mirror of
https://github.com/GOSTSec/sgminer
synced 2025-01-09 06:18:06 +00:00
912 lines
25 KiB
C
912 lines
25 KiB
C
/*
|
|
* Copyright 2012 Luke Dashjr
|
|
* Copyright 2012 Xiangfu <xiangfu@openmobilefree.com>
|
|
* Copyright 2012 Andrew Smith
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 3 of the License, or (at your option)
|
|
* any later version. See COPYING for more details.
|
|
*/
|
|
|
|
/*
|
|
* Those code should be works fine with V2 and V3 bitstream of Icarus.
|
|
* Operation:
|
|
* No detection implement.
|
|
* Input: 64B = 32B midstate + 20B fill bytes + last 12 bytes of block head.
|
|
* Return: send back 32bits immediately when Icarus found a valid nonce.
|
|
* no query protocol implemented here, if no data send back in ~11.3
|
|
* seconds (full cover time on 32bit nonce range by 380MH/s speed)
|
|
* just send another work.
|
|
* Notice:
|
|
* 1. Icarus will start calculate when you push a work to them, even they
|
|
* are busy.
|
|
* 2. The 2 FPGAs on Icarus will distribute the job, one will calculate the
|
|
* 0 ~ 7FFFFFFF, another one will cover the 80000000 ~ FFFFFFFF.
|
|
* 3. It's possible for 2 FPGAs both find valid nonce in the meantime, the 2
|
|
* valid nonce will all be send back.
|
|
* 4. Icarus will stop work when: a valid nonce has been found or 32 bits
|
|
* nonce range is completely calculated.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <limits.h>
|
|
#include <pthread.h>
|
|
#include <stdio.h>
|
|
#include <sys/time.h>
|
|
#include <sys/types.h>
|
|
#include <dirent.h>
|
|
#include <unistd.h>
|
|
#ifndef WIN32
|
|
#include <termios.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#ifndef O_CLOEXEC
|
|
#define O_CLOEXEC 0
|
|
#endif
|
|
#else
|
|
#include <windows.h>
|
|
#include <io.h>
|
|
#endif
|
|
|
|
#include "elist.h"
|
|
#include "miner.h"
|
|
#include "fpgautils.h"
|
|
|
|
// The serial I/O speed - Linux uses a define 'B115200' in bits/termios.h
|
|
#define ICARUS_IO_SPEED 115200
|
|
|
|
// The size of a successful nonce read
|
|
#define ICARUS_READ_SIZE 4
|
|
|
|
// Ensure the sizes are correct for the Serial read
|
|
#if (ICARUS_READ_SIZE != 4)
|
|
#error ICARUS_READ_SIZE must be 4
|
|
#endif
|
|
#define ASSERT1(condition) __maybe_unused static char sizeof_uint32_t_must_be_4[(condition)?1:-1]
|
|
ASSERT1(sizeof(uint32_t) == 4);
|
|
|
|
#define ICARUS_READ_TIME(baud) ((double)ICARUS_READ_SIZE * (double)8.0 / (double)(baud))
|
|
|
|
// Fraction of a second, USB timeout is measured in
|
|
// i.e. 10 means 1/10 of a second
|
|
#define TIME_FACTOR 10
|
|
// It's 10 per second, thus value = 10/TIME_FACTOR =
|
|
#define ICARUS_READ_FAULT_DECISECONDS 1
|
|
|
|
// In timing mode: Default starting value until an estimate can be obtained
|
|
// 5 seconds allows for up to a ~840MH/s device
|
|
#define ICARUS_READ_COUNT_TIMING (5 * TIME_FACTOR)
|
|
|
|
// For a standard Icarus REV3 (to 5 places)
|
|
// Since this rounds up a the last digit - it is a slight overestimate
|
|
// Thus the hash rate will be a VERY slight underestimate
|
|
// (by a lot less than the displayed accuracy)
|
|
#define ICARUS_REV3_HASH_TIME 0.0000000026316
|
|
#define NANOSEC 1000000000.0
|
|
|
|
// Icarus Rev3 doesn't send a completion message when it finishes
|
|
// the full nonce range, so to avoid being idle we must abort the
|
|
// work (by starting a new work) shortly before it finishes
|
|
//
|
|
// Thus we need to estimate 2 things:
|
|
// 1) How many hashes were done if the work was aborted
|
|
// 2) How high can the timeout be before the Icarus is idle,
|
|
// to minimise the number of work started
|
|
// We set 2) to 'the calculated estimate' - 1
|
|
// to ensure the estimate ends before idle
|
|
//
|
|
// The simple calculation used is:
|
|
// Tn = Total time in seconds to calculate n hashes
|
|
// Hs = seconds per hash
|
|
// Xn = number of hashes
|
|
// W = code overhead per work
|
|
//
|
|
// Rough but reasonable estimate:
|
|
// Tn = Hs * Xn + W (of the form y = mx + b)
|
|
//
|
|
// Thus:
|
|
// Line of best fit (using least squares)
|
|
//
|
|
// Hs = (n*Sum(XiTi)-Sum(Xi)*Sum(Ti))/(n*Sum(Xi^2)-Sum(Xi)^2)
|
|
// W = Sum(Ti)/n - (Hs*Sum(Xi))/n
|
|
//
|
|
// N.B. W is less when aborting work since we aren't waiting for the reply
|
|
// to be transferred back (ICARUS_READ_TIME)
|
|
// Calculating the hashes aborted at n seconds is thus just n/Hs
|
|
// (though this is still a slight overestimate due to code delays)
|
|
//
|
|
|
|
// Both below must be exceeded to complete a set of data
|
|
// Minimum how long after the first, the last data point must be
|
|
#define HISTORY_SEC 60
|
|
// Minimum how many points a single ICARUS_HISTORY should have
|
|
#define MIN_DATA_COUNT 5
|
|
// The value above used is doubled each history until it exceeds:
|
|
#define MAX_MIN_DATA_COUNT 100
|
|
|
|
static struct timeval history_sec = { HISTORY_SEC, 0 };
|
|
|
|
// Store the last INFO_HISTORY data sets
|
|
// [0] = current data, not yet ready to be included as an estimate
|
|
// Each new data set throws the last old set off the end thus
|
|
// keeping a ongoing average of recent data
|
|
#define INFO_HISTORY 10
|
|
|
|
struct ICARUS_HISTORY {
|
|
struct timeval finish;
|
|
double sumXiTi;
|
|
double sumXi;
|
|
double sumTi;
|
|
double sumXi2;
|
|
uint32_t values;
|
|
uint32_t hash_count_min;
|
|
uint32_t hash_count_max;
|
|
};
|
|
|
|
enum timing_mode { MODE_DEFAULT, MODE_SHORT, MODE_LONG, MODE_VALUE };
|
|
|
|
static const char *MODE_DEFAULT_STR = "default";
|
|
static const char *MODE_SHORT_STR = "short";
|
|
static const char *MODE_LONG_STR = "long";
|
|
static const char *MODE_VALUE_STR = "value";
|
|
static const char *MODE_UNKNOWN_STR = "unknown";
|
|
|
|
struct ICARUS_INFO {
|
|
// time to calculate the golden_ob
|
|
uint64_t golden_hashes;
|
|
struct timeval golden_tv;
|
|
|
|
struct ICARUS_HISTORY history[INFO_HISTORY+1];
|
|
uint32_t min_data_count;
|
|
|
|
// seconds per Hash
|
|
double Hs;
|
|
int read_count;
|
|
|
|
enum timing_mode timing_mode;
|
|
bool do_icarus_timing;
|
|
|
|
double fullnonce;
|
|
int count;
|
|
double W;
|
|
uint32_t values;
|
|
uint64_t hash_count_range;
|
|
|
|
// Determine the cost of history processing
|
|
// (which will only affect W)
|
|
uint64_t history_count;
|
|
struct timeval history_time;
|
|
|
|
// icarus-options
|
|
int baud;
|
|
int work_division;
|
|
int fpga_count;
|
|
uint32_t nonce_mask;
|
|
};
|
|
|
|
#define END_CONDITION 0x0000ffff
|
|
|
|
// One for each possible device
|
|
static struct ICARUS_INFO **icarus_info;
|
|
|
|
// Looking for options in --icarus-timing and --icarus-options:
|
|
//
|
|
// Code increments this each time we start to look at a device
|
|
// However, this means that if other devices are checked by
|
|
// the Icarus code (e.g. BFL) they will count in the option offset
|
|
//
|
|
// This, however, is deterministic so that's OK
|
|
//
|
|
// If we were to increment after successfully finding an Icarus
|
|
// that would be random since an Icarus may fail and thus we'd
|
|
// not be able to predict the option order
|
|
//
|
|
// This also assumes that serial_detect() checks them sequentially
|
|
// and in the order specified on the command line
|
|
//
|
|
static int option_offset = -1;
|
|
|
|
struct device_api icarus_api;
|
|
|
|
static void rev(unsigned char *s, size_t l)
|
|
{
|
|
size_t i, j;
|
|
unsigned char t;
|
|
|
|
for (i = 0, j = l - 1; i < j; i++, j--) {
|
|
t = s[i];
|
|
s[i] = s[j];
|
|
s[j] = t;
|
|
}
|
|
}
|
|
|
|
#define icarus_open2(devpath, baud, purge) serial_open(devpath, baud, ICARUS_READ_FAULT_DECISECONDS, purge)
|
|
#define icarus_open(devpath, baud) icarus_open2(devpath, baud, false)
|
|
|
|
#define ICA_GETS_ERROR -1
|
|
#define ICA_GETS_OK 0
|
|
#define ICA_GETS_RESTART 1
|
|
#define ICA_GETS_TIMEOUT 2
|
|
|
|
static int icarus_gets(unsigned char *buf, int fd, struct timeval *tv_finish, struct thr_info *thr, int read_count)
|
|
{
|
|
ssize_t ret = 0;
|
|
int rc = 0;
|
|
int read_amount = ICARUS_READ_SIZE;
|
|
bool first = true;
|
|
|
|
// Read reply 1 byte at a time to get earliest tv_finish
|
|
while (true) {
|
|
ret = read(fd, buf, 1);
|
|
if (ret < 0)
|
|
return ICA_GETS_ERROR;
|
|
|
|
if (first)
|
|
gettimeofday(tv_finish, NULL);
|
|
|
|
if (ret >= read_amount)
|
|
return ICA_GETS_OK;
|
|
|
|
if (ret > 0) {
|
|
buf += ret;
|
|
read_amount -= ret;
|
|
first = false;
|
|
continue;
|
|
}
|
|
|
|
rc++;
|
|
if (rc >= read_count) {
|
|
if (opt_debug) {
|
|
applog(LOG_DEBUG,
|
|
"Icarus Read: No data in %.2f seconds",
|
|
(float)rc/(float)TIME_FACTOR);
|
|
}
|
|
return ICA_GETS_TIMEOUT;
|
|
}
|
|
|
|
if (thr && thr->work_restart) {
|
|
if (opt_debug) {
|
|
applog(LOG_DEBUG,
|
|
"Icarus Read: Work restart at %.2f seconds",
|
|
(float)(rc)/(float)TIME_FACTOR);
|
|
}
|
|
return ICA_GETS_RESTART;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int icarus_write(int fd, const void *buf, size_t bufLen)
|
|
{
|
|
size_t ret;
|
|
|
|
ret = write(fd, buf, bufLen);
|
|
if (unlikely(ret != bufLen))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define icarus_close(fd) close(fd)
|
|
|
|
static void do_icarus_close(struct thr_info *thr)
|
|
{
|
|
struct cgpu_info *icarus = thr->cgpu;
|
|
icarus_close(icarus->device_fd);
|
|
icarus->device_fd = -1;
|
|
}
|
|
|
|
static const char *timing_mode_str(enum timing_mode timing_mode)
|
|
{
|
|
switch(timing_mode) {
|
|
case MODE_DEFAULT:
|
|
return MODE_DEFAULT_STR;
|
|
case MODE_SHORT:
|
|
return MODE_SHORT_STR;
|
|
case MODE_LONG:
|
|
return MODE_LONG_STR;
|
|
case MODE_VALUE:
|
|
return MODE_VALUE_STR;
|
|
default:
|
|
return MODE_UNKNOWN_STR;
|
|
}
|
|
}
|
|
|
|
static void set_timing_mode(int this_option_offset, struct cgpu_info *icarus)
|
|
{
|
|
struct ICARUS_INFO *info = icarus_info[icarus->device_id];
|
|
double Hs;
|
|
char buf[BUFSIZ+1];
|
|
char *ptr, *comma, *eq;
|
|
size_t max;
|
|
int i;
|
|
|
|
if (opt_icarus_timing == NULL)
|
|
buf[0] = '\0';
|
|
else {
|
|
ptr = opt_icarus_timing;
|
|
for (i = 0; i < this_option_offset; i++) {
|
|
comma = strchr(ptr, ',');
|
|
if (comma == NULL)
|
|
break;
|
|
ptr = comma + 1;
|
|
}
|
|
|
|
comma = strchr(ptr, ',');
|
|
if (comma == NULL)
|
|
max = strlen(ptr);
|
|
else
|
|
max = comma - ptr;
|
|
|
|
if (max > BUFSIZ)
|
|
max = BUFSIZ;
|
|
strncpy(buf, ptr, max);
|
|
buf[max] = '\0';
|
|
}
|
|
|
|
info->Hs = 0;
|
|
info->read_count = 0;
|
|
|
|
if (strcasecmp(buf, MODE_SHORT_STR) == 0) {
|
|
info->Hs = ICARUS_REV3_HASH_TIME;
|
|
info->read_count = ICARUS_READ_COUNT_TIMING;
|
|
|
|
info->timing_mode = MODE_SHORT;
|
|
info->do_icarus_timing = true;
|
|
} else if (strcasecmp(buf, MODE_LONG_STR) == 0) {
|
|
info->Hs = ICARUS_REV3_HASH_TIME;
|
|
info->read_count = ICARUS_READ_COUNT_TIMING;
|
|
|
|
info->timing_mode = MODE_LONG;
|
|
info->do_icarus_timing = true;
|
|
} else if ((Hs = atof(buf)) != 0) {
|
|
info->Hs = Hs / NANOSEC;
|
|
info->fullnonce = info->Hs * (((double)0xffffffff) + 1);
|
|
|
|
if ((eq = strchr(buf, '=')) != NULL)
|
|
info->read_count = atoi(eq+1);
|
|
|
|
if (info->read_count < 1)
|
|
info->read_count = (int)(info->fullnonce * TIME_FACTOR) - 1;
|
|
|
|
if (unlikely(info->read_count < 1))
|
|
info->read_count = 1;
|
|
|
|
info->timing_mode = MODE_VALUE;
|
|
info->do_icarus_timing = false;
|
|
} else {
|
|
// Anything else in buf just uses DEFAULT mode
|
|
|
|
info->Hs = ICARUS_REV3_HASH_TIME;
|
|
info->fullnonce = info->Hs * (((double)0xffffffff) + 1);
|
|
|
|
if ((eq = strchr(buf, '=')) != NULL)
|
|
info->read_count = atoi(eq+1);
|
|
|
|
if (info->read_count < 1)
|
|
info->read_count = (int)(info->fullnonce * TIME_FACTOR) - 1;
|
|
|
|
info->timing_mode = MODE_DEFAULT;
|
|
info->do_icarus_timing = false;
|
|
}
|
|
|
|
info->min_data_count = MIN_DATA_COUNT;
|
|
|
|
applog(LOG_DEBUG, "Icarus: Init: %d mode=%s read_count=%d Hs=%e",
|
|
icarus->device_id, timing_mode_str(info->timing_mode), info->read_count, info->Hs);
|
|
}
|
|
|
|
static uint32_t mask(int work_division)
|
|
{
|
|
char err_buf[BUFSIZ+1];
|
|
uint32_t nonce_mask = 0x7fffffff;
|
|
|
|
// yes we can calculate these, but this way it's easy to see what they are
|
|
switch (work_division) {
|
|
case 1:
|
|
nonce_mask = 0xffffffff;
|
|
break;
|
|
case 2:
|
|
nonce_mask = 0x7fffffff;
|
|
break;
|
|
case 4:
|
|
nonce_mask = 0x3fffffff;
|
|
break;
|
|
case 8:
|
|
nonce_mask = 0x1fffffff;
|
|
break;
|
|
default:
|
|
sprintf(err_buf, "Invalid2 icarus-options for work_division (%d) must be 1, 2, 4 or 8", work_division);
|
|
quit(1, err_buf);
|
|
}
|
|
|
|
return nonce_mask;
|
|
}
|
|
|
|
static void get_options(int this_option_offset, int *baud, int *work_division, int *fpga_count)
|
|
{
|
|
char err_buf[BUFSIZ+1];
|
|
char buf[BUFSIZ+1];
|
|
char *ptr, *comma, *colon, *colon2;
|
|
size_t max;
|
|
int i, tmp;
|
|
|
|
if (opt_icarus_options == NULL)
|
|
buf[0] = '\0';
|
|
else {
|
|
ptr = opt_icarus_options;
|
|
for (i = 0; i < this_option_offset; i++) {
|
|
comma = strchr(ptr, ',');
|
|
if (comma == NULL)
|
|
break;
|
|
ptr = comma + 1;
|
|
}
|
|
|
|
comma = strchr(ptr, ',');
|
|
if (comma == NULL)
|
|
max = strlen(ptr);
|
|
else
|
|
max = comma - ptr;
|
|
|
|
if (max > BUFSIZ)
|
|
max = BUFSIZ;
|
|
strncpy(buf, ptr, max);
|
|
buf[max] = '\0';
|
|
}
|
|
|
|
*baud = ICARUS_IO_SPEED;
|
|
*work_division = 2;
|
|
*fpga_count = 2;
|
|
|
|
if (*buf) {
|
|
colon = strchr(buf, ':');
|
|
if (colon)
|
|
*(colon++) = '\0';
|
|
|
|
if (*buf) {
|
|
tmp = atoi(buf);
|
|
switch (tmp) {
|
|
case 115200:
|
|
*baud = 115200;
|
|
break;
|
|
case 57600:
|
|
*baud = 57600;
|
|
break;
|
|
default:
|
|
sprintf(err_buf, "Invalid icarus-options for baud (%s) must be 115200 or 57600", buf);
|
|
quit(1, err_buf);
|
|
}
|
|
}
|
|
|
|
if (colon && *colon) {
|
|
colon2 = strchr(colon, ':');
|
|
if (colon2)
|
|
*(colon2++) = '\0';
|
|
|
|
if (*colon) {
|
|
tmp = atoi(colon);
|
|
if (tmp == 1 || tmp == 2 || tmp == 4 || tmp == 8) {
|
|
*work_division = tmp;
|
|
*fpga_count = tmp; // default to the same
|
|
} else {
|
|
sprintf(err_buf, "Invalid icarus-options for work_division (%s) must be 1, 2, 4 or 8", colon);
|
|
quit(1, err_buf);
|
|
}
|
|
}
|
|
|
|
if (colon2 && *colon2) {
|
|
tmp = atoi(colon2);
|
|
if (tmp > 0 && tmp <= *work_division)
|
|
*fpga_count = tmp;
|
|
else {
|
|
sprintf(err_buf, "Invalid icarus-options for fpga_count (%s) must be >0 and <=work_division (%d)", colon2, *work_division);
|
|
quit(1, err_buf);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool icarus_detect_one(const char *devpath)
|
|
{
|
|
int this_option_offset = ++option_offset;
|
|
|
|
struct ICARUS_INFO *info;
|
|
struct timeval tv_start, tv_finish;
|
|
int fd;
|
|
|
|
// Block 171874 nonce = (0xa2870100) = 0x000187a2
|
|
// N.B. golden_ob MUST take less time to calculate
|
|
// than the timeout set in icarus_open()
|
|
// This one takes ~0.53ms on Rev3 Icarus
|
|
const char golden_ob[] =
|
|
"4679ba4ec99876bf4bfe086082b40025"
|
|
"4df6c356451471139a3afa71e48f544a"
|
|
"00000000000000000000000000000000"
|
|
"0000000087320b1a1426674f2fa722ce";
|
|
|
|
const char golden_nonce[] = "000187a2";
|
|
const uint32_t golden_nonce_val = 0x000187a2;
|
|
|
|
unsigned char ob_bin[64], nonce_bin[ICARUS_READ_SIZE];
|
|
char *nonce_hex;
|
|
|
|
int baud, work_division, fpga_count;
|
|
|
|
get_options(this_option_offset, &baud, &work_division, &fpga_count);
|
|
|
|
applog(LOG_DEBUG, "Icarus Detect: Attempting to open %s", devpath);
|
|
|
|
fd = icarus_open2(devpath, baud, true);
|
|
if (unlikely(fd == -1)) {
|
|
applog(LOG_ERR, "Icarus Detect: Failed to open %s", devpath);
|
|
return false;
|
|
}
|
|
|
|
hex2bin(ob_bin, golden_ob, sizeof(ob_bin));
|
|
icarus_write(fd, ob_bin, sizeof(ob_bin));
|
|
gettimeofday(&tv_start, NULL);
|
|
|
|
memset(nonce_bin, 0, sizeof(nonce_bin));
|
|
icarus_gets(nonce_bin, fd, &tv_finish, NULL, 1);
|
|
|
|
icarus_close(fd);
|
|
|
|
nonce_hex = bin2hex(nonce_bin, sizeof(nonce_bin));
|
|
if (strncmp(nonce_hex, golden_nonce, 8)) {
|
|
applog(LOG_ERR,
|
|
"Icarus Detect: "
|
|
"Test failed at %s: get %s, should: %s",
|
|
devpath, nonce_hex, golden_nonce);
|
|
free(nonce_hex);
|
|
return false;
|
|
}
|
|
applog(LOG_DEBUG,
|
|
"Icarus Detect: "
|
|
"Test succeeded at %s: got %s",
|
|
devpath, nonce_hex);
|
|
free(nonce_hex);
|
|
|
|
/* We have a real Icarus! */
|
|
struct cgpu_info *icarus;
|
|
icarus = calloc(1, sizeof(struct cgpu_info));
|
|
icarus->api = &icarus_api;
|
|
icarus->device_path = strdup(devpath);
|
|
icarus->device_fd = -1;
|
|
icarus->threads = 1;
|
|
add_cgpu(icarus);
|
|
icarus_info = realloc(icarus_info, sizeof(struct ICARUS_INFO *) * (total_devices + 1));
|
|
|
|
applog(LOG_INFO, "Found Icarus at %s, mark as %d",
|
|
devpath, icarus->device_id);
|
|
|
|
applog(LOG_DEBUG, "Icarus: Init: %d baud=%d work_division=%d fpga_count=%d",
|
|
icarus->device_id, baud, work_division, fpga_count);
|
|
|
|
// Since we are adding a new device on the end it needs to always be allocated
|
|
icarus_info[icarus->device_id] = (struct ICARUS_INFO *)malloc(sizeof(struct ICARUS_INFO));
|
|
if (unlikely(!(icarus_info[icarus->device_id])))
|
|
quit(1, "Failed to malloc ICARUS_INFO");
|
|
|
|
info = icarus_info[icarus->device_id];
|
|
|
|
// Initialise everything to zero for a new device
|
|
memset(info, 0, sizeof(struct ICARUS_INFO));
|
|
|
|
info->baud = baud;
|
|
info->work_division = work_division;
|
|
info->fpga_count = fpga_count;
|
|
info->nonce_mask = mask(work_division);
|
|
|
|
info->golden_hashes = (golden_nonce_val & info->nonce_mask) * fpga_count;
|
|
timersub(&tv_finish, &tv_start, &(info->golden_tv));
|
|
|
|
set_timing_mode(this_option_offset, icarus);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void icarus_detect()
|
|
{
|
|
serial_detect(&icarus_api, icarus_detect_one);
|
|
}
|
|
|
|
static bool icarus_prepare(struct thr_info *thr)
|
|
{
|
|
struct cgpu_info *icarus = thr->cgpu;
|
|
|
|
struct timeval now;
|
|
|
|
icarus->device_fd = -1;
|
|
|
|
int fd = icarus_open(icarus->device_path, icarus_info[icarus->device_id]->baud);
|
|
if (unlikely(-1 == fd)) {
|
|
applog(LOG_ERR, "Failed to open Icarus on %s",
|
|
icarus->device_path);
|
|
return false;
|
|
}
|
|
|
|
icarus->device_fd = fd;
|
|
|
|
applog(LOG_INFO, "Opened Icarus on %s", icarus->device_path);
|
|
gettimeofday(&now, NULL);
|
|
get_datestamp(icarus->init, &now);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int64_t icarus_scanhash(struct thr_info *thr, struct work *work,
|
|
__maybe_unused int64_t max_nonce)
|
|
{
|
|
struct cgpu_info *icarus;
|
|
int fd;
|
|
int ret;
|
|
|
|
struct ICARUS_INFO *info;
|
|
|
|
unsigned char ob_bin[64], nonce_bin[ICARUS_READ_SIZE];
|
|
char *ob_hex;
|
|
uint32_t nonce;
|
|
int64_t hash_count;
|
|
struct timeval tv_start, tv_finish, elapsed;
|
|
struct timeval tv_history_start, tv_history_finish;
|
|
double Ti, Xi;
|
|
int curr_hw_errors, i;
|
|
bool was_hw_error;
|
|
|
|
struct ICARUS_HISTORY *history0, *history;
|
|
int count;
|
|
double Hs, W, fullnonce;
|
|
int read_count;
|
|
int64_t estimate_hashes;
|
|
uint32_t values;
|
|
int64_t hash_count_range;
|
|
|
|
elapsed.tv_sec = elapsed.tv_usec = 0;
|
|
|
|
icarus = thr->cgpu;
|
|
if (icarus->device_fd == -1)
|
|
if (!icarus_prepare(thr)) {
|
|
applog(LOG_ERR, "ICA%i: Comms error", icarus->device_id);
|
|
dev_error(icarus, REASON_DEV_COMMS_ERROR);
|
|
|
|
// fail the device if the reopen attempt fails
|
|
return -1;
|
|
}
|
|
|
|
fd = icarus->device_fd;
|
|
|
|
memset(ob_bin, 0, sizeof(ob_bin));
|
|
memcpy(ob_bin, work->midstate, 32);
|
|
memcpy(ob_bin + 52, work->data + 64, 12);
|
|
rev(ob_bin, 32);
|
|
rev(ob_bin + 52, 12);
|
|
#ifndef WIN32
|
|
tcflush(fd, TCOFLUSH);
|
|
#endif
|
|
ret = icarus_write(fd, ob_bin, sizeof(ob_bin));
|
|
if (ret) {
|
|
do_icarus_close(thr);
|
|
applog(LOG_ERR, "ICA%i: Comms error", icarus->device_id);
|
|
dev_error(icarus, REASON_DEV_COMMS_ERROR);
|
|
return 0; /* This should never happen */
|
|
}
|
|
|
|
gettimeofday(&tv_start, NULL);
|
|
|
|
if (opt_debug) {
|
|
ob_hex = bin2hex(ob_bin, sizeof(ob_bin));
|
|
applog(LOG_DEBUG, "Icarus %d sent: %s",
|
|
icarus->device_id, ob_hex);
|
|
free(ob_hex);
|
|
}
|
|
|
|
/* Icarus will return 4 bytes (ICARUS_READ_SIZE) nonces or nothing */
|
|
memset(nonce_bin, 0, sizeof(nonce_bin));
|
|
info = icarus_info[icarus->device_id];
|
|
ret = icarus_gets(nonce_bin, fd, &tv_finish, thr, info->read_count);
|
|
if (ret == ICA_GETS_ERROR) {
|
|
do_icarus_close(thr);
|
|
applog(LOG_ERR, "ICA%i: Comms error", icarus->device_id);
|
|
dev_error(icarus, REASON_DEV_COMMS_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
work->blk.nonce = 0xffffffff;
|
|
|
|
// aborted before becoming idle, get new work
|
|
if (ret == ICA_GETS_TIMEOUT || ret == ICA_GETS_RESTART) {
|
|
timersub(&tv_finish, &tv_start, &elapsed);
|
|
|
|
// ONLY up to just when it aborted
|
|
// We didn't read a reply so we don't subtract ICARUS_READ_TIME
|
|
estimate_hashes = ((double)(elapsed.tv_sec)
|
|
+ ((double)(elapsed.tv_usec))/((double)1000000)) / info->Hs;
|
|
|
|
// If some Serial-USB delay allowed the full nonce range to
|
|
// complete it can't have done more than a full nonce
|
|
if (unlikely(estimate_hashes > 0xffffffff))
|
|
estimate_hashes = 0xffffffff;
|
|
|
|
if (opt_debug) {
|
|
applog(LOG_DEBUG, "Icarus %d no nonce = 0x%08llx hashes (%ld.%06lds)",
|
|
icarus->device_id, estimate_hashes,
|
|
elapsed.tv_sec, elapsed.tv_usec);
|
|
}
|
|
|
|
return estimate_hashes;
|
|
}
|
|
|
|
memcpy((char *)&nonce, nonce_bin, sizeof(nonce_bin));
|
|
|
|
#if !defined (__BIG_ENDIAN__) && !defined(MIPSEB)
|
|
nonce = swab32(nonce);
|
|
#endif
|
|
|
|
curr_hw_errors = icarus->hw_errors;
|
|
submit_nonce(thr, work, nonce);
|
|
was_hw_error = (curr_hw_errors > icarus->hw_errors);
|
|
|
|
// Force a USB close/reopen on any hw error
|
|
if (was_hw_error)
|
|
do_icarus_close(thr);
|
|
|
|
hash_count = (nonce & info->nonce_mask);
|
|
hash_count++;
|
|
hash_count *= info->fpga_count;
|
|
|
|
if (opt_debug || info->do_icarus_timing)
|
|
timersub(&tv_finish, &tv_start, &elapsed);
|
|
|
|
if (opt_debug) {
|
|
applog(LOG_DEBUG, "Icarus %d nonce = 0x%08x = 0x%08llx hashes (%ld.%06lds)",
|
|
icarus->device_id, nonce, hash_count, elapsed.tv_sec, elapsed.tv_usec);
|
|
}
|
|
|
|
// ignore possible end condition values ... and hw errors
|
|
if (info->do_icarus_timing
|
|
&& !was_hw_error
|
|
&& ((nonce & info->nonce_mask) > END_CONDITION)
|
|
&& ((nonce & info->nonce_mask) < (info->nonce_mask & ~END_CONDITION))) {
|
|
gettimeofday(&tv_history_start, NULL);
|
|
|
|
history0 = &(info->history[0]);
|
|
|
|
if (history0->values == 0)
|
|
timeradd(&tv_start, &history_sec, &(history0->finish));
|
|
|
|
Ti = (double)(elapsed.tv_sec)
|
|
+ ((double)(elapsed.tv_usec))/((double)1000000)
|
|
- ((double)ICARUS_READ_TIME(info->baud));
|
|
Xi = (double)hash_count;
|
|
history0->sumXiTi += Xi * Ti;
|
|
history0->sumXi += Xi;
|
|
history0->sumTi += Ti;
|
|
history0->sumXi2 += Xi * Xi;
|
|
|
|
history0->values++;
|
|
|
|
if (history0->hash_count_max < hash_count)
|
|
history0->hash_count_max = hash_count;
|
|
if (history0->hash_count_min > hash_count || history0->hash_count_min == 0)
|
|
history0->hash_count_min = hash_count;
|
|
|
|
if (history0->values >= info->min_data_count
|
|
&& timercmp(&tv_start, &(history0->finish), >)) {
|
|
for (i = INFO_HISTORY; i > 0; i--)
|
|
memcpy(&(info->history[i]),
|
|
&(info->history[i-1]),
|
|
sizeof(struct ICARUS_HISTORY));
|
|
|
|
// Initialise history0 to zero for summary calculation
|
|
memset(history0, 0, sizeof(struct ICARUS_HISTORY));
|
|
|
|
// We just completed a history data set
|
|
// So now recalc read_count based on the whole history thus we will
|
|
// initially get more accurate until it completes INFO_HISTORY
|
|
// total data sets
|
|
count = 0;
|
|
for (i = 1 ; i <= INFO_HISTORY; i++) {
|
|
history = &(info->history[i]);
|
|
if (history->values >= MIN_DATA_COUNT) {
|
|
count++;
|
|
|
|
history0->sumXiTi += history->sumXiTi;
|
|
history0->sumXi += history->sumXi;
|
|
history0->sumTi += history->sumTi;
|
|
history0->sumXi2 += history->sumXi2;
|
|
history0->values += history->values;
|
|
|
|
if (history0->hash_count_max < history->hash_count_max)
|
|
history0->hash_count_max = history->hash_count_max;
|
|
if (history0->hash_count_min > history->hash_count_min || history0->hash_count_min == 0)
|
|
history0->hash_count_min = history->hash_count_min;
|
|
}
|
|
}
|
|
|
|
// All history data
|
|
Hs = (history0->values*history0->sumXiTi - history0->sumXi*history0->sumTi)
|
|
/ (history0->values*history0->sumXi2 - history0->sumXi*history0->sumXi);
|
|
W = history0->sumTi/history0->values - Hs*history0->sumXi/history0->values;
|
|
hash_count_range = history0->hash_count_max - history0->hash_count_min;
|
|
values = history0->values;
|
|
|
|
// Initialise history0 to zero for next data set
|
|
memset(history0, 0, sizeof(struct ICARUS_HISTORY));
|
|
|
|
fullnonce = W + Hs * (((double)0xffffffff) + 1);
|
|
read_count = (int)(fullnonce * TIME_FACTOR) - 1;
|
|
|
|
info->Hs = Hs;
|
|
info->read_count = read_count;
|
|
|
|
info->fullnonce = fullnonce;
|
|
info->count = count;
|
|
info->W = W;
|
|
info->values = values;
|
|
info->hash_count_range = hash_count_range;
|
|
|
|
if (info->min_data_count < MAX_MIN_DATA_COUNT)
|
|
info->min_data_count *= 2;
|
|
else if (info->timing_mode == MODE_SHORT)
|
|
info->do_icarus_timing = false;
|
|
|
|
// applog(LOG_WARNING, "Icarus %d Re-estimate: read_count=%d fullnonce=%fs history count=%d Hs=%e W=%e values=%d hash range=0x%08lx min data count=%u", icarus->device_id, read_count, fullnonce, count, Hs, W, values, hash_count_range, info->min_data_count);
|
|
applog(LOG_WARNING, "Icarus %d Re-estimate: Hs=%e W=%e read_count=%d fullnonce=%.3fs",
|
|
icarus->device_id, Hs, W, read_count, fullnonce);
|
|
}
|
|
info->history_count++;
|
|
gettimeofday(&tv_history_finish, NULL);
|
|
|
|
timersub(&tv_history_finish, &tv_history_start, &tv_history_finish);
|
|
timeradd(&tv_history_finish, &(info->history_time), &(info->history_time));
|
|
}
|
|
|
|
return hash_count;
|
|
}
|
|
|
|
static struct api_data *icarus_api_stats(struct cgpu_info *cgpu)
|
|
{
|
|
struct api_data *root = NULL;
|
|
struct ICARUS_INFO *info = icarus_info[cgpu->device_id];
|
|
|
|
// Warning, access to these is not locked - but we don't really
|
|
// care since hashing performance is way more important than
|
|
// locking access to displaying API debug 'stats'
|
|
// If locking becomes an issue for any of them, use copy_data=true also
|
|
root = api_add_int(root, "read_count", &(info->read_count), false);
|
|
root = api_add_double(root, "fullnonce", &(info->fullnonce), false);
|
|
root = api_add_int(root, "count", &(info->count), false);
|
|
root = api_add_hs(root, "Hs", &(info->Hs), false);
|
|
root = api_add_double(root, "W", &(info->W), false);
|
|
root = api_add_uint(root, "total_values", &(info->values), false);
|
|
root = api_add_uint64(root, "range", &(info->hash_count_range), false);
|
|
root = api_add_uint64(root, "history_count", &(info->history_count), false);
|
|
root = api_add_timeval(root, "history_time", &(info->history_time), false);
|
|
root = api_add_uint(root, "min_data_count", &(info->min_data_count), false);
|
|
root = api_add_uint(root, "timing_values", &(info->history[0].values), false);
|
|
root = api_add_const(root, "timing_mode", timing_mode_str(info->timing_mode), false);
|
|
root = api_add_bool(root, "is_timing", &(info->do_icarus_timing), false);
|
|
root = api_add_int(root, "baud", &(info->baud), false);
|
|
root = api_add_int(root, "work_division", &(info->work_division), false);
|
|
root = api_add_int(root, "fpga_count", &(info->fpga_count), false);
|
|
|
|
return root;
|
|
}
|
|
|
|
static void icarus_shutdown(struct thr_info *thr)
|
|
{
|
|
do_icarus_close(thr);
|
|
}
|
|
|
|
struct device_api icarus_api = {
|
|
.dname = "icarus",
|
|
.name = "ICA",
|
|
.api_detect = icarus_detect,
|
|
.get_api_stats = icarus_api_stats,
|
|
.thread_prepare = icarus_prepare,
|
|
.scanhash = icarus_scanhash,
|
|
.thread_shutdown = icarus_shutdown,
|
|
};
|