OpenCL GPU miner
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

3698 lines
95 KiB

/*
* Copyright 2012-2013 Andrew Smith
* Copyright 2013 Con Kolivas <kernel@kolivas.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include <ctype.h>
#include <stdint.h>
#include <stdbool.h>
#include "logging.h"
#include "miner.h"
#include "usbutils.h"
#define NODEV(err) ((err) == LIBUSB_ERROR_NO_DEVICE || \
(err) == LIBUSB_ERROR_PIPE || \
(err) == LIBUSB_ERROR_OTHER || \
(err) == LIBUSB_TRANSFER_NO_DEVICE || \
(err) == LIBUSB_TRANSFER_STALL || \
(err) == LIBUSB_TRANSFER_ERROR)
#define NOCONTROLDEV(err) ((err) == LIBUSB_ERROR_NO_DEVICE || \
(err) == LIBUSB_ERROR_OTHER)
/*
* WARNING - these assume DEVLOCK(cgpu, pstate) is called first and
* DEVUNLOCK(cgpu, pstate) in called in the same function with the same pstate
* given to DEVLOCK.
* You must call DEVUNLOCK(cgpu, pstate) before exiting the function or it will leave
* the thread Cancelability unrestored
*/
#define DEVWLOCK(cgpu, _pth_state) do { \
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &_pth_state); \
cg_wlock(&cgpu->usbinfo.devlock); \
} while (0)
#define DEVWUNLOCK(cgpu, _pth_state) do { \
cg_wunlock(&cgpu->usbinfo.devlock); \
pthread_setcancelstate(_pth_state, NULL); \
} while (0)
#define DEVRLOCK(cgpu, _pth_state) do { \
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &_pth_state); \
cg_rlock(&cgpu->usbinfo.devlock); \
} while (0)
#define DEVRUNLOCK(cgpu, _pth_state) do { \
cg_runlock(&cgpu->usbinfo.devlock); \
pthread_setcancelstate(_pth_state, NULL); \
} while (0)
#define USB_CONFIG 1
#ifdef WIN32
#define BFLSC_TIMEOUT_MS 999
#define BITFORCE_TIMEOUT_MS 999
#define BITFURY_TIMEOUT_MS 999
#define MODMINER_TIMEOUT_MS 999
#define AVALON_TIMEOUT_MS 999
#define KLONDIKE_TIMEOUT_MS 999
#define ICARUS_TIMEOUT_MS 999
#else
#define BFLSC_TIMEOUT_MS 300
#define BITFORCE_TIMEOUT_MS 200
#define BITFURY_TIMEOUT_MS 100
#define MODMINER_TIMEOUT_MS 100
#define AVALON_TIMEOUT_MS 200
#define KLONDIKE_TIMEOUT_MS 200
#define ICARUS_TIMEOUT_MS 200
#endif
#define USB_READ_MINPOLL 40
#define USB_EPS(_intx, _epinfosx) { \
.interface = _intx, \
.ctrl_transfer = _intx, \
.epinfo_count = ARRAY_SIZE(_epinfosx), \
.epinfos = _epinfosx \
}
#define USB_EPS_CTRL(_inty, _ctrlinty, _epinfosy) { \
.interface = _inty, \
.ctrl_transfer = _ctrlinty, \
.epinfo_count = ARRAY_SIZE(_epinfosy), \
.epinfos = _epinfosy \
}
#ifdef USE_BFLSC
// N.B. transfer size is 512 with USB2.0, but only 64 with USB1.1
static struct usb_epinfo bas_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0, 0 }
};
static struct usb_intinfo bas_ints[] = {
USB_EPS(0, bas_epinfos)
};
#endif
#ifdef USE_BITFORCE
// N.B. transfer size is 512 with USB2.0, but only 64 with USB1.1
static struct usb_epinfo bfl_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0, 0 }
};
static struct usb_intinfo bfl_ints[] = {
USB_EPS(0, bfl_epinfos)
};
#endif
#ifdef USE_BITFURY
static struct usb_epinfo bfu0_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_INTERRUPT, 8, EPI(2), 0, 0, 0 }
};
static struct usb_epinfo bfu1_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 16, EPI(3), 0, 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 16, EPO(4), 0, 0, 0 }
};
/* Default to interface 1 */
static struct usb_intinfo bfu_ints[] = {
USB_EPS(1, bfu1_epinfos),
USB_EPS(0, bfu0_epinfos)
};
#endif
#ifdef USE_MODMINER
static struct usb_epinfo mmq_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(3), 0, 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(3), 0, 0, 0 }
};
static struct usb_intinfo mmq_ints[] = {
USB_EPS(1, mmq_epinfos)
};
#endif
#ifdef USE_AVALON
static struct usb_epinfo ava_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0, 0 }
};
static struct usb_intinfo ava_ints[] = {
USB_EPS(0, ava_epinfos)
};
#endif
#ifdef USE_KLONDIKE
static struct usb_epinfo kln_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(1), 0, 0, 0 }
};
static struct usb_intinfo kln_ints[] = {
USB_EPS(0, kln_epinfos)
};
#endif
#ifdef USE_ICARUS
static struct usb_epinfo ica_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(3), 0, 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0, 0 }
};
static struct usb_intinfo ica_ints[] = {
USB_EPS(0, ica_epinfos)
};
static struct usb_epinfo amu_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(1), 0, 0, 0 }
};
static struct usb_intinfo amu_ints[] = {
USB_EPS(0, amu_epinfos)
};
static struct usb_epinfo llt_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0, 0 }
};
static struct usb_intinfo llt_ints[] = {
USB_EPS(0, llt_epinfos)
};
static struct usb_epinfo cmr1_epinfos[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0, 0 }
};
static struct usb_intinfo cmr1_ints[] = {
USB_EPS(0, cmr1_epinfos)
};
static struct usb_epinfo cmr2_epinfos0[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0, 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0, 0, 0 }
};
static struct usb_epinfo cmr2_epinfos1[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(3), 0, 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(4), 0, 0, 0 },
};
static struct usb_epinfo cmr2_epinfos2[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(5), 0, 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(6), 0, 0, 0 },
};
static struct usb_epinfo cmr2_epinfos3[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(7), 0, 0, 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(8), 0, 0, 0 }
};
static struct usb_intinfo cmr2_ints[] = {
USB_EPS_CTRL(0, 1, cmr2_epinfos0),
USB_EPS_CTRL(1, 2, cmr2_epinfos1),
USB_EPS_CTRL(2, 3, cmr2_epinfos2),
USB_EPS_CTRL(3, 4, cmr2_epinfos3)
};
#endif
#define IDVENDOR_FTDI 0x0403
#define INTINFO(_ints) \
.intinfo_count = ARRAY_SIZE(_ints), \
.intinfos = _ints
#define USBEP(_usbdev, _intinfo, _epinfo) (_usbdev->found->intinfos[_intinfo].epinfos[_epinfo].ep)
#define THISIF(_found, _this) (_found->intinfos[_this].interface)
#define USBIF(_usbdev, _this) THISIF(_usbdev->found, _this)
// TODO: Add support for (at least) Isochronous endpoints
static struct usb_find_devices find_dev[] = {
#ifdef USE_BFLSC
{
.drv = DRIVER_bflsc,
.name = "BAS",
.ident = IDENT_BAS,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6014,
//.iManufacturer = "Butterfly Labs",
.iProduct = "BitFORCE SHA256 SC",
.config = 1,
.timeout = BFLSC_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(bas_ints) },
#endif
#ifdef USE_BITFORCE
{
.drv = DRIVER_bitforce,
.name = "BFL",
.ident = IDENT_BFL,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6014,
.iManufacturer = "Butterfly Labs Inc.",
.iProduct = "BitFORCE SHA256",
.config = 1,
.timeout = BITFORCE_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(bfl_ints) },
#endif
#ifdef USE_BITFURY
{
.drv = DRIVER_bitfury,
.name = "BF1",
.ident = IDENT_BFU,
.idVendor = 0x03eb,
.idProduct = 0x204b,
.config = 1,
.timeout = BITFURY_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
.iManufacturer = "BPMC",
.iProduct = "Bitfury BF1",
INTINFO(bfu_ints)
},
#endif
#ifdef USE_MODMINER
{
.drv = DRIVER_modminer,
.name = "MMQ",
.ident = IDENT_MMQ,
.idVendor = 0x1fc9,
.idProduct = 0x0003,
.config = 1,
.timeout = MODMINER_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(mmq_ints) },
#endif
#ifdef USE_AVALON
{
.drv = DRIVER_avalon,
.name = "BTB",
.ident = IDENT_BTB,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6001,
.iManufacturer = "Burnin Electronics",
.iProduct = "BitBurner",
.config = 1,
.timeout = AVALON_TIMEOUT_MS,
.latency = 10,
INTINFO(ava_ints) },
{
.drv = DRIVER_avalon,
.name = "AVA",
.ident = IDENT_AVA,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6001,
.config = 1,
.timeout = AVALON_TIMEOUT_MS,
.latency = 10,
INTINFO(ava_ints) },
#endif
#ifdef USE_KLONDIKE
{
.drv = DRIVER_klondike,
.name = "KLN",
.ident = IDENT_KLN,
.idVendor = 0x04D8,
.idProduct = 0xF60A,
.config = 1,
.timeout = KLONDIKE_TIMEOUT_MS,
.latency = 10,
INTINFO(kln_ints) },
#endif
#ifdef USE_ICARUS
{
.drv = DRIVER_icarus,
.name = "ICA",
.ident = IDENT_ICA,
.idVendor = 0x067b,
.idProduct = 0x2303,
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(ica_ints) },
{
.drv = DRIVER_icarus,
.name = "AMU",
.ident = IDENT_AMU,
.idVendor = 0x10c4,
.idProduct = 0xea60,
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
INTINFO(amu_ints) },
{
.drv = DRIVER_icarus,
.name = "BLT",
.ident = IDENT_BLT,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6001,
.iProduct = "FT232R USB UART",
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(llt_ints) },
// For any that don't match the above "BLT"
{
.drv = DRIVER_icarus,
.name = "LLT",
.ident = IDENT_LLT,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6001,
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(llt_ints) },
{
.drv = DRIVER_icarus,
.name = "CMR",
.ident = IDENT_CMR1,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6014,
.iProduct = "Cairnsmore1",
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(cmr1_ints) },
{
.drv = DRIVER_icarus,
.name = "CMR",
.ident = IDENT_CMR2,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x8350,
.iProduct = "Cairnsmore1",
.config = 1,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_STD,
INTINFO(cmr2_ints) },
#endif
{ DRIVER_MAX, NULL, 0, 0, 0, NULL, NULL, 0, 0, 0, 0, NULL }
};
#define STRBUFLEN 256
static const char *BLANK = "";
static const char *space = " ";
static const char *nodatareturned = "no data returned ";
#define IOERR_CHECK(cgpu, err) \
if (err == LIBUSB_ERROR_IO) { \
cgpu->usbinfo.ioerr_count++; \
cgpu->usbinfo.continuous_ioerr_count++; \
} else { \
cgpu->usbinfo.continuous_ioerr_count = 0; \
}
#if 0 // enable USBDEBUG - only during development testing
static const char *debug_true_str = "true";
static const char *debug_false_str = "false";
static const char *nodevstr = "=NODEV";
#define bool_str(boo) ((boo) ? debug_true_str : debug_false_str)
#define isnodev(err) (NODEV(err) ? nodevstr : BLANK)
#define USBDEBUG(fmt, ...) applog(LOG_WARNING, fmt, ##__VA_ARGS__)
#else
#define USBDEBUG(fmt, ...)
#endif
// For device limits by driver
static struct driver_count {
uint32_t count;
uint32_t limit;
} drv_count[DRIVER_MAX];
// For device limits by list of bus/dev
static struct usb_busdev {
int bus_number;
int device_address;
void *resource1;
void *resource2;
} *busdev;
static int busdev_count = 0;
// Total device limit
static int total_count = 0;
static int total_limit = 999999;
struct usb_in_use_list {
struct usb_busdev in_use;
struct usb_in_use_list *prev;
struct usb_in_use_list *next;
};
// List of in use devices
static struct usb_in_use_list *in_use_head = NULL;
struct resource_work {
bool lock;
const char *dname;
uint8_t bus_number;
uint8_t device_address;
struct resource_work *next;
};
// Pending work for the reslock thread
struct resource_work *res_work_head = NULL;
struct resource_reply {
uint8_t bus_number;
uint8_t device_address;
bool got;
struct resource_reply *next;
};
// Replies to lock requests
struct resource_reply *res_reply_head = NULL;
// Some stats need to always be defined
#define SEQ0 0
#define SEQ1 1
// NONE must be 0 - calloced
#define MODE_NONE 0
#define MODE_CTRL_READ (1 << 0)
#define MODE_CTRL_WRITE (1 << 1)
#define MODE_BULK_READ (1 << 2)
#define MODE_BULK_WRITE (1 << 3)
// Set this to 0 to remove stats processing
#define DO_USB_STATS 1
static bool stats_initialised = false;
#if DO_USB_STATS
#define MODE_SEP_STR "+"
#define MODE_NONE_STR "X"
#define MODE_CTRL_READ_STR "cr"
#define MODE_CTRL_WRITE_STR "cw"
#define MODE_BULK_READ_STR "br"
#define MODE_BULK_WRITE_STR "bw"
// One for each CMD, TIMEOUT, ERROR
struct cg_usb_stats_item {
uint64_t count;
double total_delay;
double min_delay;
double max_delay;
struct timeval first;
struct timeval last;
};
#define CMD_CMD 0
#define CMD_TIMEOUT 1
#define CMD_ERROR 2
// One for each C_CMD
struct cg_usb_stats_details {
int seq;
uint32_t modes;
struct cg_usb_stats_item item[CMD_ERROR+1];
};
// One for each device
struct cg_usb_stats {
char *name;
int device_id;
struct cg_usb_stats_details *details;
};
static struct cg_usb_stats *usb_stats = NULL;
static int next_stat = USB_NOSTAT;
#define SECTOMS(s) ((int)((s) * 1000))
#define USB_STATS(sgpu_, sta_, fin_, err_, mode_, cmd_, seq_, tmo_) \
stats(sgpu_, sta_, fin_, err_, mode_, cmd_, seq_, tmo_)
#define STATS_TIMEVAL(tv_) cgtime(tv_)
#define USB_REJECT(sgpu_, mode_) rejected_inc(sgpu_, mode_)
#else
#define USB_STATS(sgpu_, sta_, fin_, err_, mode_, cmd_, seq_, tmo_)
#define STATS_TIMEVAL(tv_)
#define USB_REJECT(sgpu_, mode_)
#endif // DO_USB_STATS
/* Create usb_commands array from USB_PARSE_COMMANDS macro in usbutils.h */
char *usb_commands[] = {
USB_PARSE_COMMANDS(JUMPTABLE)
"Null"
};
#ifdef EOL
#undef EOL
#endif
#define EOL "\n"
static const char *DESDEV = "Device";
static const char *DESCON = "Config";
static const char *DESSTR = "String";
static const char *DESINT = "Interface";
static const char *DESEP = "Endpoint";
static const char *DESHID = "HID";
static const char *DESRPT = "Report";
static const char *DESPHY = "Physical";
static const char *DESHUB = "Hub";
static const char *EPIN = "In: ";
static const char *EPOUT = "Out: ";
static const char *EPX = "?: ";
static const char *CONTROL = "Control";
static const char *ISOCHRONOUS_X = "Isochronous+?";
static const char *ISOCHRONOUS_N_X = "Isochronous+None+?";
static const char *ISOCHRONOUS_N_D = "Isochronous+None+Data";
static const char *ISOCHRONOUS_N_F = "Isochronous+None+Feedback";
static const char *ISOCHRONOUS_N_I = "Isochronous+None+Implicit";
static const char *ISOCHRONOUS_A_X = "Isochronous+Async+?";
static const char *ISOCHRONOUS_A_D = "Isochronous+Async+Data";
static const char *ISOCHRONOUS_A_F = "Isochronous+Async+Feedback";
static const char *ISOCHRONOUS_A_I = "Isochronous+Async+Implicit";
static const char *ISOCHRONOUS_D_X = "Isochronous+Adaptive+?";
static const char *ISOCHRONOUS_D_D = "Isochronous+Adaptive+Data";
static const char *ISOCHRONOUS_D_F = "Isochronous+Adaptive+Feedback";
static const char *ISOCHRONOUS_D_I = "Isochronous+Adaptive+Implicit";
static const char *ISOCHRONOUS_S_X = "Isochronous+Sync+?";
static const char *ISOCHRONOUS_S_D = "Isochronous+Sync+Data";
static const char *ISOCHRONOUS_S_F = "Isochronous+Sync+Feedback";
static const char *ISOCHRONOUS_S_I = "Isochronous+Sync+Implicit";
static const char *BULK = "Bulk";
static const char *INTERRUPT = "Interrupt";
static const char *UNKNOWN = "Unknown";
static const char *destype(uint8_t bDescriptorType)
{
switch (bDescriptorType) {
case LIBUSB_DT_DEVICE:
return DESDEV;
case LIBUSB_DT_CONFIG:
return DESCON;
case LIBUSB_DT_STRING:
return DESSTR;
case LIBUSB_DT_INTERFACE:
return DESINT;
case LIBUSB_DT_ENDPOINT:
return DESEP;
case LIBUSB_DT_HID:
return DESHID;
case LIBUSB_DT_REPORT:
return DESRPT;
case LIBUSB_DT_PHYSICAL:
return DESPHY;
case LIBUSB_DT_HUB:
return DESHUB;
}
return UNKNOWN;
}
static const char *epdir(uint8_t bEndpointAddress)
{
switch (bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) {
case LIBUSB_ENDPOINT_IN:
return EPIN;
case LIBUSB_ENDPOINT_OUT:
return EPOUT;
}
return EPX;
}
static const char *epatt(uint8_t bmAttributes)
{
switch(bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) {
case LIBUSB_TRANSFER_TYPE_CONTROL:
return CONTROL;
case LIBUSB_TRANSFER_TYPE_BULK:
return BULK;
case LIBUSB_TRANSFER_TYPE_INTERRUPT:
return INTERRUPT;
case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
switch(bmAttributes & LIBUSB_ISO_SYNC_TYPE_MASK) {
case LIBUSB_ISO_SYNC_TYPE_NONE:
switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) {
case LIBUSB_ISO_USAGE_TYPE_DATA:
return ISOCHRONOUS_N_D;
case LIBUSB_ISO_USAGE_TYPE_FEEDBACK:
return ISOCHRONOUS_N_F;
case LIBUSB_ISO_USAGE_TYPE_IMPLICIT:
return ISOCHRONOUS_N_I;
}
return ISOCHRONOUS_N_X;
case LIBUSB_ISO_SYNC_TYPE_ASYNC:
switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) {
case LIBUSB_ISO_USAGE_TYPE_DATA:
return ISOCHRONOUS_A_D;
case LIBUSB_ISO_USAGE_TYPE_FEEDBACK:
return ISOCHRONOUS_A_F;
case LIBUSB_ISO_USAGE_TYPE_IMPLICIT:
return ISOCHRONOUS_A_I;
}
return ISOCHRONOUS_A_X;
case LIBUSB_ISO_SYNC_TYPE_ADAPTIVE:
switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) {
case LIBUSB_ISO_USAGE_TYPE_DATA:
return ISOCHRONOUS_D_D;
case LIBUSB_ISO_USAGE_TYPE_FEEDBACK:
return ISOCHRONOUS_D_F;
case LIBUSB_ISO_USAGE_TYPE_IMPLICIT:
return ISOCHRONOUS_D_I;
}
return ISOCHRONOUS_D_X;
case LIBUSB_ISO_SYNC_TYPE_SYNC:
switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) {
case LIBUSB_ISO_USAGE_TYPE_DATA:
return ISOCHRONOUS_S_D;
case LIBUSB_ISO_USAGE_TYPE_FEEDBACK:
return ISOCHRONOUS_S_F;
case LIBUSB_ISO_USAGE_TYPE_IMPLICIT:
return ISOCHRONOUS_S_I;
}
return ISOCHRONOUS_S_X;
}
return ISOCHRONOUS_X;
}
return UNKNOWN;
}
static void append(char **buf, char *append, size_t *off, size_t *len)
{
int new = strlen(append);
if ((new + *off) >= *len)
{
*len *= 2;
*buf = realloc(*buf, *len);
if (unlikely(!*buf))
quit(1, "USB failed to realloc append");
}
strcpy(*buf + *off, append);
*off += new;
}
static bool setgetdes(ssize_t count, libusb_device *dev, struct libusb_device_handle *handle, struct libusb_config_descriptor **config, int cd, char **buf, size_t *off, size_t *len)
{
char tmp[512];
int err;
err = libusb_set_configuration(handle, cd);
if (err) {
snprintf(tmp, sizeof(tmp), EOL " ** dev %d: Failed to set config descriptor to %d, err %d",
(int)count, cd, err);
append(buf, tmp, off, len);
return false;
}
err = libusb_get_active_config_descriptor(dev, config);
if (err) {
snprintf(tmp, sizeof(tmp), EOL " ** dev %d: Failed to get active config descriptor set to %d, err %d",
(int)count, cd, err);
append(buf, tmp, off, len);
return false;
}
snprintf(tmp, sizeof(tmp), EOL " ** dev %d: Set & Got active config descriptor to %d, err %d",
(int)count, cd, err);
append(buf, tmp, off, len);
return true;
}
static void usb_full(ssize_t *count, libusb_device *dev, char **buf, size_t *off, size_t *len, int level)
{
struct libusb_device_descriptor desc;
uint8_t bus_number;
uint8_t device_address;
struct libusb_device_handle *handle;
struct libusb_config_descriptor *config;
const struct libusb_interface_descriptor *idesc;
const struct libusb_endpoint_descriptor *epdesc;
unsigned char man[STRBUFLEN+1];
unsigned char prod[STRBUFLEN+1];
unsigned char ser[STRBUFLEN+1];
char tmp[512];
int err, i, j, k;
err = libusb_get_device_descriptor(dev, &desc);
if (opt_usb_list_all && err) {
snprintf(tmp, sizeof(tmp), EOL ".USB dev %d: Failed to get descriptor, err %d",
(int)(++(*count)), err);
append(buf, tmp, off, len);
return;
}
bus_number = libusb_get_bus_number(dev);
device_address = libusb_get_device_address(dev);
if (!opt_usb_list_all) {
bool known = false;
for (i = 0; find_dev[i].drv != DRIVER_MAX; i++)
if ((find_dev[i].idVendor == desc.idVendor) &&
(find_dev[i].idProduct == desc.idProduct)) {
known = true;
break;
}
if (!known)
return;
}
(*count)++;
if (level == 0) {
snprintf(tmp, sizeof(tmp), EOL ".USB dev %d: Bus %d Device %d ID: %04x:%04x",
(int)(*count), (int)bus_number, (int)device_address,
desc.idVendor, desc.idProduct);
} else {
snprintf(tmp, sizeof(tmp), EOL ".USB dev %d: Bus %d Device %d Device Descriptor:" EOL "\tLength: %d" EOL
"\tDescriptor Type: %s" EOL "\tUSB: %04x" EOL "\tDeviceClass: %d" EOL
"\tDeviceSubClass: %d" EOL "\tDeviceProtocol: %d" EOL "\tMaxPacketSize0: %d" EOL
"\tidVendor: %04x" EOL "\tidProduct: %04x" EOL "\tDeviceRelease: %x" EOL
"\tNumConfigurations: %d",
(int)(*count), (int)bus_number, (int)device_address,
(int)(desc.bLength), destype(desc.bDescriptorType),
desc.bcdUSB, (int)(desc.bDeviceClass), (int)(desc.bDeviceSubClass),
(int)(desc.bDeviceProtocol), (int)(desc.bMaxPacketSize0),
desc.idVendor, desc.idProduct, desc.bcdDevice,
(int)(desc.bNumConfigurations));
}
append(buf, tmp, off, len);
err = libusb_open(dev, &handle);
if (err) {
snprintf(tmp, sizeof(tmp), EOL " ** dev %d: Failed to open, err %d", (int)(*count), err);
append(buf, tmp, off, len);
return;
}
err = libusb_get_string_descriptor_ascii(handle, desc.iManufacturer, man, STRBUFLEN);
if (err < 0)
snprintf((char *)man, sizeof(man), "** err(%d)%s", err, libusb_error_name(err));
err = libusb_get_string_descriptor_ascii(handle, desc.iProduct, prod, STRBUFLEN);
if (err < 0)
snprintf((char *)prod, sizeof(prod), "** err(%d)%s", err, libusb_error_name(err));
if (level == 0) {
libusb_close(handle);
snprintf(tmp, sizeof(tmp), EOL " Manufacturer: '%s'" EOL " Product: '%s'", man, prod);
append(buf, tmp, off, len);
return;
}
if (libusb_kernel_driver_active(handle, 0) == 1) {
snprintf(tmp, sizeof(tmp), EOL " * dev %d: kernel attached", (int)(*count));
append(buf, tmp, off, len);
}
err = libusb_get_active_config_descriptor(dev, &config);
if (err) {
if (!setgetdes(*count, dev, handle, &config, 1, buf, off, len)
&& !setgetdes(*count, dev, handle, &config, 0, buf, off, len)) {
libusb_close(handle);
snprintf(tmp, sizeof(tmp), EOL " ** dev %d: Failed to set config descriptor to %d or %d",
(int)(*count), 1, 0);
append(buf, tmp, off, len);
return;
}
}
snprintf(tmp, sizeof(tmp), EOL " dev %d: Active Config:" EOL "\tDescriptorType: %s" EOL
"\tNumInterfaces: %d" EOL "\tConfigurationValue: %d" EOL
"\tAttributes: %d" EOL "\tMaxPower: %d",
(int)(*count), destype(config->bDescriptorType),
(int)(config->bNumInterfaces), (int)(config->iConfiguration),
(int)(config->bmAttributes), (int)(config->MaxPower));
append(buf, tmp, off, len);
for (i = 0; i < (int)(config->bNumInterfaces); i++) {
for (j = 0; j < config->interface[i].num_altsetting; j++) {
idesc = &(config->interface[i].altsetting[j]);
snprintf(tmp, sizeof(tmp), EOL " _dev %d: Interface Descriptor %d:" EOL
"\tDescriptorType: %s" EOL "\tInterfaceNumber: %d" EOL
"\tNumEndpoints: %d" EOL "\tInterfaceClass: %d" EOL
"\tInterfaceSubClass: %d" EOL "\tInterfaceProtocol: %d",
(int)(*count), j, destype(idesc->bDescriptorType),
(int)(idesc->bInterfaceNumber),
(int)(idesc->bNumEndpoints),
(int)(idesc->bInterfaceClass),
(int)(idesc->bInterfaceSubClass),
(int)(idesc->bInterfaceProtocol));
append(buf, tmp, off, len);
for (k = 0; k < (int)(idesc->bNumEndpoints); k++) {
epdesc = &(idesc->endpoint[k]);
snprintf(tmp, sizeof(tmp), EOL " __dev %d: Interface %d Endpoint %d:" EOL
"\tDescriptorType: %s" EOL
"\tEndpointAddress: %s0x%x" EOL
"\tAttributes: %s" EOL "\tMaxPacketSize: %d" EOL
"\tInterval: %d" EOL "\tRefresh: %d",
(int)(*count), (int)(idesc->bInterfaceNumber), k,
destype(epdesc->bDescriptorType),
epdir(epdesc->bEndpointAddress),
(int)(epdesc->bEndpointAddress),
epatt(epdesc->bmAttributes),
epdesc->wMaxPacketSize,
(int)(epdesc->bInterval),
(int)(epdesc->bRefresh));
append(buf, tmp, off, len);
}
}
}
libusb_free_config_descriptor(config);
config = NULL;
err = libusb_get_string_descriptor_ascii(handle, desc.iSerialNumber, ser, STRBUFLEN);
if (err < 0)
snprintf((char *)ser, sizeof(ser), "** err(%d)%s", err, libusb_error_name(err));
snprintf(tmp, sizeof(tmp), EOL " dev %d: More Info:" EOL "\tManufacturer: '%s'" EOL
"\tProduct: '%s'" EOL "\tSerial '%s'",
(int)(*count), man, prod, ser);
append(buf, tmp, off, len);
libusb_close(handle);
}
// Function to dump all USB devices
void usb_all(int level)
{
libusb_device **list;
ssize_t count, i, j;
char *buf;
size_t len, off;
count = libusb_get_device_list(NULL, &list);
if (count < 0) {
applog(LOG_ERR, "USB all: failed, err %d%s", (int)count, libusb_error_name((int)count));
return;
}
if (count == 0)
applog(LOG_WARNING, "USB all: found no devices");
else
{
len = 10000;
buf = malloc(len+1);
if (unlikely(!buf))
quit(1, "USB failed to malloc buf in usb_all");
sprintf(buf, "USB all: found %d devices", (int)count);
off = strlen(buf);
if (!opt_usb_list_all)
append(&buf, " - listing known devices", &off, &len);
j = -1;
for (i = 0; i < count; i++)
usb_full(&j, list[i], &buf, &off, &len, level);
_applog(LOG_WARNING, buf);
free(buf);
if (j == -1)
applog(LOG_WARNING, "No known USB devices");
else
applog(LOG_WARNING, "%d %sUSB devices",
(int)(++j), opt_usb_list_all ? BLANK : "known ");
}
libusb_free_device_list(list, 1);
}
static void cgusb_check_init()
{
mutex_lock(&cgusb_lock);
if (stats_initialised == false) {
// N.B. environment LIBUSB_DEBUG also sets libusb_set_debug()
if (opt_usbdump >= 0) {
libusb_set_debug(NULL, opt_usbdump);
usb_all(opt_usbdump);
}
stats_initialised = true;
}
mutex_unlock(&cgusb_lock);
}
const char *usb_cmdname(enum usb_cmds cmd)
{
cgusb_check_init();
return usb_commands[cmd];
}
void usb_applog(struct cgpu_info *cgpu, enum usb_cmds cmd, char *msg, int amount, int err)
{
if (msg && !*msg)
msg = NULL;
if (!msg && amount == 0 && err == LIBUSB_SUCCESS)
msg = (char *)nodatareturned;
applog(LOG_ERR, "%s%i: %s failed%s%s (err=%d amt=%d)",
cgpu->drv->name, cgpu->device_id,
usb_cmdname(cmd),
msg ? space : BLANK, msg ? msg : BLANK,
err, amount);
}
static void in_use_store_ress(uint8_t bus_number, uint8_t device_address, void *resource1, void *resource2)
{
struct usb_in_use_list *in_use_tmp;
bool found = false, empty = true;
mutex_lock(&cgusb_lock);
in_use_tmp = in_use_head;
while (in_use_tmp) {
if (in_use_tmp->in_use.bus_number == (int)bus_number &&
in_use_tmp->in_use.device_address == (int)device_address) {
found = true;
if (in_use_tmp->in_use.resource1)
empty = false;
in_use_tmp->in_use.resource1 = resource1;
if (in_use_tmp->in_use.resource2)
empty = false;
in_use_tmp->in_use.resource2 = resource2;
break;
}
in_use_tmp = in_use_tmp->next;
}
mutex_unlock(&cgusb_lock);
if (found == false)
applog(LOG_ERR, "FAIL: USB store_ress not found (%d:%d)",
(int)bus_number, (int)device_address);
if (empty == false)
applog(LOG_ERR, "FAIL: USB store_ress not empty (%d:%d)",
(int)bus_number, (int)device_address);
}
static void in_use_get_ress(uint8_t bus_number, uint8_t device_address, void **resource1, void **resource2)
{
struct usb_in_use_list *in_use_tmp;
bool found = false, empty = false;
mutex_lock(&cgusb_lock);
in_use_tmp = in_use_head;
while (in_use_tmp) {
if (in_use_tmp->in_use.bus_number == (int)bus_number &&
in_use_tmp->in_use.device_address == (int)device_address) {
found = true;
if (!in_use_tmp->in_use.resource1)
empty = true;
*resource1 = in_use_tmp->in_use.resource1;
in_use_tmp->in_use.resource1 = NULL;
if (!in_use_tmp->in_use.resource2)
empty = true;
*resource2 = in_use_tmp->in_use.resource2;
in_use_tmp->in_use.resource2 = NULL;
break;
}
in_use_tmp = in_use_tmp->next;
}
mutex_unlock(&cgusb_lock);
if (found == false)
applog(LOG_ERR, "FAIL: USB get_lock not found (%d:%d)",
(int)bus_number, (int)device_address);
if (empty == true)
applog(LOG_ERR, "FAIL: USB get_lock empty (%d:%d)",
(int)bus_number, (int)device_address);
}
static bool __is_in_use(uint8_t bus_number, uint8_t device_address)
{
struct usb_in_use_list *in_use_tmp;
bool ret = false;
in_use_tmp = in_use_head;
while (in_use_tmp) {
if (in_use_tmp->in_use.bus_number == (int)bus_number &&
in_use_tmp->in_use.device_address == (int)device_address) {
ret = true;
break;
}
in_use_tmp = in_use_tmp->next;
}
return ret;
}
static bool is_in_use_bd(uint8_t bus_number, uint8_t device_address)
{
bool ret;
mutex_lock(&cgusb_lock);
ret = __is_in_use(bus_number, device_address);
mutex_unlock(&cgusb_lock);
return ret;
}
static bool is_in_use(libusb_device *dev)
{
return is_in_use_bd(libusb_get_bus_number(dev), libusb_get_device_address(dev));
}
static void add_in_use(uint8_t bus_number, uint8_t device_address)
{
struct usb_in_use_list *in_use_tmp;
bool found = false;
mutex_lock(&cgusb_lock);
if (unlikely(__is_in_use(bus_number, device_address))) {
found = true;
goto nofway;
}
in_use_tmp = calloc(1, sizeof(*in_use_tmp));
if (unlikely(!in_use_tmp))
quit(1, "USB failed to calloc in_use_tmp");
in_use_tmp->in_use.bus_number = (int)bus_number;
in_use_tmp->in_use.device_address = (int)device_address;
in_use_tmp->next = in_use_head;
if (in_use_head)
in_use_head->prev = in_use_tmp;
in_use_head = in_use_tmp;
nofway:
mutex_unlock(&cgusb_lock);
if (found)
applog(LOG_ERR, "FAIL: USB add already in use (%d:%d)",
(int)bus_number, (int)device_address);
}
static void remove_in_use(uint8_t bus_number, uint8_t device_address)
{
struct usb_in_use_list *in_use_tmp;
bool found = false;
mutex_lock(&cgusb_lock);
in_use_tmp = in_use_head;
while (in_use_tmp) {
if (in_use_tmp->in_use.bus_number == (int)bus_number &&
in_use_tmp->in_use.device_address == (int)device_address) {
found = true;
if (in_use_tmp == in_use_head) {
in_use_head = in_use_head->next;
if (in_use_head)
in_use_head->prev = NULL;
} else {
in_use_tmp->prev->next = in_use_tmp->next;
if (in_use_tmp->next)
in_use_tmp->next->prev = in_use_tmp->prev;
}
free(in_use_tmp);
break;
}
in_use_tmp = in_use_tmp->next;
}
mutex_unlock(&cgusb_lock);
if (!found)
applog(LOG_ERR, "FAIL: USB remove not already in use (%d:%d)",
(int)bus_number, (int)device_address);
}
static bool cgminer_usb_lock_bd(struct device_drv *drv, uint8_t bus_number, uint8_t device_address)
{
struct resource_work *res_work;
bool ret;
applog(LOG_DEBUG, "USB lock %s %d-%d", drv->dname, (int)bus_number, (int)device_address);
res_work = calloc(1, sizeof(*res_work));
if (unlikely(!res_work))
quit(1, "USB failed to calloc lock res_work");
res_work->lock = true;
res_work->dname = (const char *)(drv->dname);
res_work->bus_number = bus_number;
res_work->device_address = device_address;
mutex_lock(&cgusbres_lock);
res_work->next = res_work_head;
res_work_head = res_work;
mutex_unlock(&cgusbres_lock);
cgsem_post(&usb_resource_sem);
// TODO: add a timeout fail - restart the resource thread?
while (true) {
cgsleep_ms(50);
mutex_lock(&cgusbres_lock);
if (res_reply_head) {
struct resource_reply *res_reply_prev = NULL;
struct resource_reply *res_reply = res_reply_head;
while (res_reply) {
if (res_reply->bus_number == bus_number &&
res_reply->device_address == device_address) {
if (res_reply_prev)
res_reply_prev->next = res_reply->next;
else
res_reply_head = res_reply->next;
mutex_unlock(&cgusbres_lock);
ret = res_reply->got;
free(res_reply);
return ret;
}
res_reply_prev = res_reply;
res_reply = res_reply->next;
}
}
mutex_unlock(&cgusbres_lock);
}
}
static bool cgminer_usb_lock(struct device_drv *drv, libusb_device *dev)
{
return cgminer_usb_lock_bd(drv, libusb_get_bus_number(dev), libusb_get_device_address(dev));
}
static void cgminer_usb_unlock_bd(struct device_drv *drv, uint8_t bus_number, uint8_t device_address)
{
struct resource_work *res_work;
applog(LOG_DEBUG, "USB unlock %s %d-%d", drv->dname, (int)bus_number, (int)device_address);
res_work = calloc(1, sizeof(*res_work));
if (unlikely(!res_work))
quit(1, "USB failed to calloc unlock res_work");
res_work->lock = false;
res_work->dname = (const char *)(drv->dname);
res_work->bus_number = bus_number;
res_work->device_address = device_address;
mutex_lock(&cgusbres_lock);
res_work->next = res_work_head;
res_work_head = res_work;
mutex_unlock(&cgusbres_lock);
cgsem_post(&usb_resource_sem);
return;
}
static void cgminer_usb_unlock(struct device_drv *drv, libusb_device *dev)
{
cgminer_usb_unlock_bd(drv, libusb_get_bus_number(dev), libusb_get_device_address(dev));
}
static struct cg_usb_device *free_cgusb(struct cg_usb_device *cgusb)
{
applog(LOG_DEBUG, "USB free %s", cgusb->found->name);
if (cgusb->serial_string && cgusb->serial_string != BLANK)
free(cgusb->serial_string);
if (cgusb->manuf_string && cgusb->manuf_string != BLANK)
free(cgusb->manuf_string);
if (cgusb->prod_string && cgusb->prod_string != BLANK)
free(cgusb->prod_string);
if (cgusb->descriptor)
free(cgusb->descriptor);
free(cgusb->found);
if (cgusb->buffer)
free(cgusb->buffer);
free(cgusb);
return NULL;
}
static void _usb_uninit(struct cgpu_info *cgpu)
{
int ifinfo;
// May have happened already during a failed initialisation
// if release_cgpu() was called due to a USB NODEV(err)
if (!cgpu->usbdev)
return;
applog(LOG_DEBUG, "USB uninit %s%i",
cgpu->drv->name, cgpu->device_id);
if (cgpu->usbdev->handle) {
for (ifinfo = cgpu->usbdev->found->intinfo_count - 1; ifinfo >= 0; ifinfo--) {
libusb_release_interface(cgpu->usbdev->handle,
THISIF(cgpu->usbdev->found, ifinfo));
}
#ifdef LINUX
libusb_attach_kernel_driver(cgpu->usbdev->handle, THISIF(cgpu->usbdev->found, ifinfo));
#endif
cg_wlock(&cgusb_fd_lock);
libusb_close(cgpu->usbdev->handle);
cgpu->usbdev->handle = NULL;
cg_wunlock(&cgusb_fd_lock);
}
cgpu->usbdev = free_cgusb(cgpu->usbdev);
}
void usb_uninit(struct cgpu_info *cgpu)
{
int pstate;
DEVWLOCK(cgpu, pstate);
_usb_uninit(cgpu);
DEVWUNLOCK(cgpu, pstate);
}
/* We have dropped the read devlock before entering this function but we pick
* up the write lock to prevent any attempts to work on dereferenced code once
* the nodev flag has been set. */
static void release_cgpu(struct cgpu_info *cgpu)
{
struct cg_usb_device *cgusb = cgpu->usbdev;
struct cgpu_info *lookcgpu;
int i;
// It has already been done
if (cgpu->usbinfo.nodev)
return;
applog(LOG_DEBUG, "USB release %s%i",
cgpu->drv->name, cgpu->device_id);
zombie_devs++;
total_count--;
drv_count[cgpu->drv->drv_id].count--;
cgpu->usbinfo.nodev = true;
cgpu->usbinfo.nodev_count++;
cgtime(&cgpu->usbinfo.last_nodev);
// Any devices sharing the same USB device should be marked also
for (i = 0; i < total_devices; i++) {
lookcgpu = get_devices(i);
if (lookcgpu != cgpu && lookcgpu->usbdev == cgusb) {
total_count--;
drv_count[lookcgpu->drv->drv_id].count--;
lookcgpu->usbinfo.nodev = true;
lookcgpu->usbinfo.nodev_count++;
memcpy(&(lookcgpu->usbinfo.last_nodev),
&(cgpu->usbinfo.last_nodev), sizeof(struct timeval));
lookcgpu->usbdev = NULL;
}
}
_usb_uninit(cgpu);
cgminer_usb_unlock_bd(cgpu->drv, cgpu->usbinfo.bus_number, cgpu->usbinfo.device_address);
}
/*
* Use the same usbdev thus locking is across all related devices
*/
struct cgpu_info *usb_copy_cgpu(struct cgpu_info *orig)
{
struct cgpu_info *copy;
int pstate;
DEVWLOCK(orig, pstate);
copy = calloc(1, sizeof(*copy));
if (unlikely(!copy))
quit(1, "Failed to calloc cgpu for %s in usb_copy_cgpu", orig->drv->dname);
copy->name = orig->name;
copy->drv = copy_drv(orig->drv);
copy->deven = orig->deven;
copy->threads = orig->threads;
copy->usbdev = orig->usbdev;
memcpy(&(copy->usbinfo), &(orig->usbinfo), sizeof(copy->usbinfo));
copy->usbinfo.nodev = (copy->usbdev == NULL);
DEVWUNLOCK(orig, pstate);
return copy;
}
struct cgpu_info *usb_alloc_cgpu(struct device_drv *drv, int threads)
{
struct cgpu_info *cgpu = calloc(1, sizeof(*cgpu));
if (unlikely(!cgpu))
quit(1, "Failed to calloc cgpu for %s in usb_alloc_cgpu", drv->dname);
cgpu->drv = drv;
cgpu->deven = DEV_ENABLED;
cgpu->threads = threads;
cgpu->usbinfo.nodev = true;
cglock_init(&cgpu->usbinfo.devlock);
return cgpu;
}
struct cgpu_info *usb_free_cgpu(struct cgpu_info *cgpu)
{
if (cgpu->drv->copy)
free(cgpu->drv);
free(cgpu->device_path);
free(cgpu);
return NULL;
}
#define USB_INIT_FAIL 0
#define USB_INIT_OK 1
#define USB_INIT_IGNORE 2
static int _usb_init(struct cgpu_info *cgpu, struct libusb_device *dev, struct usb_find_devices *found)
{
struct cg_usb_device *cgusb = NULL;
struct libusb_config_descriptor *config = NULL;
const struct libusb_interface_descriptor *idesc;
const struct libusb_endpoint_descriptor *epdesc;
unsigned char strbuf[STRBUFLEN+1];
char devpath[32];
char devstr[STRBUFLEN+1];
int err, ifinfo, epinfo, alt, epnum, pstate;
int bad = USB_INIT_FAIL;
int cfg, claimed = 0;
DEVWLOCK(cgpu, pstate);
cgpu->usbinfo.bus_number = libusb_get_bus_number(dev);
cgpu->usbinfo.device_address = libusb_get_device_address(dev);
if (found->intinfo_count > 1) {
snprintf(devpath, sizeof(devpath), "%d:%d-i%d",
(int)(cgpu->usbinfo.bus_number),
(int)(cgpu->usbinfo.device_address),
THISIF(found, 0));
} else {
snprintf(devpath, sizeof(devpath), "%d:%d",
(int)(cgpu->usbinfo.bus_number),
(int)(cgpu->usbinfo.device_address));
}
cgpu->device_path = strdup(devpath);
snprintf(devstr, sizeof(devstr), "- %s device %s", found->name, devpath);
cgusb = calloc(1, sizeof(*cgusb));
if (unlikely(!cgusb))
quit(1, "USB failed to calloc _usb_init cgusb");
cgusb->found = found;
if (found->idVendor == IDVENDOR_FTDI)
cgusb->usb_type = USB_TYPE_FTDI;
cgusb->ident = found->ident;
cgusb->descriptor = calloc(1, sizeof(*(cgusb->descriptor)));
if (unlikely(!cgusb->descriptor))
quit(1, "USB failed to calloc _usb_init cgusb descriptor");
err = libusb_get_device_descriptor(dev, cgusb->descriptor);
if (err) {
applog(LOG_DEBUG,
"USB init failed to get descriptor, err %d %s",
err, devstr);
goto dame;
}
cg_wlock(&cgusb_fd_lock);
err = libusb_open(dev, &(cgusb->handle));
cg_wunlock(&cgusb_fd_lock);
if (err) {
switch (err) {
case LIBUSB_ERROR_ACCESS:
applog(LOG_ERR,
"USB init, open device failed, err %d, "
"you don't have privilege to access %s",
err, devstr);
break;
#ifdef WIN32
// Windows specific message
case LIBUSB_ERROR_NOT_SUPPORTED:
applog(LOG_ERR,
"USB init, open device failed, err %d, "
"you need to install a WinUSB driver for %s",
err, devstr);
break;
#endif
default:
applog(LOG_DEBUG,
"USB init, open failed, err %d %s",
err, devstr);
}
goto dame;
}
#ifdef LINUX
for (ifinfo = 0; ifinfo < found->intinfo_count; ifinfo++) {
if (libusb_kernel_driver_active(cgusb->handle, THISIF(found, ifinfo)) == 1) {
applog(LOG_DEBUG, "USB init, kernel attached ... %s", devstr);
err = libusb_detach_kernel_driver(cgusb->handle, THISIF(found, ifinfo));
if (err == 0) {
applog(LOG_DEBUG,
"USB init, kernel detached ifinfo %d interface %d"
" successfully %s",
ifinfo, THISIF(found, ifinfo), devstr);
} else {
applog(LOG_WARNING,
"USB init, kernel detach ifinfo %d interface %d failed,"
" err %d in use? %s",
ifinfo, THISIF(found, ifinfo), err, devstr);
goto nokernel;
}
}
}
#endif
if (found->iManufacturer) {
unsigned char man[STRBUFLEN+1];
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iManufacturer,
man, STRBUFLEN);
if (err < 0) {
applog(LOG_DEBUG,
"USB init, failed to get iManufacturer, err %d %s",
err, devstr);
goto cldame;
}
if (strcmp((char *)man, found->iManufacturer)) {
applog(LOG_DEBUG, "USB init, iManufacturer mismatch %s",
devstr);
bad = USB_INIT_IGNORE;
goto cldame;
}
}
if (found->iProduct) {
unsigned char prod[STRBUFLEN+1];
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iProduct,
prod, STRBUFLEN);
if (err < 0) {
applog(LOG_DEBUG,
"USB init, failed to get iProduct, err %d %s",
err, devstr);
goto cldame;
}
if (strcmp((char *)prod, found->iProduct)) {
applog(LOG_DEBUG, "USB init, iProduct mismatch %s",
devstr);
bad = USB_INIT_IGNORE;
goto cldame;
}
}
cfg = -1;
err = libusb_get_configuration(cgusb->handle, &cfg);
if (err)
cfg = -1;
// Try to set it if we can't read it or it's different
if (cfg != found->config) {
err = libusb_set_configuration(cgusb->handle, found->config);
if (err) {
switch(err) {
case LIBUSB_ERROR_BUSY:
applog(LOG_WARNING,
"USB init, set config %d in use %s",
found->config, devstr);
break;
default:
applog(LOG_DEBUG,
"USB init, failed to set config to %d, err %d %s",
found->config, err, devstr);
}
goto cldame;
}
}
err = libusb_get_active_config_descriptor(dev, &config);
if (err) {
applog(LOG_DEBUG,
"USB init, failed to get config descriptor, err %d %s",
err, devstr);
goto cldame;
}
int imax = -1;
for (ifinfo = 0; ifinfo < found->intinfo_count; ifinfo++)
if (found->intinfos[ifinfo].interface > imax)
imax = found->intinfos[ifinfo].interface;
if ((int)(config->bNumInterfaces) <= imax) {
applog(LOG_DEBUG, "USB init bNumInterfaces %d <= interface max %d for %s",
(int)(config->bNumInterfaces), imax, devstr);
goto cldame;
}
for (ifinfo = 0; ifinfo < found->intinfo_count; ifinfo++)
for (epinfo = 0; epinfo < found->intinfos[ifinfo].epinfo_count; epinfo++)
found->intinfos[ifinfo].epinfos[epinfo].found = false;
for (ifinfo = 0; ifinfo < found->intinfo_count; ifinfo++) {
int interface = found->intinfos[ifinfo].interface;
for (alt = 0; alt < config->interface[interface].num_altsetting; alt++) {
idesc = &(config->interface[interface].altsetting[alt]);
for (epnum = 0; epnum < (int)(idesc->bNumEndpoints); epnum++) {
struct usb_epinfo *epinfos = found->intinfos[ifinfo].epinfos;
epdesc = &(idesc->endpoint[epnum]);
for (epinfo = 0; epinfo < found->intinfos[ifinfo].epinfo_count; epinfo++) {
if (!epinfos[epinfo].found) {
if (epdesc->bmAttributes == epinfos[epinfo].att
&& epdesc->wMaxPacketSize >= epinfos[epinfo].size
&& epdesc->bEndpointAddress == epinfos[epinfo].ep) {
epinfos[epinfo].found = true;
epinfos[epinfo].wMaxPacketSize = epdesc->wMaxPacketSize;
break;
}
}
}
}
}
}
for (ifinfo = 0; ifinfo < found->intinfo_count; ifinfo++)
for (epinfo = 0; epinfo < found->intinfos[ifinfo].epinfo_count; epinfo++)
if (found->intinfos[ifinfo].epinfos[epinfo].found == false) {
applog(LOG_DEBUG, "USB init found (%d,%d) == false %s",
ifinfo, epinfo, devstr);
goto cldame;
}
claimed = 0;
for (ifinfo = 0; ifinfo < found->intinfo_count; ifinfo++) {
err = libusb_claim_interface(cgusb->handle, THISIF(found, ifinfo));
if (err == 0)
claimed++;
else {
switch(err) {
case LIBUSB_ERROR_BUSY:
applog(LOG_WARNING,
"USB init, claim ifinfo %d interface %d in use %s",
ifinfo, THISIF(found, ifinfo), devstr);
break;
default:
applog(LOG_DEBUG,
"USB init, claim ifinfo %d interface %d failed,"
" err %d %s",
ifinfo, THISIF(found, ifinfo), err, devstr);
}
goto reldame;
}
}
cfg = -1;
err = libusb_get_configuration(cgusb->handle, &cfg);
if (err)
cfg = -1;
if (cfg != found->config) {
applog(LOG_WARNING,
"USB init, incorrect config (%d!=%d) after claim of %s",
cfg, found->config, devstr);
goto reldame;
}
cgusb->usbver = cgusb->descriptor->bcdUSB;
// TODO: allow this with the right version of the libusb include and running library
// cgusb->speed = libusb_get_device_speed(dev);
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iProduct, strbuf, STRBUFLEN);
if (err > 0)
cgusb->prod_string = strdup((char *)strbuf);
else
cgusb->prod_string = (char *)BLANK;
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iManufacturer, strbuf, STRBUFLEN);
if (err > 0)
cgusb->manuf_string = strdup((char *)strbuf);
else
cgusb->manuf_string = (char *)BLANK;
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iSerialNumber, strbuf, STRBUFLEN);
if (err > 0)
cgusb->serial_string = strdup((char *)strbuf);
else
cgusb->serial_string = (char *)BLANK;
// TODO: ?
// cgusb->fwVersion <- for temp1/temp2 decision? or serial? (driver-modminer.c)
// cgusb->interfaceVersion
applog(LOG_DEBUG,
"USB init %s usbver=%04x prod='%s' manuf='%s' serial='%s'",
devstr, cgusb->usbver, cgusb->prod_string,
cgusb->manuf_string, cgusb->serial_string);
cgpu->usbdev = cgusb;
cgpu->usbinfo.nodev = false;
libusb_free_config_descriptor(config);
// Allow a name change based on the idVendor+idProduct
// N.B. must be done before calling add_cgpu()
if (strcmp(cgpu->drv->name, found->name)) {
if (!cgpu->drv->copy)
cgpu->drv = copy_drv(cgpu->drv);
cgpu->drv->name = (char *)(found->name);
}
bad = USB_INIT_OK;
goto out_unlock;
reldame:
ifinfo = claimed;
while (ifinfo-- > 0)
libusb_release_interface(cgusb->handle, THISIF(found, ifinfo));
cldame:
#ifdef LINUX
libusb_attach_kernel_driver(cgusb->handle, THISIF(found, ifinfo));
nokernel:
#endif
cg_wlock(&cgusb_fd_lock);
libusb_close(cgusb->handle);
cgusb->handle = NULL;
cg_wunlock(&cgusb_fd_lock);
dame:
if (config)
libusb_free_config_descriptor(config);
cgusb = free_cgusb(cgusb);
out_unlock:
DEVWUNLOCK(cgpu, pstate);
return bad;
}
bool usb_init(struct cgpu_info *cgpu, struct libusb_device *dev, struct usb_find_devices *found_match)
{
struct usb_find_devices *found_use = NULL;
int uninitialised_var(ret);
int i;
for (i = 0; find_dev[i].drv != DRIVER_MAX; i++) {
if (find_dev[i].drv == found_match->drv &&
find_dev[i].idVendor == found_match->idVendor &&
find_dev[i].idProduct == found_match->idProduct) {
found_use = malloc(sizeof(*found_use));
if (unlikely(!found_use))
quit(1, "USB failed to malloc found_use");
memcpy(found_use, &(find_dev[i]), sizeof(*found_use));
ret = _usb_init(cgpu, dev, found_use);
if (ret != USB_INIT_IGNORE)
break;
}
}
if (ret == USB_INIT_FAIL)
applog(LOG_ERR, "%s detect (%d:%d) failed to initialise (incorrect device?)",
cgpu->drv->dname,
(int)(cgpu->usbinfo.bus_number),
(int)(cgpu->usbinfo.device_address));
return (ret == USB_INIT_OK);
}
static bool usb_check_device(struct device_drv *drv, struct libusb_device *dev, struct usb_find_devices *look)
{
struct libusb_device_descriptor desc;
int bus_number, device_address;
int err, i;
bool ok;
err = libusb_get_device_descriptor(dev, &desc);
if (err) {
applog(LOG_DEBUG, "USB check device: Failed to get descriptor, err %d", err);
return false;
}
if (desc.idVendor != look->idVendor || desc.idProduct != look->idProduct) {
applog(LOG_DEBUG, "%s looking for %s %04x:%04x but found %04x:%04x instead",
drv->name, look->name, look->idVendor, look->idProduct, desc.idVendor, desc.idProduct);
return false;
}
if (busdev_count > 0) {
bus_number = (int)libusb_get_bus_number(dev);
device_address = (int)libusb_get_device_address(dev);
ok = false;
for (i = 0; i < busdev_count; i++) {
if (bus_number == busdev[i].bus_number) {
if (busdev[i].device_address == -1 ||
device_address == busdev[i].device_address) {
ok = true;
break;
}
}
}
if (!ok) {
applog(LOG_DEBUG, "%s rejected %s %04x:%04x with bus:dev (%d:%d)",
drv->name, look->name, look->idVendor, look->idProduct,
bus_number, device_address);
return false;
}
}
applog(LOG_DEBUG, "%s looking for and found %s %04x:%04x",
drv->name, look->name, look->idVendor, look->idProduct);
return true;
}
static struct usb_find_devices *usb_check_each(int drvnum, struct device_drv *drv, struct libusb_device *dev)
{
struct usb_find_devices *found;
int i;
for (i = 0; find_dev[i].drv != DRIVER_MAX; i++)
if (find_dev[i].drv == drvnum) {
if (usb_check_device(drv, dev, &(find_dev[i]))) {
found = malloc(sizeof(*found));
if (unlikely(!found))
quit(1, "USB failed to malloc found");
memcpy(found, &(find_dev[i]), sizeof(*found));
return found;
}
}
return NULL;
}
#define DRIVER_USB_CHECK_EACH(X) if (drv->drv_id == DRIVER_##X) \
return usb_check_each(DRIVER_##X, drv, dev);
static struct usb_find_devices *usb_check(__maybe_unused struct device_drv *drv, __maybe_unused struct libusb_device *dev)
{
if (drv_count[drv->drv_id].count >= drv_count[drv->drv_id].limit) {
applog(LOG_DEBUG,
"USB scan devices3: %s limit %d reached",
drv->dname, drv_count[drv->drv_id].limit);
return NULL;
}
DRIVER_PARSE_COMMANDS(DRIVER_USB_CHECK_EACH)
return NULL;
}
void usb_detect(struct device_drv *drv, bool (*device_detect)(struct libusb_device *, struct usb_find_devices *))
{
libusb_device **list;
ssize_t count, i;
struct usb_find_devices *found;
applog(LOG_DEBUG, "USB scan devices: checking for %s devices", drv->name);
if (total_count >= total_limit) {
applog(LOG_DEBUG, "USB scan devices: total limit %d reached", total_limit);
return;
}
if (drv_count[drv->drv_id].count >= drv_count[drv->drv_id].limit) {
applog(LOG_DEBUG,
"USB scan devices: %s limit %d reached",
drv->dname, drv_count[drv->drv_id].limit);
return;
}
count = libusb_get_device_list(NULL, &list);
if (count < 0) {
applog(LOG_DEBUG, "USB scan devices: failed, err %d", (int)count);
return;
}
if (count == 0)
applog(LOG_DEBUG, "USB scan devices: found no devices");
else
cgsleep_ms(166);
for (i = 0; i < count; i++) {
if (total_count >= total_limit) {
applog(LOG_DEBUG, "USB scan devices2: total limit %d reached", total_limit);
break;
}
if (drv_count[drv->drv_id].count >= drv_count[drv->drv_id].limit) {
applog(LOG_DEBUG,
"USB scan devices2: %s limit %d reached",
drv->dname, drv_count[drv->drv_id].limit);
break;
}
found = usb_check(drv, list[i]);
if (found != NULL) {
if (is_in_use(list[i]) || cgminer_usb_lock(drv, list[i]) == false)
free(found);
else {
if (!device_detect(list[i], found))
cgminer_usb_unlock(drv, list[i]);
else {
total_count++;
drv_count[drv->drv_id].count++;
}
free(found);
}
}
}
libusb_free_device_list(list, 1);
}
#if DO_USB_STATS
static void modes_str(char *buf, uint32_t modes)
{
bool first;
*buf = '\0';
if (modes == MODE_NONE)
strcpy(buf, MODE_NONE_STR);
else {
first = true;
if (modes & MODE_CTRL_READ) {
strcpy(buf, MODE_CTRL_READ_STR);
first = false;
}
if (modes & MODE_CTRL_WRITE) {
if (!first)
strcat(buf, MODE_SEP_STR);
strcat(buf, MODE_CTRL_WRITE_STR);
first = false;
}
if (modes & MODE_BULK_READ) {
if (!first)
strcat(buf, MODE_SEP_STR);
strcat(buf, MODE_BULK_READ_STR);
first = false;
}
if (modes & MODE_BULK_WRITE) {
if (!first)
strcat(buf, MODE_SEP_STR);
strcat(buf, MODE_BULK_WRITE_STR);
first = false;
}
}
}
#endif
// The stat data can be spurious due to not locking it before copying it -
// however that would require the stat() function to also lock and release
// a mutex every time a usb read or write is called which would slow
// things down more
struct api_data *api_usb_stats(__maybe_unused int *count)
{
#if DO_USB_STATS
struct cg_usb_stats_details *details;
struct cg_usb_stats *sta;
struct api_data *root = NULL;
int device;
int cmdseq;
char modes_s[32];
if (next_stat == USB_NOSTAT)
return NULL;
while (*count < next_stat * C_MAX * 2) {
device = *count / (C_MAX * 2);
cmdseq = *count % (C_MAX * 2);
(*count)++;
sta = &(usb_stats[device]);
details = &(sta->details[cmdseq]);
// Only show stats that have results
if (details->item[CMD_CMD].count == 0 &&
details->item[CMD_TIMEOUT].count == 0 &&
details->item[CMD_ERROR].count == 0)
continue;
root = api_add_string(root, "Name", sta->name, false);
root = api_add_int(root, "ID", &(sta->device_id), false);
root = api_add_const(root, "Stat", usb_commands[cmdseq/2], false);
root = api_add_int(root, "Seq", &(details->seq), true);
modes_str(modes_s, details->modes);
root = api_add_string(root, "Modes", modes_s, true);
root = api_add_uint64(root, "Count",
&(details->item[CMD_CMD].count), true);
root = api_add_double(root, "Total Delay",
&(details->item[CMD_CMD].total_delay), true);
root = api_add_double(root, "Min Delay",
&(details->item[CMD_CMD].min_delay), true);
root = api_add_double(root, "Max Delay",
&(details->item[CMD_CMD].max_delay), true);
root = api_add_uint64(root, "Timeout Count",
&(details->item[CMD_TIMEOUT].count), true);
root = api_add_double(root, "Timeout Total Delay",
&(details->item[CMD_TIMEOUT].total_delay), true);
root = api_add_double(root, "Timeout Min Delay",
&(details->item[CMD_TIMEOUT].min_delay), true);
root = api_add_double(root, "Timeout Max Delay",
&(details->item[CMD_TIMEOUT].max_delay), true);
root = api_add_uint64(root, "Error Count",
&(details->item[CMD_ERROR].count), true);
root = api_add_double(root, "Error Total Delay",
&(details->item[CMD_ERROR].total_delay), true);
root = api_add_double(root, "Error Min Delay",
&(details->item[CMD_ERROR].min_delay), true);
root = api_add_double(root, "Error Max Delay",
&(details->item[CMD_ERROR].max_delay), true);
root = api_add_timeval(root, "First Command",
&(details->item[CMD_CMD].first), true);
root = api_add_timeval(root, "Last Command",
&(details->item[CMD_CMD].last), true);
root = api_add_timeval(root, "First Timeout",
&(details->item[CMD_TIMEOUT].first), true);
root = api_add_timeval(root, "Last Timeout",
&(details->item[CMD_TIMEOUT].last), true);
root = api_add_timeval(root, "First Error",
&(details->item[CMD_ERROR].first), true);
root = api_add_timeval(root, "Last Error",
&(details->item[CMD_ERROR].last), true);
return root;
}
#endif
return NULL;
}
#if DO_USB_STATS
static void newstats(struct cgpu_info *cgpu)
{
int i;
mutex_lock(&cgusb_lock);
cgpu->usbinfo.usbstat = next_stat + 1;
usb_stats = realloc(usb_stats, sizeof(*usb_stats) * (next_stat+1));
if (unlikely(!usb_stats))
quit(1, "USB failed to realloc usb_stats %d", next_stat+1);
usb_stats[next_stat].name = cgpu->drv->name;
usb_stats[next_stat].device_id = -1;
usb_stats[next_stat].details = calloc(1, sizeof(struct cg_usb_stats_details) * C_MAX * 2);
if (unlikely(!usb_stats[next_stat].details))
quit(1, "USB failed to calloc details for %d", next_stat+1);
for (i = 1; i < C_MAX * 2; i += 2)
usb_stats[next_stat].details[i].seq = 1;
next_stat++;
mutex_unlock(&cgusb_lock);
}
#endif
void update_usb_stats(__maybe_unused struct cgpu_info *cgpu)
{
#if DO_USB_STATS
if (cgpu->usbinfo.usbstat < 1)
newstats(cgpu);
// we don't know the device_id until after add_cgpu()
usb_stats[cgpu->usbinfo.usbstat - 1].device_id = cgpu->device_id;
#endif
}
#if DO_USB_STATS
static void stats(struct cgpu_info *cgpu, struct timeval *tv_start, struct timeval *tv_finish, int err, int mode, enum usb_cmds cmd, int seq, int timeout)
{
struct cg_usb_stats_details *details;
double diff;
int item, extrams;
if (cgpu->usbinfo.usbstat < 1)
newstats(cgpu);
cgpu->usbinfo.tmo_count++;
// timeout checks are only done when stats are enabled
extrams = SECTOMS(tdiff(tv_finish, tv_start)) - timeout;
if (extrams >= USB_TMO_0) {
uint32_t totms = (uint32_t)(timeout + extrams);
int offset = 0;
if (extrams >= USB_TMO_2) {
applog(LOG_ERR, "%s%i: TIMEOUT %s took %dms but was %dms",
cgpu->drv->name, cgpu->device_id,
usb_cmdname(cmd), totms, timeout) ;
offset = 2;
} else if (extrams >= USB_TMO_1)
offset = 1;
cgpu->usbinfo.usb_tmo[offset].count++;
cgpu->usbinfo.usb_tmo[offset].total_over += extrams;
cgpu->usbinfo.usb_tmo[offset].total_tmo += timeout;
if (cgpu->usbinfo.usb_tmo[offset].min_tmo == 0) {
cgpu->usbinfo.usb_tmo[offset].min_tmo = totms;
cgpu->usbinfo.usb_tmo[offset].max_tmo = totms;
} else {
if (cgpu->usbinfo.usb_tmo[offset].min_tmo > totms)
cgpu->usbinfo.usb_tmo[offset].min_tmo = totms;
if (cgpu->usbinfo.usb_tmo[offset].max_tmo < totms)
cgpu->usbinfo.usb_tmo[offset].max_tmo = totms;
}
}
details = &(usb_stats[cgpu->usbinfo.usbstat - 1].details[cmd * 2 + seq]);
details->modes |= mode;
diff = tdiff(tv_finish, tv_start);
switch (err) {
case LIBUSB_SUCCESS:
item = CMD_CMD;
break;
case LIBUSB_ERROR_TIMEOUT:
item = CMD_TIMEOUT;
break;
default:
item = CMD_ERROR;
break;
}
if (details->item[item].count == 0) {
details->item[item].min_delay = diff;
memcpy(&(details->item[item].first), tv_start, sizeof(*tv_start));
} else if (diff < details->item[item].min_delay)
details->item[item].min_delay = diff;
if (diff > details->item[item].max_delay)
details->item[item].max_delay = diff;
details->item[item].total_delay += diff;
memcpy(&(details->item[item].last), tv_start, sizeof(*tv_start));
details->item[item].count++;
}
static void rejected_inc(struct cgpu_info *cgpu, uint32_t mode)
{
struct cg_usb_stats_details *details;
int item = CMD_ERROR;
if (cgpu->usbinfo.usbstat < 1)
newstats(cgpu);
details = &(usb_stats[cgpu->usbinfo.usbstat - 1].details[C_REJECTED * 2 + 0]);
details->modes |= mode;
details->item[item].count++;
}
#endif
static char *find_end(unsigned char *buf, unsigned char *ptr, int ptrlen, int tot, char *end, int endlen, bool first)
{
unsigned char *search;
if (endlen > tot)
return NULL;
// If end is only 1 char - do a faster search
if (endlen == 1) {
if (first)
search = buf;
else
search = ptr;
return strchr((char *)search, *end);
} else {
if (first)
search = buf;
else {
// must allow end to have been chopped in 2
if ((tot - ptrlen) >= (endlen - 1))
search = ptr - (endlen - 1);
else
search = ptr - (tot - ptrlen);
}
return strstr((char *)search, end);
}
}
#define USB_MAX_READ 8192
#define USB_RETRY_MAX 5
struct usb_transfer {
pthread_mutex_t mutex;
pthread_cond_t cond;
struct libusb_transfer *transfer;
};
static void init_usb_transfer(struct usb_transfer *ut)
{
mutex_init(&ut->mutex);
pthread_cond_init(&ut->cond, NULL);
ut->transfer = libusb_alloc_transfer(0);
if (unlikely(!ut->transfer))
quit(1, "Failed to libusb_alloc_transfer");
ut->transfer->user_data = ut;
}
static void LIBUSB_CALL bulk_callback(struct libusb_transfer *transfer)
{
struct usb_transfer *ut = transfer->user_data;
mutex_lock(&ut->mutex);
pthread_cond_signal(&ut->cond);
mutex_unlock(&ut->mutex);
}
/* Wait for callback function to tell us it has finished the USB transfer, but
* use our own timer to cancel the request if we go beyond the timeout. */
static int callback_wait(struct usb_transfer *ut, int *transferred, unsigned int timeout)
{
struct libusb_transfer *transfer= ut->transfer;
struct timespec ts_now, ts_end;
struct timeval tv_now;
int ret;
cgtime(&tv_now);
ms_to_timespec(&ts_end, timeout);
timeval_to_spec(&ts_now, &tv_now);
timeraddspec(&ts_end, &ts_now);
ret = pthread_cond_timedwait(&ut->cond, &ut->mutex, &ts_end);
if (ret) {
/* We are emulating a timeout ourself here */
libusb_cancel_transfer(transfer);
/* Now wait for the callback function to be invoked. */
pthread_cond_wait(&ut->cond, &ut->mutex);
}
ret = transfer->status;
if (ret == LIBUSB_TRANSFER_CANCELLED)
ret = LIBUSB_TRANSFER_TIMED_OUT;
/* No need to sort out mutexes here since they won't be reused */
*transferred = transfer->actual_length;
libusb_free_transfer(transfer);
return ret;
}
static int
usb_bulk_transfer(struct libusb_device_handle *dev_handle, int intinfo,
int epinfo, unsigned char *data, int length,
int *transferred, unsigned int timeout,
struct cgpu_info *cgpu, __maybe_unused int mode,
enum usb_cmds cmd, __maybe_unused int seq)
{
struct usb_epinfo *usb_epinfo;
struct usb_transfer ut;
unsigned char endpoint;
uint16_t MaxPacketSize;
int err, errn;
#if DO_USB_STATS
struct timeval tv_start, tv_finish;
#endif
unsigned char buf[512];
usb_epinfo = &(cgpu->usbdev->found->intinfos[intinfo].epinfos[epinfo]);
endpoint = usb_epinfo->ep;
/* Limit length of transfer to the largest this descriptor supports
* and leave the higher level functions to transfer more if needed. */
if (usb_epinfo->PrefPacketSize)
MaxPacketSize = usb_epinfo->PrefPacketSize;
else
MaxPacketSize = usb_epinfo->wMaxPacketSize;
if (length > MaxPacketSize)
length = MaxPacketSize;
if ((endpoint & LIBUSB_ENDPOINT_DIR_MASK) == LIBUSB_ENDPOINT_OUT)
memcpy(buf, data, length);
USBDEBUG("USB debug: @usb_bulk_transfer(%s (nodev=%s),intinfo=%d,epinfo=%d,data=%p,length=%d,timeout=%u,mode=%d,cmd=%s,seq=%d) endpoint=%d", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), intinfo, epinfo, data, length, timeout, mode, usb_cmdname(cmd), seq, (int)endpoint);
init_usb_transfer(&ut);
mutex_lock(&ut.mutex);
/* We give the transfer no timeout since we manage timeouts ourself */
libusb_fill_bulk_transfer(ut.transfer, dev_handle, endpoint, buf, length,
bulk_callback, &ut, 0);
STATS_TIMEVAL(&tv_start);
cg_rlock(&cgusb_fd_lock);
err = libusb_submit_transfer(ut.transfer);
cg_runlock(&cgusb_fd_lock);
errn = errno;
if (!err)
err = callback_wait(&ut, transferred, timeout);
STATS_TIMEVAL(&tv_finish);
USB_STATS(cgpu, &tv_start, &tv_finish, err, mode, cmd, seq, timeout);
if (err < 0)
applog(LOG_DEBUG, "%s%i: %s (amt=%d err=%d ern=%d)",
cgpu->drv->name, cgpu->device_id,
usb_cmdname(cmd), *transferred, err, errn);
if (err == LIBUSB_ERROR_PIPE || err == LIBUSB_TRANSFER_STALL) {
int retries = 0;
do {
cgpu->usbinfo.last_pipe = time(NULL);
cgpu->usbinfo.pipe_count++;
applog(LOG_INFO, "%s%i: libusb pipe error, trying to clear",
cgpu->drv->name, cgpu->device_id);
err = libusb_clear_halt(dev_handle, endpoint);
applog(LOG_DEBUG, "%s%i: libusb pipe error%scleared",
cgpu->drv->name, cgpu->device_id, err ? " not " : " ");
if (err)
cgpu->usbinfo.clear_fail_count++;
} while (err && ++retries < USB_RETRY_MAX);
}
if ((endpoint & LIBUSB_ENDPOINT_DIR_MASK) == LIBUSB_ENDPOINT_IN)
memcpy(data, buf, length);
return err;
}
int _usb_read(struct cgpu_info *cgpu, int intinfo, int epinfo, char *buf, size_t bufsiz, int *processed, unsigned int timeout, const char *end, enum usb_cmds cmd, bool readonce)
{
struct cg_usb_device *usbdev;
bool ftdi;
struct timeval read_start, tv_finish;
unsigned int initial_timeout;
double max, done;
int bufleft, err, got, tot, pstate;
bool first = true;
char *search;
int endlen;
unsigned char *ptr, *usbbuf = cgpu->usbinfo.bulkbuf;
size_t usbbufread;
DEVRLOCK(cgpu, pstate);
if (cgpu->usbinfo.nodev) {
*buf = '\0';
*processed = 0;
USB_REJECT(cgpu, MODE_BULK_READ);
err = LIBUSB_ERROR_NO_DEVICE;
goto out_noerrmsg;
}
usbdev = cgpu->usbdev;
ftdi = (usbdev->usb_type == USB_TYPE_FTDI);
USBDEBUG("USB debug: _usb_read(%s (nodev=%s),intinfo=%d,epinfo=%d,buf=%p,bufsiz=%d,proc=%p,timeout=%u,end=%s,cmd=%s,ftdi=%s,readonce=%s)", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), intinfo, epinfo, buf, (int)bufsiz, processed, timeout, end ? (char *)str_text((char *)end) : "NULL", usb_cmdname(cmd), bool_str(ftdi), bool_str(readonce));
if (bufsiz > USB_MAX_READ)
quit(1, "%s USB read request %d too large (max=%d)", cgpu->drv->name, (int)bufsiz, USB_MAX_READ);
if (timeout == DEVTIMEOUT)
timeout = usbdev->found->timeout;
if (end == NULL) {
if (usbdev->buffer && usbdev->bufamt) {
tot = usbdev->bufamt;
bufleft = bufsiz - tot;
memcpy(usbbuf, usbdev->buffer, tot);
ptr = usbbuf + tot;
usbdev->bufamt = 0;
} else {
tot = 0;
bufleft = bufsiz;
ptr = usbbuf;
}
err = LIBUSB_SUCCESS;
initial_timeout = timeout;
max = ((double)timeout) / 1000.0;
cgtime(&read_start);
while (bufleft > 0) {
// TODO: use (USB_MAX_READ - tot) always?
if (usbdev->buffer)
usbbufread = USB_MAX_READ - tot;
else {
if (ftdi)
usbbufread = bufleft + 2;
else
usbbufread = bufleft;
}
got = 0;
if (first && usbdev->usecps && usbdev->last_write_siz) {
cgtimer_t now, already_done;
double sleep_estimate;
double write_time = (double)(usbdev->last_write_siz) /
(double)(usbdev->cps);
cgtimer_time(&now);
cgtimer_sub(&now, &usbdev->cgt_last_write, &already_done);
sleep_estimate = write_time - cgtimer_to_ms(&already_done);
if (sleep_estimate > 0.0) {
cgsleep_ms_r(&usbdev->cgt_last_write, write_time * 1000.0);
cgpu->usbinfo.read_delay_count++;
cgpu->usbinfo.total_read_delay += sleep_estimate;
}
}
err = usb_bulk_transfer(usbdev->handle, intinfo, epinfo,
ptr, usbbufread, &got, timeout,
cgpu, MODE_BULK_READ, cmd, first ? SEQ0 : SEQ1);
cgtime(&tv_finish);
ptr[got] = '\0';
USBDEBUG("USB debug: @_usb_read(%s (nodev=%s)) first=%s err=%d%s got=%d ptr='%s' usbbufread=%d", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), bool_str(first), err, isnodev(err), got, (char *)str_text((char *)ptr), (int)usbbufread);
IOERR_CHECK(cgpu, err);
if (ftdi) {
// first 2 bytes returned are an FTDI status
if (got > 2) {
got -= 2;
memmove(ptr, ptr+2, got+1);
} else {
got = 0;
*ptr = '\0';
}
}
tot += got;
if (err || readonce)
break;
ptr += got;
bufleft -= got;
first = false;
done = tdiff(&tv_finish, &read_start);
// N.B. this is: return LIBUSB_SUCCESS with whatever size has already been read
if (unlikely(done >= max))
break;
timeout = initial_timeout - (done * 1000);
if (!timeout)
break;
}
// N.B. usbdev->buffer was emptied before the while() loop
if (usbdev->buffer && tot > (int)bufsiz) {
usbdev->bufamt = tot - bufsiz;
memcpy(usbdev->buffer, usbbuf + bufsiz, usbdev->bufamt);
tot -= usbdev->bufamt;
usbbuf[tot] = '\0';
applog(LOG_INFO, "USB: %s%i read1 buffering %d extra bytes",
cgpu->drv->name, cgpu->device_id, usbdev->bufamt);
}
*processed = tot;
memcpy((char *)buf, (const char *)usbbuf, (tot < (int)bufsiz) ? tot + 1 : (int)bufsiz);
goto out_unlock;
}
if (usbdev->buffer && usbdev->bufamt) {
tot = usbdev->bufamt;
bufleft = bufsiz - tot;
memcpy(usbbuf, usbdev->buffer, tot);
ptr = usbbuf + tot;
usbdev->bufamt = 0;
} else {
tot = 0;
bufleft = bufsiz;
ptr = usbbuf;
}
endlen = strlen(end);
err = LIBUSB_SUCCESS;
initial_timeout = timeout;
max = ((double)timeout) / 1000.0;
cgtime(&read_start);
while (bufleft > 0) {
// TODO: use (USB_MAX_READ - tot) always?
if (usbdev->buffer)
usbbufread = USB_MAX_READ - tot;
else {
if (ftdi)
usbbufread = bufleft + 2;
else
usbbufread = bufleft;
}
got = 0;
if (first && usbdev->usecps && usbdev->last_write_siz) {
cgtimer_t now, already_done;
double sleep_estimate;
double write_time = (double)(usbdev->last_write_siz) /
(double)(usbdev->cps);
cgtimer_time(&now);
cgtimer_sub(&now, &usbdev->cgt_last_write, &already_done);
sleep_estimate = write_time - cgtimer_to_ms(&already_done);
if (sleep_estimate > 0.0) {
cgsleep_ms_r(&usbdev->cgt_last_write, write_time * 1000.0);
cgpu->usbinfo.read_delay_count++;
cgpu->usbinfo.total_read_delay += sleep_estimate;
}
}
err = usb_bulk_transfer(usbdev->handle, intinfo, epinfo,
ptr, usbbufread, &got, timeout,
cgpu, MODE_BULK_READ, cmd, first ? SEQ0 : SEQ1);
cgtime(&tv_finish);
ptr[got] = '\0';
USBDEBUG("USB debug: @_usb_read(%s (nodev=%s)) first=%s err=%d%s got=%d ptr='%s' usbbufread=%d", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), bool_str(first), err, isnodev(err), got, (char *)str_text((char *)ptr), (int)usbbufread);
IOERR_CHECK(cgpu, err);
if (ftdi) {
// first 2 bytes returned are an FTDI status
if (got > 2) {
got -= 2;
memmove(ptr, ptr+2, got+1);
} else {
got = 0;
*ptr = '\0';
}
}
tot += got;
if (err || readonce)
break;
if (find_end(usbbuf, ptr, got, tot, (char *)end, endlen, first))
break;
ptr += got;
bufleft -= got;
first = false;
done = tdiff(&tv_finish, &read_start);
// N.B. this is: return LIBUSB_SUCCESS with whatever size has already been read
if (unlikely(done >= max))
break;
timeout = initial_timeout - (done * 1000);
if (!timeout)
break;
}
if (usbdev->buffer) {
bool dobuffer = false;
if ((search = find_end(usbbuf, usbbuf, tot, tot, (char *)end, endlen, true))) {
// end finishes after bufsiz
if ((search + endlen - (char *)usbbuf) > (int)bufsiz) {
usbdev->bufamt = tot - bufsiz;
dobuffer = true;
} else {
// extra data after end
if (*(search + endlen)) {
usbdev->bufamt = tot - (search + endlen - (char *)usbbuf);
dobuffer = true;
}
}
} else {
// no end, but still bigger than bufsiz
if (tot > (int)bufsiz) {
usbdev->bufamt = tot - bufsiz;
dobuffer = true;
}
}
if (dobuffer) {
tot -= usbdev->bufamt;
memcpy(usbdev->buffer, usbbuf + tot, usbdev->bufamt);
usbbuf[tot] = '\0';
applog(LOG_ERR, "USB: %s%i read2 buffering %d extra bytes",
cgpu->drv->name, cgpu->device_id, usbdev->bufamt);
}
}
*processed = tot;
memcpy((char *)buf, (const char *)usbbuf, (tot < (int)bufsiz) ? tot + 1 : (int)bufsiz);
out_unlock:
if (err && err != LIBUSB_ERROR_TIMEOUT && err != LIBUSB_TRANSFER_TIMED_OUT) {
applog(LOG_WARNING, "%s %i usb read error: %s", cgpu->drv->name, cgpu->device_id,
libusb_error_name(err));
if (cgpu->usbinfo.continuous_ioerr_count > USB_RETRY_MAX)
err = LIBUSB_ERROR_OTHER;
}
out_noerrmsg:
if (NODEV(err)) {
cg_ruwlock(&cgpu->usbinfo.devlock);
release_cgpu(cgpu);
DEVWUNLOCK(cgpu, pstate);
} else
DEVRUNLOCK(cgpu, pstate);
return err;
}
int _usb_write(struct cgpu_info *cgpu, int intinfo, int epinfo, char *buf, size_t bufsiz, int *processed, unsigned int timeout, enum usb_cmds cmd)
{
struct cg_usb_device *usbdev;
struct timeval read_start, tv_finish;
unsigned int initial_timeout;
double max, done;
__maybe_unused bool first = true;
int err, sent, tot, pstate;
DEVRLOCK(cgpu, pstate);
USBDEBUG("USB debug: _usb_write(%s (nodev=%s),intinfo=%d,epinfo=%d,buf='%s',bufsiz=%d,proc=%p,timeout=%u,cmd=%s)", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), intinfo, epinfo, (char *)str_text(buf), (int)bufsiz, processed, timeout, usb_cmdname(cmd));
*processed = 0;
if (cgpu->usbinfo.nodev) {
USB_REJECT(cgpu, MODE_BULK_WRITE);
err = LIBUSB_ERROR_NO_DEVICE;
goto out_noerrmsg;
}
usbdev = cgpu->usbdev;
if (timeout == DEVTIMEOUT)
timeout = usbdev->found->timeout;
tot = 0;
err = LIBUSB_SUCCESS;
initial_timeout = timeout;
max = ((double)timeout) / 1000.0;
cgtime(&read_start);
while (bufsiz > 0) {
sent = 0;
if (usbdev->usecps) {
if (usbdev->last_write_siz) {
cgtimer_t now, already_done;
double sleep_estimate;
double write_time = (double)(usbdev->last_write_siz) /
(double)(usbdev->cps);
cgtimer_time(&now);
cgtimer_sub(&now, &usbdev->cgt_last_write, &already_done);
sleep_estimate = write_time - cgtimer_to_ms(&already_done);
if (sleep_estimate > 0.0) {
cgsleep_ms_r(&usbdev->cgt_last_write, write_time * 1000.0);
cgpu->usbinfo.write_delay_count++;
cgpu->usbinfo.total_write_delay += sleep_estimate;
}
}
cgsleep_prepare_r(&usbdev->cgt_last_write);
usbdev->last_write_siz = bufsiz;
}
err = usb_bulk_transfer(usbdev->handle, intinfo, epinfo,
(unsigned char *)buf, bufsiz, &sent, timeout,
cgpu, MODE_BULK_WRITE, cmd, first ? SEQ0 : SEQ1);
cgtime(&tv_finish);
USBDEBUG("USB debug: @_usb_write(%s (nodev=%s)) err=%d%s sent=%d", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), err, isnodev(err), sent);
IOERR_CHECK(cgpu, err);
tot += sent;
if (err)
break;
buf += sent;
bufsiz -= sent;
first = false;
done = tdiff(&tv_finish, &read_start);
// N.B. this is: return LIBUSB_SUCCESS with whatever size was written
if (unlikely(done >= max))
break;
timeout = initial_timeout - (done * 1000);
if (!timeout)
break;
}
*processed = tot;
if (err) {
applog(LOG_WARNING, "%s %i usb write error: %s", cgpu->drv->name, cgpu->device_id,
libusb_error_name(err));
if (cgpu->usbinfo.continuous_ioerr_count > USB_RETRY_MAX)
err = LIBUSB_ERROR_OTHER;
}
out_noerrmsg:
if (NODEV(err)) {
cg_ruwlock(&cgpu->usbinfo.devlock);
release_cgpu(cgpu);
DEVWUNLOCK(cgpu, pstate);
} else
DEVRUNLOCK(cgpu, pstate);
return err;
}
int __usb_transfer(struct cgpu_info *cgpu, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, uint32_t *data, int siz, unsigned int timeout, __maybe_unused enum usb_cmds cmd)
{
struct cg_usb_device *usbdev;
#if DO_USB_STATS
struct timeval tv_start, tv_finish;
#endif
unsigned char buf[64];
uint32_t *buf32 = (uint32_t *)buf;
int err, i, bufsiz;
USBDEBUG("USB debug: _usb_transfer(%s (nodev=%s),type=%"PRIu8",req=%"PRIu8",value=%"PRIu16",index=%"PRIu16",siz=%d,timeout=%u,cmd=%s)", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), request_type, bRequest, wValue, wIndex, siz, timeout, usb_cmdname(cmd));
if (cgpu->usbinfo.nodev) {
USB_REJECT(cgpu, MODE_CTRL_WRITE);
err = LIBUSB_ERROR_NO_DEVICE;
goto out_;
}
usbdev = cgpu->usbdev;
if (timeout == DEVTIMEOUT)
timeout = usbdev->found->timeout;
USBDEBUG("USB debug: @_usb_transfer() data=%s", bin2hex((unsigned char *)data, (size_t)siz));
if (siz > 0) {
bufsiz = siz - 1;
bufsiz >>= 2;
bufsiz++;
for (i = 0; i < bufsiz; i++)
buf32[i] = htole32(data[i]);
}
USBDEBUG("USB debug: @_usb_transfer() buf=%s", bin2hex(buf, (size_t)siz));
if (usbdev->usecps) {
if (usbdev->last_write_siz) {
cgtimer_t now, already_done;
double sleep_estimate;
double write_time = (double)(usbdev->last_write_siz) /
(double)(usbdev->cps);
cgtimer_time(&now);
cgtimer_sub(&now, &usbdev->cgt_last_write, &already_done);
sleep_estimate = write_time - cgtimer_to_ms(&already_done);
if (sleep_estimate > 0.0) {
cgsleep_ms_r(&usbdev->cgt_last_write, write_time * 1000.0);
cgpu->usbinfo.write_delay_count++;
cgpu->usbinfo.total_write_delay += sleep_estimate;
}
}
cgsleep_prepare_r(&usbdev->cgt_last_write);
usbdev->last_write_siz = siz;
}
STATS_TIMEVAL(&tv_start);
cg_rlock(&cgusb_fd_lock);
err = libusb_control_transfer(usbdev->handle, request_type,
bRequest, wValue, wIndex, buf, (uint16_t)siz, timeout);
cg_runlock(&cgusb_fd_lock);
STATS_TIMEVAL(&tv_finish);
USB_STATS(cgpu, &tv_start, &tv_finish, err, MODE_CTRL_WRITE, cmd, SEQ0, timeout);
USBDEBUG("USB debug: @_usb_transfer(%s (nodev=%s)) err=%d%s", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), err, isnodev(err));
IOERR_CHECK(cgpu, err);
if (err < 0 && err != LIBUSB_ERROR_TIMEOUT) {
applog(LOG_WARNING, "%s %i usb transfer error(%d): %s", cgpu->drv->name, cgpu->device_id,
err, libusb_error_name(err));
}
out_:
return err;
}
int _usb_transfer(struct cgpu_info *cgpu, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, uint32_t *data, int siz, unsigned int timeout, enum usb_cmds cmd)
{
int pstate, err;
DEVRLOCK(cgpu, pstate);
err = __usb_transfer(cgpu, request_type, bRequest, wValue, wIndex, data, siz, timeout, cmd);
if (NOCONTROLDEV(err)) {
cg_ruwlock(&cgpu->usbinfo.devlock);
release_cgpu(cgpu);
cg_dwlock(&cgpu->usbinfo.devlock);
}
DEVRUNLOCK(cgpu, pstate);
return err;
}
int _usb_transfer_read(struct cgpu_info *cgpu, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, char *buf, int bufsiz, int *amount, unsigned int timeout, __maybe_unused enum usb_cmds cmd)
{
struct cg_usb_device *usbdev;
#if DO_USB_STATS
struct timeval tv_start, tv_finish;
#endif
unsigned char tbuf[64];
int err, pstate;
DEVRLOCK(cgpu, pstate);
USBDEBUG("USB debug: _usb_transfer_read(%s (nodev=%s),type=%"PRIu8",req=%"PRIu8",value=%"PRIu16",index=%"PRIu16",bufsiz=%d,timeout=%u,cmd=%s)", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), request_type, bRequest, wValue, wIndex, bufsiz, timeout, usb_cmdname(cmd));
if (cgpu->usbinfo.nodev) {
USB_REJECT(cgpu, MODE_CTRL_READ);
err = LIBUSB_ERROR_NO_DEVICE;
goto out_noerrmsg;
}
usbdev = cgpu->usbdev;
if (timeout == DEVTIMEOUT)
timeout = usbdev->found->timeout;
*amount = 0;
if (usbdev->usecps && usbdev->last_write_siz) {
cgtimer_t now, already_done;
double sleep_estimate;
double write_time = (double)(usbdev->last_write_siz) /
(double)(usbdev->cps);
cgtimer_time(&now);
cgtimer_sub(&now, &usbdev->cgt_last_write, &already_done);
sleep_estimate = write_time - cgtimer_to_ms(&already_done);
if (sleep_estimate > 0.0) {
cgsleep_ms_r(&usbdev->cgt_last_write, write_time * 1000.0);
cgpu->usbinfo.read_delay_count++;
cgpu->usbinfo.total_read_delay += sleep_estimate;
}
}
memset(tbuf, 0, 64);
STATS_TIMEVAL(&tv_start);
cg_rlock(&cgusb_fd_lock);
err = libusb_control_transfer(usbdev->handle, request_type,
bRequest, wValue, wIndex,
tbuf, (uint16_t)bufsiz, timeout);
cg_runlock(&cgusb_fd_lock);
STATS_TIMEVAL(&tv_finish);
USB_STATS(cgpu, &tv_start, &tv_finish, err, MODE_CTRL_READ, cmd, SEQ0, timeout);
memcpy(buf, tbuf, bufsiz);
USBDEBUG("USB debug: @_usb_transfer_read(%s (nodev=%s)) amt/err=%d%s%s%s", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), err, isnodev(err), err > 0 ? " = " : BLANK, err > 0 ? bin2hex((unsigned char *)buf, (size_t)err) : BLANK);
IOERR_CHECK(cgpu, err);
if (err > 0) {
*amount = err;
err = 0;
}
if (err < 0 && err != LIBUSB_ERROR_TIMEOUT) {
applog(LOG_WARNING, "%s %i usb transfer read error(%d): %s", cgpu->drv->name, cgpu->device_id,
err, libusb_error_name(err));
}
out_noerrmsg:
if (NOCONTROLDEV(err)) {
cg_ruwlock(&cgpu->usbinfo.devlock);
release_cgpu(cgpu);
cg_dwlock(&cgpu->usbinfo.devlock);
}
DEVRUNLOCK(cgpu, pstate);
return err;
}
#define FTDI_STATUS_B0_MASK (FTDI_RS0_CTS | FTDI_RS0_DSR | FTDI_RS0_RI | FTDI_RS0_RLSD)
#define FTDI_RS0_CTS (1 << 4)
#define FTDI_RS0_DSR (1 << 5)
#define FTDI_RS0_RI (1 << 6)
#define FTDI_RS0_RLSD (1 << 7)
/* Clear to send for FTDI */
int usb_ftdi_cts(struct cgpu_info *cgpu)
{
char buf[2], ret;
int err, amount;
err = _usb_transfer_read(cgpu, (uint8_t)FTDI_TYPE_IN, (uint8_t)5,
(uint16_t)0, (uint16_t)0, buf, 2,
&amount, DEVTIMEOUT, C_FTDI_STATUS);
/* We return true in case drivers are waiting indefinitely to try and
* write to something that's not there. */
if (err)
return true;
ret = buf[0] & FTDI_STATUS_B0_MASK;
return (ret & FTDI_RS0_CTS);
}
int _usb_ftdi_set_latency(struct cgpu_info *cgpu, int intinfo)
{
int err = 0;
int pstate;
DEVWLOCK(cgpu, pstate);
if (cgpu->usbdev) {
if (cgpu->usbdev->usb_type != USB_TYPE_FTDI) {
applog(LOG_ERR, "%s: cgid %d latency request on non-FTDI device",
cgpu->drv->name, cgpu->cgminer_id);
err = LIBUSB_ERROR_NOT_SUPPORTED;
} else if (cgpu->usbdev->found->latency == LATENCY_UNUSED) {
applog(LOG_ERR, "%s: cgid %d invalid latency (UNUSED)",
cgpu->drv->name, cgpu->cgminer_id);
err = LIBUSB_ERROR_NOT_SUPPORTED;
}
if (!err)
err = __usb_transfer(cgpu, FTDI_TYPE_OUT, FTDI_REQUEST_LATENCY,
cgpu->usbdev->found->latency,
USBIF(cgpu->usbdev, intinfo),
NULL, 0, DEVTIMEOUT, C_LATENCY);
}
DEVWUNLOCK(cgpu, pstate);
applog(LOG_DEBUG, "%s: cgid %d %s got err %d",
cgpu->drv->name, cgpu->cgminer_id,
usb_cmdname(C_LATENCY), err);
return err;
}
void usb_buffer_enable(struct cgpu_info *cgpu)
{
struct cg_usb_device *cgusb;
int pstate;
DEVWLOCK(cgpu, pstate);
cgusb = cgpu->usbdev;
if (cgusb && !cgusb->buffer) {
cgusb->bufamt = 0;
cgusb->buffer = malloc(USB_MAX_READ+1);
if (!cgusb->buffer)
quit(1, "Failed to malloc buffer for USB %s%i",
cgpu->drv->name, cgpu->device_id);
cgusb->bufsiz = USB_MAX_READ;
}
DEVWUNLOCK(cgpu, pstate);
}
void usb_buffer_disable(struct cgpu_info *cgpu)
{
struct cg_usb_device *cgusb;
int pstate;
DEVWLOCK(cgpu, pstate);
cgusb = cgpu->usbdev;
if (cgusb && cgusb->buffer) {
cgusb->bufamt = 0;
cgusb->bufsiz = 0;
free(cgusb->buffer);
cgusb->buffer = NULL;
}
DEVWUNLOCK(cgpu, pstate);
}
void usb_buffer_clear(struct cgpu_info *cgpu)
{
int pstate;
DEVWLOCK(cgpu, pstate);
if (cgpu->usbdev)
cgpu->usbdev->bufamt = 0;
DEVWUNLOCK(cgpu, pstate);
}
uint32_t usb_buffer_size(struct cgpu_info *cgpu)
{
uint32_t ret = 0;
int pstate;
DEVRLOCK(cgpu, pstate);
if (cgpu->usbdev)
ret = cgpu->usbdev->bufamt;
DEVRUNLOCK(cgpu, pstate);
return ret;
}
void usb_set_cps(struct cgpu_info *cgpu, int cps)
{
int pstate;
DEVWLOCK(cgpu, pstate);
if (cgpu->usbdev)
cgpu->usbdev->cps = cps;
DEVWUNLOCK(cgpu, pstate);
}
void usb_enable_cps(struct cgpu_info *cgpu)
{
int pstate;
DEVWLOCK(cgpu, pstate);
if (cgpu->usbdev)
cgpu->usbdev->usecps = true;
DEVWUNLOCK(cgpu, pstate);
}
void usb_disable_cps(struct cgpu_info *cgpu)
{
int pstate;
DEVWLOCK(cgpu, pstate);
if (cgpu->usbdev)
cgpu->usbdev->usecps = false;
DEVWUNLOCK(cgpu, pstate);
}
/*
* The value returned (0) when usbdev is NULL
* doesn't matter since it also means the next call to
* any usbutils function will fail with a nodev
* N.B. this is to get the interface number to use in a control_transfer
* which for some devices isn't actually the interface number
*/
int _usb_interface(struct cgpu_info *cgpu, int intinfo)
{
int interface = 0;
int pstate;
DEVRLOCK(cgpu, pstate);
if (cgpu->usbdev)
interface = cgpu->usbdev->found->intinfos[intinfo].ctrl_transfer;
DEVRUNLOCK(cgpu, pstate);
return interface;
}
enum sub_ident usb_ident(struct cgpu_info *cgpu)
{
enum sub_ident ident = IDENT_UNK;
int pstate;
DEVRLOCK(cgpu, pstate);
if (cgpu->usbdev)
ident = cgpu->usbdev->ident;
DEVRUNLOCK(cgpu, pstate);
return ident;
}
/*
* If you pass both intinfo and epinfo as <0 then it will set all
* endpoints to PrefPacketSize
* If intinfo >=0 but epinfo <0 then it will set all endpoints
* for the given one intinfo to PrefPacketSize
* If both are >=0 then it will set only the specified single
* endpoint (intinfo,epinfo) to PrefPacketSize
*/
void _usb_set_pps(struct cgpu_info *cgpu, int intinfo, int epinfo, uint16_t PrefPacketSize)
{
struct usb_find_devices *found;
int pstate;
DEVWLOCK(cgpu, pstate);
if (cgpu->usbdev) {
found = cgpu->usbdev->found;
if (intinfo >= 0 && epinfo >= 0)
found->intinfos[intinfo].epinfos[epinfo].PrefPacketSize = PrefPacketSize;
else {
if (intinfo >= 0) {
for (epinfo = 0; epinfo < found->intinfos[intinfo].epinfo_count; epinfo++)
found->intinfos[intinfo].epinfos[epinfo].PrefPacketSize = PrefPacketSize;
} else {
for (intinfo = 0; intinfo < found->intinfo_count ; intinfo++)
for (epinfo = 0; epinfo < found->intinfos[intinfo].epinfo_count; epinfo++)
found->intinfos[intinfo].epinfos[epinfo].PrefPacketSize = PrefPacketSize;
}
}
}
DEVWUNLOCK(cgpu, pstate);
}
// Need to set all devices with matching usbdev
void usb_set_dev_start(struct cgpu_info *cgpu)
{
struct cg_usb_device *cgusb;
struct cgpu_info *cgpu2;
struct timeval now;
int pstate;
DEVWLOCK(cgpu, pstate);
cgusb = cgpu->usbdev;
// If the device wasn't dropped
if (cgusb != NULL) {
int i;
cgtime(&now);
for (i = 0; i < total_devices; i++) {
cgpu2 = get_devices(i);
if (cgpu2->usbdev == cgusb)
copy_time(&(cgpu2->dev_start_tv), &now);
}
}
DEVWUNLOCK(cgpu, pstate);
}
void usb_cleanup(void)
{
struct cgpu_info *cgpu;
int count, pstate;
int i;
hotplug_time = 0;
cgsleep_ms(10);
count = 0;
for (i = 0; i < total_devices; i++) {
cgpu = devices[i];
switch (cgpu->drv->drv_id) {
case DRIVER_bflsc:
case DRIVER_bitforce:
case DRIVER_bitfury:
case DRIVER_modminer:
case DRIVER_icarus:
case DRIVER_avalon:
case DRIVER_klondike:
DEVWLOCK(cgpu, pstate);
release_cgpu(cgpu);
DEVWUNLOCK(cgpu, pstate);
count++;
break;
default:
break;
}
}
/*
* Must attempt to wait for the resource thread to release coz
* during a restart it won't automatically release them in linux
*/
if (count) {
struct timeval start, now;
cgtime(&start);
while (42) {
cgsleep_ms(50);
mutex_lock(&cgusbres_lock);
if (!res_work_head)
break;
cgtime(&now);
if (tdiff(&now, &start) > 0.366) {
applog(LOG_WARNING,
"usb_cleanup gave up waiting for resource thread");
break;
}
mutex_unlock(&cgusbres_lock);
}
mutex_unlock(&cgusbres_lock);
}
cgsem_destroy(&usb_resource_sem);
}
#define DRIVER_COUNT_FOUND(X) if (X##_drv.name && strcasecmp(ptr, X##_drv.name) == 0) { \
drv_count[X##_drv.drv_id].limit = lim; \
found = true; \
}
void usb_initialise()
{
char *fre, *ptr, *comma, *colon;
int bus, dev, lim, i;
bool found;
for (i = 0; i < DRIVER_MAX; i++) {
drv_count[i].count = 0;
drv_count[i].limit = 999999;
}
cgusb_check_init();
if (opt_usb_select && *opt_usb_select) {
// Absolute device limit
if (*opt_usb_select == ':') {
total_limit = atoi(opt_usb_select+1);
if (total_limit < 0)
quit(1, "Invalid --usb total limit");
// Comma list of bus:dev devices to match
} else if (isdigit(*opt_usb_select)) {
fre = ptr = strdup(opt_usb_select);
do {
comma = strchr(ptr, ',');
if (comma)
*(comma++) = '\0';
colon = strchr(ptr, ':');
if (!colon)
quit(1, "Invalid --usb bus:dev missing ':'");
*(colon++) = '\0';
if (!isdigit(*ptr))
quit(1, "Invalid --usb bus:dev - bus must be a number");
if (!isdigit(*colon) && *colon != '*')
quit(1, "Invalid --usb bus:dev - dev must be a number or '*'");
bus = atoi(ptr);
if (bus <= 0)
quit(1, "Invalid --usb bus:dev - bus must be > 0");
if (*colon == '*')
dev = -1;
else {
dev = atoi(colon);
if (dev <= 0)
quit(1, "Invalid --usb bus:dev - dev must be > 0 or '*'");
}
busdev = realloc(busdev, sizeof(*busdev) * (++busdev_count));
if (unlikely(!busdev))
quit(1, "USB failed to realloc busdev");
busdev[busdev_count-1].bus_number = bus;
busdev[busdev_count-1].device_address = dev;
ptr = comma;
} while (ptr);
free(fre);
// Comma list of DRV:limit
} else {
fre = ptr = strdup(opt_usb_select);
do {
comma = strchr(ptr, ',');
if (comma)
*(comma++) = '\0';
colon = strchr(ptr, ':');
if (!colon)
quit(1, "Invalid --usb DRV:limit missing ':'");
*(colon++) = '\0';
if (!isdigit(*colon))
quit(1, "Invalid --usb DRV:limit - limit must be a number");
lim = atoi(colon);
if (lim < 0)
quit(1, "Invalid --usb DRV:limit - limit must be >= 0");
found = false;
/* Use the DRIVER_PARSE_COMMANDS macro to iterate
* over all the drivers. */
DRIVER_PARSE_COMMANDS(DRIVER_COUNT_FOUND)
if (!found)
quit(1, "Invalid --usb DRV:limit - unknown DRV='%s'", ptr);
ptr = comma;
} while (ptr);
free(fre);
}
}
}
#ifndef WIN32
#include <errno.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <fcntl.h>
#ifndef __APPLE__
union semun {
int val;
struct semid_ds *buf;
unsigned short *array;
struct seminfo *__buf;
};
#endif
#else
static LPSECURITY_ATTRIBUTES unsec(LPSECURITY_ATTRIBUTES sec)
{
FreeSid(((PSECURITY_DESCRIPTOR)(sec->lpSecurityDescriptor))->Group);
free(sec->lpSecurityDescriptor);
free(sec);
return NULL;
}
static LPSECURITY_ATTRIBUTES mksec(const char *dname, uint8_t bus_number, uint8_t device_address)
{
SID_IDENTIFIER_AUTHORITY SIDAuthWorld = {SECURITY_WORLD_SID_AUTHORITY};
PSID gsid = NULL;
LPSECURITY_ATTRIBUTES sec_att = NULL;
PSECURITY_DESCRIPTOR sec_des = NULL;
sec_des = malloc(sizeof(*sec_des));
if (unlikely(!sec_des))
quit(1, "MTX: Failed to malloc LPSECURITY_DESCRIPTOR");
if (!InitializeSecurityDescriptor(sec_des, SECURITY_DESCRIPTOR_REVISION)) {
applog(LOG_ERR,
"MTX: %s (%d:%d) USB failed to init secdes err (%d)",
dname, (int)bus_number, (int)device_address,
(int)GetLastError());
free(sec_des);
return NULL;
}
if (!SetSecurityDescriptorDacl(sec_des, TRUE, NULL, FALSE)) {
applog(LOG_ERR,
"MTX: %s (%d:%d) USB failed to secdes dacl err (%d)",
dname, (int)bus_number, (int)device_address,
(int)GetLastError());
free(sec_des);
return NULL;
}
if(!AllocateAndInitializeSid(&SIDAuthWorld, 1, SECURITY_WORLD_RID, 0, 0, 0, 0, 0, 0, 0, &gsid)) {
applog(LOG_ERR,
"MTX: %s (%d:%d) USB failed to create gsid err (%d)",
dname, (int)bus_number, (int)device_address,
(int)GetLastError());
free(sec_des);
return NULL;
}
if (!SetSecurityDescriptorGroup(sec_des, gsid, FALSE)) {
applog(LOG_ERR,
"MTX: %s (%d:%d) USB failed to secdes grp err (%d)",
dname, (int)bus_number, (int)device_address,
(int)GetLastError());
FreeSid(gsid);
free(sec_des);
return NULL;
}
sec_att = malloc(sizeof(*sec_att));
if (unlikely(!sec_att))
quit(1, "MTX: Failed to malloc LPSECURITY_ATTRIBUTES");
sec_att->nLength = sizeof(*sec_att);
sec_att->lpSecurityDescriptor = sec_des;
sec_att->bInheritHandle = FALSE;
return sec_att;
}
#endif
// Any errors should always be printed since they will rarely if ever occur
// and thus it is best to always display them
static bool resource_lock(const char *dname, uint8_t bus_number, uint8_t device_address)
{
applog(LOG_DEBUG, "USB res lock %s %d-%d", dname, (int)bus_number, (int)device_address);
#ifdef WIN32
struct cgpu_info *cgpu;
LPSECURITY_ATTRIBUTES sec;
HANDLE usbMutex;
char name[64];
DWORD res;
int i;
if (is_in_use_bd(bus_number, device_address))
return false;
snprintf(name, sizeof(name), "cg-usb-%d-%d", (int)bus_number, (int)device_address);
sec = mksec(dname, bus_number, device_address);
if (!sec)
return false;
usbMutex = CreateMutex(sec, FALSE, name);
if (usbMutex == NULL) {
applog(LOG_ERR,
"MTX: %s USB failed to get '%s' err (%d)",
dname, name, (int)GetLastError());
sec = unsec(sec);
return false;
}
res = WaitForSingleObject(usbMutex, 0);
switch(res) {
case WAIT_OBJECT_0:
case WAIT_ABANDONED:
// Am I using it already?
for (i = 0; i < total_devices; i++) {
cgpu = get_devices(i);
if (cgpu->usbinfo.bus_number == bus_number &&
cgpu->usbinfo.device_address == device_address &&
cgpu->usbinfo.nodev == false) {
if (ReleaseMutex(usbMutex)) {
applog(LOG_WARNING,
"MTX: %s USB can't get '%s' - device in use",
dname, name);
goto fail;
}
applog(LOG_ERR,
"MTX: %s USB can't get '%s' - device in use - failure (%d)",
dname, name, (int)GetLastError());
goto fail;
}
}
break;
case WAIT_TIMEOUT:
if (!hotplug_mode)
applog(LOG_WARNING,
"MTX: %s USB failed to get '%s' - device in use",
dname, name);
goto fail;
case WAIT_FAILED:
applog(LOG_ERR,
"MTX: %s USB failed to get '%s' err (%d)",
dname, name, (int)GetLastError());
goto fail;
default:
applog(LOG_ERR,
"MTX: %s USB failed to get '%s' unknown reply (%d)",
dname, name, (int)res);
goto fail;
}
add_in_use(bus_number, device_address);
in_use_store_ress(bus_number, device_address, (void *)usbMutex, (void *)sec);
return true;
fail:
CloseHandle(usbMutex);
sec = unsec(sec);
return false;
#else
struct semid_ds seminfo;
union semun opt;
char name[64];
key_t *key;
int *sem;
int fd, count;
if (is_in_use_bd(bus_number, device_address))
return false;
snprintf(name, sizeof(name), "/tmp/cgminer-usb-%d-%d", (int)bus_number, (int)device_address);
fd = open(name, O_CREAT|O_RDONLY, S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH);
if (fd == -1) {
applog(LOG_ERR,
"SEM: %s USB open failed '%s' err (%d) %s",
dname, name, errno, strerror(errno));
goto _out;
}
close(fd);
key = malloc(sizeof(*key));
if (unlikely(!key))
quit(1, "SEM: Failed to malloc key");
sem = malloc(sizeof(*sem));
if (unlikely(!sem))
quit(1, "SEM: Failed to malloc sem");
*key = ftok(name, 'K');
*sem = semget(*key, 1, IPC_CREAT | IPC_EXCL | 438);
if (*sem < 0) {
if (errno != EEXIST) {
applog(LOG_ERR,
"SEM: %s USB failed to get '%s' err (%d) %s",
dname, name, errno, strerror(errno));
goto free_out;
}
*sem = semget(*key, 1, 0);
if (*sem < 0) {
applog(LOG_ERR,
"SEM: %s USB failed to access '%s' err (%d) %s",
dname, name, errno, strerror(errno));
goto free_out;
}
opt.buf = &seminfo;
count = 0;
while (++count) {
// Should NEVER take 100ms
if (count > 99) {
applog(LOG_ERR,
"SEM: %s USB timeout waiting for (%d) '%s'",
dname, *sem, name);
goto free_out;
}
if (semctl(*sem, 0, IPC_STAT, opt) == -1) {
applog(LOG_ERR,
"SEM: %s USB failed to wait for (%d) '%s' count %d err (%d) %s",
dname, *sem, name, count, errno, strerror(errno));
goto free_out;
}
if (opt.buf->sem_otime != 0)
break;
cgsleep_ms(1);
}
}
struct sembuf sops[] = {
{ 0, 0, IPC_NOWAIT | SEM_UNDO },
{ 0, 1, IPC_NOWAIT | SEM_UNDO }
};
if (semop(*sem, sops, 2)) {
if (errno == EAGAIN) {
if (!hotplug_mode)
applog(LOG_WARNING,
"SEM: %s USB failed to get (%d) '%s' - device in use",
dname, *sem, name);
} else {
applog(LOG_DEBUG,
"SEM: %s USB failed to get (%d) '%s' err (%d) %s",
dname, *sem, name, errno, strerror(errno));
}
goto free_out;
}
add_in_use(bus_number, device_address);
in_use_store_ress(bus_number, device_address, (void *)key, (void *)sem);
return true;
free_out:
free(sem);
free(key);
_out:
return false;
#endif
}
// Any errors should always be printed since they will rarely if ever occur
// and thus it is best to always display them
static void resource_unlock(const char *dname, uint8_t bus_number, uint8_t device_address)
{
applog(LOG_DEBUG, "USB res unlock %s %d-%d", dname, (int)bus_number, (int)device_address);
#ifdef WIN32
LPSECURITY_ATTRIBUTES sec = NULL;
HANDLE usbMutex = NULL;
char name[64];
snprintf(name, sizeof(name), "cg-usb-%d-%d", (int)bus_number, (int)device_address);
in_use_get_ress(bus_number, device_address, (void **)(&usbMutex), (void **)(&sec));
if (!usbMutex || !sec)
goto fila;
if (!ReleaseMutex(usbMutex))
applog(LOG_ERR,
"MTX: %s USB failed to release '%s' err (%d)",
dname, name, (int)GetLastError());
fila:
if (usbMutex)
CloseHandle(usbMutex);
if (sec)
unsec(sec);
remove_in_use(bus_number, device_address);
return;
#else
char name[64];
key_t *key = NULL;
int *sem = NULL;
snprintf(name, sizeof(name), "/tmp/cgminer-usb-%d-%d", (int)bus_number, (int)device_address);
in_use_get_ress(bus_number, device_address, (void **)(&key), (void **)(&sem));
if (!key || !sem)
goto fila;
struct sembuf sops[] = {
{ 0, -1, SEM_UNDO }
};
// Allow a 10ms timeout
// exceeding this timeout means it would probably never succeed anyway
struct timespec timeout = { 0, 10000000 };
if (semtimedop(*sem, sops, 1, &timeout)) {
applog(LOG_ERR,
"SEM: %s USB failed to release '%s' err (%d) %s",
dname, name, errno, strerror(errno));
}
if (semctl(*sem, 0, IPC_RMID)) {
applog(LOG_WARNING,
"SEM: %s USB failed to remove SEM '%s' err (%d) %s",
dname, name, errno, strerror(errno));
}
fila:
free(sem);
free(key);
remove_in_use(bus_number, device_address);
return;
#endif
}
static void resource_process()
{
struct resource_work *res_work = NULL;
struct resource_reply *res_reply = NULL;
bool ok;
applog(LOG_DEBUG, "RES: %s (%d:%d) lock=%d",
res_work_head->dname,
(int)res_work_head->bus_number,
(int)res_work_head->device_address,
res_work_head->lock);
if (res_work_head->lock) {
ok = resource_lock(res_work_head->dname,
res_work_head->bus_number,
res_work_head->device_address);
applog(LOG_DEBUG, "RES: %s (%d:%d) lock ok=%d",
res_work_head->dname,
(int)res_work_head->bus_number,
(int)res_work_head->device_address,
ok);
res_reply = calloc(1, sizeof(*res_reply));
if (unlikely(!res_reply))
quit(1, "USB failed to calloc res_reply");
res_reply->bus_number = res_work_head->bus_number;
res_reply->device_address = res_work_head->device_address;
res_reply->got = ok;
res_reply->next = res_reply_head;
res_reply_head = res_reply;
}
else
resource_unlock(res_work_head->dname,
res_work_head->bus_number,
res_work_head->device_address);
res_work = res_work_head;
res_work_head = res_work_head->next;
free(res_work);
}
void *usb_resource_thread(void __maybe_unused *userdata)
{
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
RenameThread("usbresource");
applog(LOG_DEBUG, "RES: thread starting");
while (42) {
/* Wait to be told we have work to do */
cgsem_wait(&usb_resource_sem);
mutex_lock(&cgusbres_lock);
while (res_work_head)
resource_process();
mutex_unlock(&cgusbres_lock);
}
return NULL;
}