SUCCESS;
}
static int wince_clear_halt(
struct libusb_device_handle *handle,
unsigned char endpoint)
{
struct wince_device_priv *priv = _device_priv(handle->dev);
if (!UkwClearHaltHost(priv->dev, endpoint)) {
return translate_driver_error(GetLastError());
}
if (!UkwClearHaltDevice(priv->dev, endpoint)) {
return translate_driver_error(GetLastError());
}
return LIBUSB_SUCCESS;
}
static int wince_reset_device(
struct libusb_device_handle *handle)
{
struct wince_device_priv *priv = _device_priv(handle->dev);
if (!UkwResetDevice(priv->dev)) {
return translate_driver_error(GetLastError());
}
return LIBUSB_SUCCESS;
}
static int wince_kernel_driver_active(
struct libusb_device_handle *handle,
int interface_number)
{
struct wince_device_priv *priv = _device_priv(handle->dev);
BOOL result = FALSE;
if (!UkwKernelDriverActive(priv->dev, interface_number, &result)) {
return translate_driver_error(GetLastError());
}
return result ? 1 : 0;
}
static int wince_detach_kernel_driver(
struct libusb_device_handle *handle,
int interface_number)
{
struct wince_device_priv *priv = _device_priv(handle->dev);
if (!UkwDetachKernelDriver(priv->dev, interface_number)) {
return translate_driver_error(GetLastError());
}
return LIBUSB_SUCCESS;
}
static int wince_attach_kernel_driver(
struct libusb_device_handle *handle,
int interface_number)
{
struct wince_device_priv *priv = _device_priv(handle->dev);
if (!UkwAttachKernelDriver(priv->dev, interface_number)) {
return translate_driver_error(GetLastError());
}
return LIBUSB_SUCCESS;
}
static void wince_destroy_device(
struct libusb_device *dev)
{
struct wince_device_priv *priv = _device_priv(dev);
UkwReleaseDeviceList(driver_handle, &priv->dev, 1);
}
static void wince_clear_transfer_priv(
struct usbi_transfer *itransfer)
{
struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer);
struct winfd wfd = fd_to_winfd(transfer_priv->pollable_fd.fd);
// No need to cancel transfer as it is either complete or abandoned
wfd.itransfer = NULL;
CloseHandle(wfd.handle);
usbi_free_fd(&transfer_priv->pollable_fd);
}
static int wince_cancel_transfer(
struct usbi_transfer *itransfer)
{
struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
struct wince_device_priv *priv = _device_priv(transfer->dev_handle->dev);
struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer);
if (!UkwCancelTransfer(priv->dev, transfer_priv->pollable_fd.overlapped, UKW_TF_NO_WAIT)) {
return translate_driver_error(GetLastError());
}
return LIBUSB_SUCCESS;
}
static int wince_submit_control_or_bulk_transfer(struct usbi_transfer *itransfer)
{
struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev);
struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer);
struct wince_device_priv *priv = _device_priv(transfer->dev_handle->dev);
BOOL direction_in, ret;
struct winfd wfd;
DWORD flags;
HANDLE eventHandle;
PUKW_CONTROL_HEADER setup = NULL;
const BOOL control_transfer = transfer->type == LIBUSB_TRANSFER_TYPE_CONTROL;
transfer_priv->pollable_fd = INVALID_WINFD;
if (control_transfer) {
setup = (PUKW_CONTROL_HEADER) transfer->buffer;
direction_in = setup->bmRequestType & LIBUSB_ENDPOINT_IN;
} else {
direction_in = transfer->endpoint & LIBUSB_ENDPOINT_IN;
}
flags = direction_in ? UKW_TF_IN_TRANSFER : UKW_TF_OUT_TRANSFER;
flags |= UKW_TF_SHORT_TRANSFER_OK;
eventHandle = CreateEvent(NULL, FALSE, FALSE, NULL);
if (eventHandle == NULL) {
usbi_err(ctx, "Failed to create event for async transfer");
return LIBUSB_ERROR_NO_MEM;
}
wfd = usbi_create_fd(eventHandle, direction_in ? RW_READ : RW_WRITE, itransfer, &wince_cancel_transfer);
if (wfd.fd < 0) {
CloseHandle(eventHandle);
return LIBUSB_ERROR_NO_MEM;
}
transfer_priv->pollable_fd = wfd;
if (control_transfer) {
// Split out control setup header and data buffer
DWORD bufLen = transfer->length - sizeof(UKW_CONTROL_HEADER);
PVOID buf = (PVOID) &transfer->buffer[sizeof(UKW_CONTROL_HEADER)];
ret = UkwIssueControlTransfer(priv->dev, flags, setup, buf, bufLen, &transfer->actual_length, wfd.overlapped);
} else {
ret = UkwIssueBulkTransfer(priv->dev, flags, transfer->endpoint, transfer->buffer,
transfer->length, &transfer->actual_length, wfd.overlapped);
}
if (!ret) {
int libusbErr = translate_driver_error(GetLastError());
usbi_err(ctx, "UkwIssue%sTransfer failed: error %d",
control_transfer ? "Control" : "Bulk", GetLastError());
wince_clear_transfer_priv(itransfer);
return libusbErr;
}
usbi_add_pollfd(ctx, transfer_priv->pollable_fd.fd, direction_in ? POLLIN : POLLOUT);
itransfer->flags |= USBI_TRANSFER_UPDATED_FDS;
return LIBUSB_SUCCESS;
}
static int wince_submit_iso_transfer(struct usbi_transfer *itransfer)
{
return LIBUSB_ERROR_NOT_SUPPORTED;
}
static int wince_submit_transfer(
struct usbi_transfer *itransfer)
{
struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
switch (transfer->type) {
case LIBUSB_TRANSFER_TYPE_CONTROL:
case LIBUSB_TRANSFER_TYPE_BULK:
case LIBUSB_TRANSFER_TYPE_INTERRUPT:
return wince_submit_control_or_bulk_transfer(itransfer);
case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
return wince_submit_iso_transfer(itransfer);
default:
usbi_err(TRANSFER_CTX(transfer), "unknown endpoint type %d", transfer->type);
return LIBUSB_ERROR_INVALID_PARAM;
}
}
static void wince_transfer_callback(struct usbi_transfer *itransfer, uint32_t io_result, uint32_t io_size)
{
struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer);
struct wince_device_priv *priv = _device_priv(transfer->dev_handle->dev);
int status;
usbi_dbg("handling I/O completion with errcode %d", io_result);
if (io_result == ERROR_NOT_SUPPORTED &&
transfer->type != LIBUSB_TRANSFER_TYPE_CONTROL) {
/* For functional stalls, the WinCE USB layer (and therefore the USB Kernel Wrapper
* Driver) will report USB_ERROR_STALL/ERROR_NOT_SUPPORTED in situations where the
* endpoint isn't actually stalled.
*
* One example of this is that some devices will occasionally fail to reply to an IN
* token. The WinCE USB layer carries on with the transaction until it is completed
* (or cancelled) but then completes it with USB_ERROR_STALL.
*
* This code therefore needs to confirm that there really is a stall error, by both
* checking the pipe status and requesting the endpoint status from the device.
*/
BOOL halted = FALSE;
usbi_dbg("checking I/O completion with errcode ERROR_NOT_SUPPORTED is really a stall");
if (UkwIsPipeHalted(priv->dev, transfer->endpoint, &halted)) {
/* Pipe status retrieved, so now request endpoint status by sending a GET_STATUS
* control request to the device. This is done synchronously, which is a bit
* naughty, but this is a special corner case.
*/
WORD wStatus = 0;
DWORD written = 0;
UKW_CONTROL_HEADER ctrlHeader;
ctrlHeader.bmRequestType = LIBUSB_REQUEST_TYPE_STANDARD |
LIBUSB_ENDPOINT_IN | LIBUSB_RECIPIENT_ENDPOINT;
ctrlHeader.bRequest = LIBUSB_REQUEST_GET_STATUS;
ctrlHeader.wValue = 0;
ctrlHeader.wIndex = transfer->endpoint;
ctrlHeader.wLength = sizeof(wStatus);
if (UkwIssueControlTransfer(priv->dev,
UKW_TF_IN_TRANSFER | UKW_TF_SEND_TO_ENDPOINT,
&ctrlHeader, &wStatus, sizeof(wStatus), &written, NULL)) {
if (written == sizeof(wStatus) &&
(wStatus & STATUS_HALT_FLAG) == 0) {
if (!halted || UkwClearHaltHost(priv->dev, transfer->endpoint)) {
usbi_dbg("Endpoint doesn't appear to be stalled, overriding error with success");
io_result = ERROR_SUCCESS;
} else {
usbi_dbg("Endpoint doesn't appear to be stalled, but the host is halted, changing error");
io_result = ERROR_IO_DEVICE;
}
}
}
}
}
switch(io_result) {
case ERROR_SUCCESS:
itransfer->transferred += io_size;
status = LIBUSB_TRANSFER_COMPLETED;
break;
case ERROR_CANCELLED:
usbi_dbg("detected transfer cancel");
status = LIBUSB_TRANSFER_CANCELLED;
break;
case ERROR_NOT_SUPPORTED:
case ERROR_GEN_FAILURE:
usbi_dbg("detected endpoint stall");
status = LIBUSB_TRANSFER_STALL;
break;
case ERROR_SEM_TIMEOUT:
usbi_dbg("detected semaphore timeout");
status = LIBUSB_TRANSFER_TIMED_OUT;
break;
case ERROR_OPERATION_ABORTED:
if (itransfer->flags & USBI_TRANSFER_TIMED_OUT) {
usbi_dbg("detected timeout");
status = LIBUSB_TRANSFER_TIMED_OUT;
} else {
usbi_dbg("detected operation aborted");
status = LIBUSB_TRANSFER_CANCELLED;
}
break;
default:
usbi_err(ITRANSFER_CTX(itransfer), "detected I/O error: %s", windows_error_str(io_result));
status = LIBUSB_TRANSFER_ERROR;
break;
}
wince_clear_transfer_priv(itransfer);
if (status == LIBUSB_TRANSFER_CANCELLED) {
usbi_handle_transfer_cancellation(itransfer);
} else {
usbi_handle_transfer_completion(itransfer, (enum libusb_transfer_status)status);
}
}
static void wince_handle_callback (struct usbi_transfer *itransfer, uint32_t io_result, uint32_t io_size)
{
struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
switch (transfer->type) {
case LIBUSB_TRANSFER_TYPE_CONTROL:
case LIBUSB_TRANSFER_TYPE_BULK:
case LIBUSB_TRANSFER_TYPE_INTERRUPT:
case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
wince_transfer_callback (itransfer, io_result, io_size);
break;
default:
usbi_err(ITRANSFER_CTX(itransfer), "unknown endpoint type %d", transfer->type);
}
}
static int wince_handle_events(
struct libusb_context *ctx,
struct pollfd *fds, POLL_NFDS_TYPE nfds, int num_ready)
{
struct wince_transfer_priv* transfer_priv = NULL;
POLL_NFDS_TYPE i = 0;
BOOL found = FALSE;
struct usbi_transfer *transfer;
DWORD io_size, io_result;
usbi_mutex_lock(&ctx->open_devs_lock);
for (i = 0; i < nfds && num_ready > 0; i++) {
usbi_dbg("checking fd %d with revents = %04x", fds[i].fd, fds[i].revents);
if (!fds[i].revents) {
continue;
}
num_ready--;
// Because a Windows OVERLAPPED is used for poll emulation,
// a pollable fd is created and stored with each transfer
usbi_mutex_lock(&ctx->flying_transfers_lock);
list_for_each_entry(transfer, &ctx->flying_transfers, list, struct usbi_transfer) {
transfer_priv = usbi_transfer_get_os_priv(transfer);
if (transfer_priv->pollable_fd.fd == fds[i].fd) {
found = TRUE;
break;
}
}
usbi_mutex_unlock(&ctx->flying_transfers_lock);
if (found && HasOverlappedIoCompleted(transfer_priv->pollable_fd.overlapped)) {
io_result = (DWORD)transfer_priv->pollable_fd.overlapped->Internal;
io_size = (DWORD)transfer_priv->pollable_fd.overlapped->InternalHigh;
usbi_remove_pollfd(ctx, transfer_priv->pollable_fd.fd);
// let handle_callback free the event using the transfer wfd
// If you don't use the transfer wfd, you run a risk of trying to free a
// newly allocated wfd that took the place of the one from the transfer.
wince_handle_callback(transfer, io_result, io_size);
} else if (found) {
usbi_err(ctx, "matching transfer for fd %x has not completed", fds[i]);
return LIBUSB_ERROR_OTHER;
} else {
usbi_err(ctx, "could not find a matching transfer for fd %x", fds[i]);
return LIBUSB_ERROR_NOT_FOUND;
}
}
usbi_mutex_unlock(&ctx->open_devs_lock);
return LIBUSB_SUCCESS;
}
/*
* Monotonic and real time functions
*/
unsigned __stdcall wince_clock_gettime_threaded(void* param)
{
LARGE_INTEGER hires_counter, li_frequency;
LONG nb_responses;
int timer_index;
// Init - find out if we have access to a monotonic (hires) timer
if (!QueryPerformanceFrequency(&li_frequency)) {
usbi_dbg("no hires timer available on this platform");
hires_frequency = 0;
hires_ticks_to_ps = UINT64_C(0);
} else {
hires_frequency = li_frequency.QuadPart;
// The hires frequency can go as high as 4 GHz, so we'll use a conversion
// to picoseconds to compute the tv_nsecs part in clock_gettime
hires_ticks_to_ps = UINT64_C(1000000000000) / hires_frequency;
usbi_dbg("hires timer available (Frequency: %"PRIu64" Hz)", hires_frequency);
}
// Signal wince_init() that we're ready to service requests
if (ReleaseSemaphore(timer_response, 1, NULL) == 0) {
usbi_dbg("unable to release timer semaphore: %s", windows_error_str(0));
}
// Main loop - wait for requests
while (1) {
timer_index = WaitForMultipleObjects(2, timer_request, FALSE, INFINITE) - WAIT_OBJECT_0;
if ( (timer_index != 0) && (timer_index != 1) ) {
usbi_dbg("failure to wait on requests: %s", windows_error_str(0));
continue;
}
if (request_count[timer_index] == 0) {
// Request already handled
ResetEvent(timer_request[timer_index]);
// There's still a possiblity that a thread sends a request between the
// time we test request_count[] == 0 and we reset the event, in which case
// the request would be ignored. The simple solution to that is to test
// request_count again and process requests if non zero.
if (request_count[timer_index] == 0)
continue;
}
switch (timer_index) {
case 0:
WaitForSingleObject(timer_mutex, INFINITE);
// Requests to this thread are for hires always
if (QueryPerformanceCounter(&hires_counter) != 0) {
timer_tp.tv_sec = (long)(hires_counter.QuadPart / hires_frequency);
timer_tp.tv_nsec = (long)(((hires_counter.QuadPart % hires_frequency)/1000) * hires_ticks_to_ps);
} else {
// Fallback to real-time if we can't get monotonic value
// Note that real-time clock does not wait on the mutex or this thread.
wince_clock_gettime(USBI_CLOCK_REALTIME, &timer_tp);
}
ReleaseMutex(timer_mutex);
nb_responses = InterlockedExchange((LONG*)&request_count[0], 0);
if ( (nb_responses)
&& (ReleaseSemaphore(timer_response, nb_responses, NULL) == 0) ) {
usbi_dbg("unable to release timer semaphore: %s", windows_error_str(0));
}
continue;
case 1: // time to quit
usbi_dbg("timer thread quitting");
return 0;
}
}
usbi_dbg("ERROR: broken timer thread");
return 1;
}
static int wince_clock_gettime(int clk_id, struct timespec *tp)
{
FILETIME filetime;
ULARGE_INTEGER rtime;
DWORD r;
SYSTEMTIME st;
switch(clk_id) {
case USBI_CLOCK_MONOTONIC:
if (hires_frequency != 0) {
while (1) {
InterlockedIncrement((LONG*)&request_count[0]);
SetEvent(timer_request[0]);
r = WaitForSingleObject(timer_response, TIMER_REQUEST_RETRY_MS);
switch(r) {
case WAIT_OBJECT_0:
WaitForSingleObject(timer_mutex, INFINITE);
*tp = timer_tp;
ReleaseMutex(timer_mutex);
return LIBUSB_SUCCESS;
case WAIT_TIMEOUT:
usbi_dbg("could not obtain a timer value within reasonable timeframe - too much load?");
break; // Retry until successful
default:
usbi_dbg("WaitForSingleObject failed: %s", windows_error_str(0));
return LIBUSB_ERROR_OTHER;
}
}
}
// Fall through and return real-time if monotonic was not detected @ timer init
case USBI_CLOCK_REALTIME:
// We follow http://msdn.microsoft.com/en-us/library/ms724928%28VS.85%29.aspx
// with a predef epoch_time to have an epoch that starts at 1970.01.01 00:00
// Note however that our resolution is bounded by the Windows system time
// functions and is at best of the order of 1 ms (or, usually, worse)
GetSystemTime(&st);
SystemTimeToFileTime(&st, &filetime);
rtime.LowPart = filetime.dwLowDateTime;
rtime.HighPart = filetime.dwHighDateTime;
rtime.QuadPart -= epoch_time;
tp->tv_sec = (long)(rtime.QuadPart / 10000000);
tp->tv_nsec = (long)((rtime.QuadPart % 10000000)*100);
return LIBUSB_SUCCESS;
default:
return LIBUSB_ERROR_INVALID_PARAM;
}
}
const struct usbi_os_backend wince_backend = {
"Windows CE",
0,
wince_init,
wince_exit,
wince_get_device_list,
NULL, /* hotplug_poll */
wince_open,
wince_close,
wince_get_device_descriptor,
wince_get_active_config_descriptor,
wince_get_config_descriptor,
NULL, /* get_config_descriptor_by_value() */
wince_get_configuration,
wince_set_configuration,
wince_claim_interface,
wince_release_interface,
wince_set_interface_altsetting,
wince_clear_halt,
wince_reset_device,
wince_kernel_driver_active,
wince_detach_kernel_driver,
wince_attach_kernel_driver,
wince_destroy_device,
wince_submit_transfer,
wince_cancel_transfer,
wince_clear_transfer_priv,
wince_handle_events,
wince_clock_gettime,
sizeof(struct wince_device_priv),
sizeof(struct wince_device_handle_priv),
sizeof(struct wince_transfer_priv),
0,
};