1
0
mirror of https://github.com/GOSTSec/sgminer synced 2025-01-22 12:34:27 +00:00
sgminer/x86_64/sha256_sse4_amd64.asm
2011-07-18 11:27:58 +10:00

259 lines
7.1 KiB
NASM

;; SHA-256 for X86-64 for Linux, based off of:
; (c) Ufasoft 2011 http://ufasoft.com mailto:support@ufasoft.com
; Version 2011
; This software is Public Domain
; Significant re-write/optimisation and reordering by,
; Neil Kettle <mu-b@digit-labs.org>
; ~18% performance improvement
; SHA-256 CPU SSE cruncher for Bitcoin Miner
ALIGN 32
BITS 64
%define hash rdi
%define data rsi
%define init rdx
; 0 = (1024 - 256) (mod (LAB_CALC_UNROLL*LAB_CALC_PARA*16))
%define LAB_CALC_PARA 2
%define LAB_CALC_UNROLL 8
%define LAB_LOOP_UNROLL 8
extern g_4sha256_k
global CalcSha256_x64_sse4
; CalcSha256 hash(rdi), data(rsi), init(rdx)
CalcSha256_x64_sse4:
push rbx
LAB_NEXT_NONCE:
mov rcx, 64*4 ; 256 - rcx is # of SHA-2 rounds
mov rax, 16*4 ; 64 - rax is where we expand to
LAB_SHA:
push rcx
lea rcx, qword [data+rcx*4] ; + 1024
lea r11, qword [data+rax*4] ; + 256
LAB_CALC:
%macro lab_calc_blk 1
movntdqa xmm0, [r11-(15-%1)*16] ; xmm0 = W[I-15]
movdqa xmm2, xmm0 ; xmm2 = W[I-15]
movntdqa xmm4, [r11-(15-(%1+1))*16] ; xmm4 = W[I-15+1]
movdqa xmm6, xmm4 ; xmm6 = W[I-15+1]
psrld xmm0, 3 ; xmm0 = W[I-15] >> 3
movdqa xmm1, xmm0 ; xmm1 = W[I-15] >> 3
pslld xmm2, 14 ; xmm2 = W[I-15] << 14
psrld xmm4, 3 ; xmm4 = W[I-15+1] >> 3
movdqa xmm5, xmm4 ; xmm5 = W[I-15+1] >> 3
psrld xmm5, 4 ; xmm5 = W[I-15+1] >> 7
pxor xmm4, xmm5 ; xmm4 = (W[I-15+1] >> 3) ^ (W[I-15+1] >> 7)
pslld xmm6, 14 ; xmm6 = W[I-15+1] << 14
psrld xmm1, 4 ; xmm1 = W[I-15] >> 7
pxor xmm0, xmm1 ; xmm0 = (W[I-15] >> 3) ^ (W[I-15] >> 7)
pxor xmm0, xmm2 ; xmm0 = (W[I-15] >> 3) ^ (W[I-15] >> 7) ^ (W[I-15] << 14)
psrld xmm1, 11 ; xmm1 = W[I-15] >> 18
psrld xmm5, 11 ; xmm5 = W[I-15+1] >> 18
pxor xmm4, xmm6 ; xmm4 = (W[I-15+1] >> 3) ^ (W[I-15+1] >> 7) ^ (W[I-15+1] << 14)
pxor xmm4, xmm5 ; xmm4 = (W[I-15+1] >> 3) ^ (W[I-15+1] >> 7) ^ (W[I-15+1] << 14) ^ (W[I-15+1] >> 18)
pslld xmm2, 11 ; xmm2 = W[I-15] << 25
pslld xmm6, 11 ; xmm6 = W[I-15+1] << 25
pxor xmm4, xmm6 ; xmm4 = (W[I-15+1] >> 3) ^ (W[I-15+1] >> 7) ^ (W[I-15+1] << 14) ^ (W[I-15+1] >> 18) ^ (W[I-15+1] << 25)
pxor xmm0, xmm1 ; xmm0 = (W[I-15] >> 3) ^ (W[I-15] >> 7) ^ (W[I-15] << 14) ^ (W[I-15] >> 18)
pxor xmm0, xmm2 ; xmm0 = (W[I-15] >> 3) ^ (W[I-15] >> 7) ^ (W[I-15] << 14) ^ (W[I-15] >> 18) ^ (W[I-15] << 25)
paddd xmm0, [r11-(16-%1)*16] ; xmm0 = s0(W[I-15]) + W[I-16]
paddd xmm4, [r11-(16-(%1+1))*16] ; xmm4 = s0(W[I-15+1]) + W[I-16+1]
movntdqa xmm3, [r11-(2-%1)*16] ; xmm3 = W[I-2]
movntdqa xmm7, [r11-(2-(%1+1))*16] ; xmm7 = W[I-2+1]
;;;;;;;;;;;;;;;;;;
movdqa xmm2, xmm3 ; xmm2 = W[I-2]
psrld xmm3, 10 ; xmm3 = W[I-2] >> 10
movdqa xmm1, xmm3 ; xmm1 = W[I-2] >> 10
movdqa xmm6, xmm7 ; xmm6 = W[I-2+1]
psrld xmm7, 10 ; xmm7 = W[I-2+1] >> 10
movdqa xmm5, xmm7 ; xmm5 = W[I-2+1] >> 10
paddd xmm0, [r11-(7-%1)*16] ; xmm0 = s0(W[I-15]) + W[I-16] + W[I-7]
paddd xmm4, [r11-(7-(%1+1))*16] ; xmm4 = s0(W[I-15+1]) + W[I-16+1] + W[I-7+1]
pslld xmm2, 13 ; xmm2 = W[I-2] << 13
pslld xmm6, 13 ; xmm6 = W[I-2+1] << 13
psrld xmm1, 7 ; xmm1 = W[I-2] >> 17
psrld xmm5, 7 ; xmm5 = W[I-2+1] >> 17
pxor xmm3, xmm1 ; xmm3 = (W[I-2] >> 10) ^ (W[I-2] >> 17)
psrld xmm1, 2 ; xmm1 = W[I-2] >> 19
pxor xmm3, xmm2 ; xmm3 = (W[I-2] >> 10) ^ (W[I-2] >> 17) ^ (W[I-2] << 13)
pslld xmm2, 2 ; xmm2 = W[I-2] << 15
pxor xmm7, xmm5 ; xmm7 = (W[I-2+1] >> 10) ^ (W[I-2+1] >> 17)
psrld xmm5, 2 ; xmm5 = W[I-2+1] >> 19
pxor xmm7, xmm6 ; xmm7 = (W[I-2+1] >> 10) ^ (W[I-2+1] >> 17) ^ (W[I-2+1] << 13)
pslld xmm6, 2 ; xmm6 = W[I-2+1] << 15
pxor xmm3, xmm1 ; xmm3 = (W[I-2] >> 10) ^ (W[I-2] >> 17) ^ (W[I-2] << 13) ^ (W[I-2] >> 19)
pxor xmm3, xmm2 ; xmm3 = (W[I-2] >> 10) ^ (W[I-2] >> 17) ^ (W[I-2] << 13) ^ (W[I-2] >> 19) ^ (W[I-2] << 15)
paddd xmm0, xmm3 ; xmm0 = s0(W[I-15]) + W[I-16] + s1(W[I-2]) + W[I-7]
pxor xmm7, xmm5 ; xmm7 = (W[I-2+1] >> 10) ^ (W[I-2+1] >> 17) ^ (W[I-2+1] << 13) ^ (W[I-2+1] >> 19)
pxor xmm7, xmm6 ; xmm7 = (W[I-2+1] >> 10) ^ (W[I-2+1] >> 17) ^ (W[I-2+1] << 13) ^ (W[I-2+1] >> 19) ^ (W[I-2+1] << 15)
paddd xmm4, xmm7 ; xmm4 = s0(W[I-15+1]) + W[I-16+1] + s1(W[I-2+1]) + W[I-7+1]
movdqa [r11+(%1*16)], xmm0
movdqa [r11+((%1+1)*16)], xmm4
%endmacro
%assign i 0
%rep LAB_CALC_UNROLL
lab_calc_blk i
%assign i i+LAB_CALC_PARA
%endrep
add r11, LAB_CALC_UNROLL*LAB_CALC_PARA*16
cmp r11, rcx
jb LAB_CALC
pop rcx
mov rax, 0
; Load the init values of the message into the hash.
movntdqa xmm7, [init]
pshufd xmm5, xmm7, 0x55 ; xmm5 == b
pshufd xmm4, xmm7, 0xAA ; xmm4 == c
pshufd xmm3, xmm7, 0xFF ; xmm3 == d
pshufd xmm7, xmm7, 0 ; xmm7 == a
movntdqa xmm0, [init+4*4]
pshufd xmm8, xmm0, 0x55 ; xmm8 == f
pshufd xmm9, xmm0, 0xAA ; xmm9 == g
pshufd xmm10, xmm0, 0xFF ; xmm10 == h
pshufd xmm0, xmm0, 0 ; xmm0 == e
LAB_LOOP:
;; T t1 = h + (Rotr32(e, 6) ^ Rotr32(e, 11) ^ Rotr32(e, 25)) + ((e & f) ^ AndNot(e, g)) + Expand32<T>(g_sha256_k[j]) + w[j]
%macro lab_loop_blk 0
movntdqa xmm6, [data+rax*4]
paddd xmm6, g_4sha256_k[rax*4]
add rax, 4
paddd xmm6, xmm10 ; +h
movdqa xmm1, xmm0
movdqa xmm2, xmm9
pandn xmm1, xmm2 ; ~e & g
movdqa xmm10, xmm2 ; h = g
movdqa xmm2, xmm8 ; f
movdqa xmm9, xmm2 ; g = f
pand xmm2, xmm0 ; e & f
pxor xmm1, xmm2 ; (e & f) ^ (~e & g)
movdqa xmm8, xmm0 ; f = e
paddd xmm6, xmm1 ; Ch + h + w[i] + k[i]
movdqa xmm1, xmm0
psrld xmm0, 6
movdqa xmm2, xmm0
pslld xmm1, 7
psrld xmm2, 5
pxor xmm0, xmm1
pxor xmm0, xmm2
pslld xmm1, 14
psrld xmm2, 14
pxor xmm0, xmm1
pxor xmm0, xmm2
pslld xmm1, 5
pxor xmm0, xmm1 ; Rotr32(e, 6) ^ Rotr32(e, 11) ^ Rotr32(e, 25)
paddd xmm6, xmm0 ; xmm6 = t1
movdqa xmm0, xmm3 ; d
paddd xmm0, xmm6 ; e = d+t1
movdqa xmm1, xmm5 ; =b
movdqa xmm3, xmm4 ; d = c
movdqa xmm2, xmm4 ; c
pand xmm2, xmm5 ; b & c
pand xmm4, xmm7 ; a & c
pand xmm1, xmm7 ; a & b
pxor xmm1, xmm4
movdqa xmm4, xmm5 ; c = b
movdqa xmm5, xmm7 ; b = a
pxor xmm1, xmm2 ; (a & c) ^ (a & d) ^ (c & d)
paddd xmm6, xmm1 ; t1 + ((a & c) ^ (a & d) ^ (c & d))
movdqa xmm2, xmm7
psrld xmm7, 2
movdqa xmm1, xmm7
pslld xmm2, 10
psrld xmm1, 11
pxor xmm7, xmm2
pxor xmm7, xmm1
pslld xmm2, 9
psrld xmm1, 9
pxor xmm7, xmm2
pxor xmm7, xmm1
pslld xmm2, 11
pxor xmm7, xmm2
paddd xmm7, xmm6 ; a = t1 + (Rotr32(a, 2) ^ Rotr32(a, 13) ^ Rotr32(a, 22)) + ((a & c) ^ (a & d) ^ (c & d));
%endmacro
%assign i 0
%rep LAB_LOOP_UNROLL
lab_loop_blk
%assign i i+1
%endrep
cmp rax, rcx
jb LAB_LOOP
; Finished the 64 rounds, calculate hash and save
movntdqa xmm1, [rdx]
pshufd xmm2, xmm1, 0x55
paddd xmm5, xmm2
pshufd xmm6, xmm1, 0xAA
paddd xmm4, xmm6
pshufd xmm11, xmm1, 0xFF
paddd xmm3, xmm11
pshufd xmm1, xmm1, 0
paddd xmm7, xmm1
movntdqa xmm1, [rdx+4*4]
pshufd xmm2, xmm1, 0x55
paddd xmm8, xmm2
pshufd xmm6, xmm1, 0xAA
paddd xmm9, xmm6
pshufd xmm11, xmm1, 0xFF
paddd xmm10, xmm11
pshufd xmm1, xmm1, 0
paddd xmm0, xmm1
movdqa [hash+0*16], xmm7
movdqa [hash+1*16], xmm5
movdqa [hash+2*16], xmm4
movdqa [hash+3*16], xmm3
movdqa [hash+4*16], xmm0
movdqa [hash+5*16], xmm8
movdqa [hash+6*16], xmm9
movdqa [hash+7*16], xmm10
LAB_RET:
pop rbx
ret