1
0
mirror of https://github.com/GOSTSec/sgminer synced 2025-01-10 14:58:01 +00:00
sgminer/driver-avalon.c
2013-04-21 19:36:37 +10:00

1042 lines
26 KiB
C

/*
* Copyright 2013 Con Kolivas <kernel@kolivas.org>
* Copyright 2012-2013 Xiangfu <xiangfu@openmobilefree.com>
* Copyright 2012 Luke Dashjr
* Copyright 2012 Andrew Smith
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include <limits.h>
#include <pthread.h>
#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <dirent.h>
#include <unistd.h>
#ifndef WIN32
#include <sys/select.h>
#include <termios.h>
#include <sys/stat.h>
#include <fcntl.h>
#ifndef O_CLOEXEC
#define O_CLOEXEC 0
#endif
#else
#include "compat.h"
#include <windows.h>
#include <io.h>
#endif
#include "elist.h"
#include "miner.h"
#include "fpgautils.h"
#include "driver-avalon.h"
#include "hexdump.c"
#include "util.h"
static int option_offset = -1;
struct avalon_info **avalon_infos;
struct device_drv avalon_drv;
static int avalon_init_task(struct avalon_task *at,
uint8_t reset, uint8_t ff, uint8_t fan,
uint8_t timeout, uint8_t asic_num,
uint8_t miner_num, uint8_t nonce_elf,
uint8_t gate_miner, int frequency)
{
uint8_t *buf;
static bool first = true;
if (unlikely(!at))
return -1;
if (unlikely(timeout <= 0 || asic_num <= 0 || miner_num <= 0))
return -1;
memset(at, 0, sizeof(struct avalon_task));
if (unlikely(reset)) {
at->reset = 1;
at->fan_eft = 1;
at->timer_eft = 1;
first = true;
}
at->flush_fifo = (ff ? 1 : 0);
at->fan_eft = (fan ? 1 : 0);
if (unlikely(first && !at->reset)) {
at->fan_eft = 1;
at->timer_eft = 1;
first = false;
}
at->fan_pwm_data = (fan ? fan : AVALON_DEFAULT_FAN_MAX_PWM);
at->timeout_data = timeout;
at->asic_num = asic_num;
at->miner_num = miner_num;
at->nonce_elf = nonce_elf;
at->gate_miner_elf = 1;
at->asic_pll = 1;
if (unlikely(gate_miner)) {
at-> gate_miner = 1;
at->asic_pll = 0;
}
buf = (uint8_t *)at;
buf[5] = 0x00;
buf[8] = 0x74;
buf[9] = 0x01;
buf[10] = 0x00;
buf[11] = 0x00;
if (frequency == 256) {
buf[6] = 0x03;
buf[7] = 0x08;
} else if (frequency == 270) {
buf[6] = 0x73;
buf[7] = 0x08;
} else if (frequency == 282) {
buf[6] = 0xd3;
buf[7] = 0x08;
} else if (frequency == 300) {
buf[6] = 0x63;
buf[7] = 0x09;
}
return 0;
}
static inline void avalon_create_task(struct avalon_task *at,
struct work *work)
{
memcpy(at->midstate, work->midstate, 32);
memcpy(at->data, work->data + 64, 12);
}
static int avalon_send_task(int fd, const struct avalon_task *at,
struct cgpu_info *avalon)
{
size_t ret;
int full;
struct timespec p;
uint8_t buf[AVALON_WRITE_SIZE + 4 * AVALON_DEFAULT_ASIC_NUM];
size_t nr_len;
struct avalon_info *info;
uint64_t delay = 32000000; /* Default 32ms for B19200 */
uint32_t nonce_range;
int i;
if (at->nonce_elf)
nr_len = AVALON_WRITE_SIZE + 4 * at->asic_num;
else
nr_len = AVALON_WRITE_SIZE;
memcpy(buf, at, AVALON_WRITE_SIZE);
if (at->nonce_elf) {
nonce_range = (uint32_t)0xffffffff / at->asic_num;
for (i = 0; i < at->asic_num; i++) {
buf[AVALON_WRITE_SIZE + (i * 4) + 3] =
(i * nonce_range & 0xff000000) >> 24;
buf[AVALON_WRITE_SIZE + (i * 4) + 2] =
(i * nonce_range & 0x00ff0000) >> 16;
buf[AVALON_WRITE_SIZE + (i * 4) + 1] =
(i * nonce_range & 0x0000ff00) >> 8;
buf[AVALON_WRITE_SIZE + (i * 4) + 0] =
(i * nonce_range & 0x000000ff) >> 0;
}
}
#if defined(__BIG_ENDIAN__) || defined(MIPSEB)
uint8_t tt = 0;
tt = (buf[0] & 0x0f) << 4;
tt |= ((buf[0] & 0x10) ? (1 << 3) : 0);
tt |= ((buf[0] & 0x20) ? (1 << 2) : 0);
tt |= ((buf[0] & 0x40) ? (1 << 1) : 0);
tt |= ((buf[0] & 0x80) ? (1 << 0) : 0);
buf[0] = tt;
tt = (buf[4] & 0x0f) << 4;
tt |= ((buf[4] & 0x10) ? (1 << 3) : 0);
tt |= ((buf[4] & 0x20) ? (1 << 2) : 0);
tt |= ((buf[4] & 0x40) ? (1 << 1) : 0);
tt |= ((buf[4] & 0x80) ? (1 << 0) : 0);
buf[4] = tt;
#endif
if (likely(avalon)) {
info = avalon_infos[avalon->device_id];
delay = nr_len * 10 * 1000000000ULL;
delay = delay / info->baud;
}
if (at->reset)
nr_len = 1;
if (opt_debug) {
applog(LOG_DEBUG, "Avalon: Sent(%d):", nr_len);
hexdump((uint8_t *)buf, nr_len);
}
ret = write(fd, buf, nr_len);
if (unlikely(ret != nr_len))
return AVA_SEND_ERROR;
p.tv_sec = 0;
p.tv_nsec = (long)delay + 4000000;
nanosleep(&p, NULL);
applog(LOG_DEBUG, "Avalon: Sent: Buffer delay: %ld", p.tv_nsec);
full = avalon_buffer_full(fd);
applog(LOG_DEBUG, "Avalon: Sent: Buffer full: %s",
((full == AVA_BUFFER_FULL) ? "Yes" : "No"));
if (unlikely(full == AVA_BUFFER_FULL))
return AVA_SEND_BUFFER_FULL;
return AVA_SEND_BUFFER_EMPTY;
}
static inline int avalon_gets(int fd, uint8_t *buf, struct thr_info *thr,
struct timeval *tv_finish)
{
int read_amount = AVALON_READ_SIZE;
bool first = true;
ssize_t ret = 0;
while (true) {
struct timeval timeout;
fd_set rd;
if (unlikely(thr->work_restart)) {
applog(LOG_DEBUG, "Avalon: Work restart");
return AVA_GETS_RESTART;
}
timeout.tv_sec = 0;
timeout.tv_usec = 100000;
FD_ZERO(&rd);
FD_SET((SOCKETTYPE)fd, &rd);
ret = select(fd + 1, &rd, NULL, NULL, &timeout);
if (unlikely(ret < 0)) {
applog(LOG_ERR, "Avalon: Error %d on select in avalon_gets", errno);
return AVA_GETS_ERROR;
}
if (ret) {
ret = read(fd, buf, read_amount);
if (unlikely(ret < 0)) {
applog(LOG_ERR, "Avalon: Error %d on read in avalon_gets", errno);
return AVA_GETS_ERROR;
}
if (likely(first)) {
cgtime(tv_finish);
first = false;
}
if (likely(ret >= read_amount))
return AVA_GETS_OK;
buf += ret;
read_amount -= ret;
continue;
}
if (unlikely(thr->work_restart)) {
applog(LOG_DEBUG, "Avalon: Work restart");
return AVA_GETS_RESTART;
}
return AVA_GETS_TIMEOUT;
}
}
static int avalon_get_result(int fd, struct avalon_result *ar,
struct thr_info *thr, struct timeval *tv_finish)
{
uint8_t result[AVALON_READ_SIZE];
int ret;
memset(result, 0, AVALON_READ_SIZE);
ret = avalon_gets(fd, result, thr, tv_finish);
if (ret == AVA_GETS_OK) {
if (opt_debug) {
applog(LOG_DEBUG, "Avalon: get:");
hexdump((uint8_t *)result, AVALON_READ_SIZE);
}
memcpy((uint8_t *)ar, result, AVALON_READ_SIZE);
}
return ret;
}
static bool avalon_decode_nonce(struct thr_info *thr, struct avalon_result *ar,
uint32_t *nonce)
{
struct cgpu_info *avalon;
struct avalon_info *info;
struct work *work;
avalon = thr->cgpu;
if (unlikely(!avalon->works))
return false;
work = find_queued_work_bymidstate(avalon, (char *)ar->midstate, 32,
(char *)ar->data, 64, 12);
if (!work)
return false;
info = avalon_infos[avalon->device_id];
info->matching_work[work->subid]++;
*nonce = htole32(ar->nonce);
submit_nonce(thr, work, *nonce);
return true;
}
static void avalon_get_reset(int fd, struct avalon_result *ar)
{
int read_amount = AVALON_READ_SIZE;
uint8_t result[AVALON_READ_SIZE];
struct timeval timeout = {1, 0};
ssize_t ret = 0, offset = 0;
fd_set rd;
memset(result, 0, AVALON_READ_SIZE);
memset(ar, 0, AVALON_READ_SIZE);
FD_ZERO(&rd);
FD_SET((SOCKETTYPE)fd, &rd);
ret = select(fd + 1, &rd, NULL, NULL, &timeout);
if (unlikely(ret < 0)) {
applog(LOG_WARNING, "Avalon: Error %d on select in avalon_get_reset", errno);
return;
}
if (!ret) {
applog(LOG_WARNING, "Avalon: Timeout on select in avalon_get_reset");
return;
}
do {
ret = read(fd, result + offset, read_amount);
if (unlikely(ret < 0)) {
applog(LOG_WARNING, "Avalon: Error %d on read in avalon_get_reset", errno);
return;
}
read_amount -= ret;
offset += ret;
} while (read_amount > 0);
if (opt_debug) {
applog(LOG_DEBUG, "Avalon: get:");
hexdump((uint8_t *)result, AVALON_READ_SIZE);
}
memcpy((uint8_t *)ar, result, AVALON_READ_SIZE);
}
static int avalon_reset(int fd, struct avalon_result *ar)
{
struct avalon_task at;
uint8_t *buf;
int ret, i = 0;
struct timespec p;
avalon_init_task(&at, 1, 0,
AVALON_DEFAULT_FAN_MAX_PWM,
AVALON_DEFAULT_TIMEOUT,
AVALON_DEFAULT_ASIC_NUM,
AVALON_DEFAULT_MINER_NUM,
0, 0,
AVALON_DEFAULT_FREQUENCY);
ret = avalon_send_task(fd, &at, NULL);
if (ret == AVA_SEND_ERROR)
return 1;
avalon_get_reset(fd, ar);
buf = (uint8_t *)ar;
/* Sometimes there is one extra 0 byte for some reason in the buffer,
* so work around it. */
if (buf[0] == 0)
buf = (uint8_t *)(ar + 1);
if (buf[0] == 0xAA && buf[1] == 0x55 &&
buf[2] == 0xAA && buf[3] == 0x55) {
for (i = 4; i < 11; i++)
if (buf[i] != 0)
break;
}
p.tv_sec = 0;
p.tv_nsec = AVALON_RESET_PITCH;
nanosleep(&p, NULL);
if (i != 11) {
applog(LOG_ERR, "Avalon: Reset failed! not an Avalon?"
" (%d: %02x %02x %02x %02x)",
i, buf[0], buf[1], buf[2], buf[3]);
/* FIXME: return 1; */
} else
applog(LOG_WARNING, "Avalon: Reset succeeded");
return 0;
}
static void avalon_idle(struct cgpu_info *avalon)
{
int i, ret;
struct avalon_task at;
int fd = avalon->device_fd;
struct avalon_info *info = avalon_infos[avalon->device_id];
int avalon_get_work_count = info->miner_count;
i = 0;
while (true) {
avalon_init_task(&at, 0, 0, info->fan_pwm,
info->timeout, info->asic_count,
info->miner_count, 1, 1, info->frequency);
ret = avalon_send_task(fd, &at, avalon);
if (unlikely(ret == AVA_SEND_ERROR ||
(ret == AVA_SEND_BUFFER_EMPTY &&
(i + 1 == avalon_get_work_count * 2)))) {
applog(LOG_ERR, "AVA%i: Comms error", avalon->device_id);
return;
}
if (i + 1 == avalon_get_work_count * 2)
break;
if (ret == AVA_SEND_BUFFER_FULL)
break;
i++;
}
applog(LOG_ERR, "Avalon: Goto idle mode");
}
static void get_options(int this_option_offset, int *baud, int *miner_count,
int *asic_count, int *timeout, int *frequency)
{
char err_buf[BUFSIZ+1];
char buf[BUFSIZ+1];
char *ptr, *comma, *colon, *colon2, *colon3, *colon4;
size_t max;
int i, tmp;
if (opt_avalon_options == NULL)
buf[0] = '\0';
else {
ptr = opt_avalon_options;
for (i = 0; i < this_option_offset; i++) {
comma = strchr(ptr, ',');
if (comma == NULL)
break;
ptr = comma + 1;
}
comma = strchr(ptr, ',');
if (comma == NULL)
max = strlen(ptr);
else
max = comma - ptr;
if (max > BUFSIZ)
max = BUFSIZ;
strncpy(buf, ptr, max);
buf[max] = '\0';
}
*baud = AVALON_IO_SPEED;
*miner_count = AVALON_DEFAULT_MINER_NUM - 8;
*asic_count = AVALON_DEFAULT_ASIC_NUM;
*timeout = AVALON_DEFAULT_TIMEOUT;
*frequency = AVALON_DEFAULT_FREQUENCY;
if (!(*buf))
return;
colon = strchr(buf, ':');
if (colon)
*(colon++) = '\0';
tmp = atoi(buf);
switch (tmp) {
case 115200:
*baud = 115200;
break;
case 57600:
*baud = 57600;
break;
case 38400:
*baud = 38400;
break;
case 19200:
*baud = 19200;
break;
default:
sprintf(err_buf,
"Invalid avalon-options for baud (%s) "
"must be 115200, 57600, 38400 or 19200", buf);
quit(1, err_buf);
}
if (colon && *colon) {
colon2 = strchr(colon, ':');
if (colon2)
*(colon2++) = '\0';
if (*colon) {
tmp = atoi(colon);
if (tmp > 0 && tmp <= AVALON_DEFAULT_MINER_NUM) {
*miner_count = tmp;
} else {
sprintf(err_buf,
"Invalid avalon-options for "
"miner_count (%s) must be 1 ~ %d",
colon, AVALON_DEFAULT_MINER_NUM);
quit(1, err_buf);
}
}
if (colon2 && *colon2) {
colon3 = strchr(colon2, ':');
if (colon3)
*(colon3++) = '\0';
tmp = atoi(colon2);
if (tmp > 0 && tmp <= AVALON_DEFAULT_ASIC_NUM)
*asic_count = tmp;
else {
sprintf(err_buf,
"Invalid avalon-options for "
"asic_count (%s) must be 1 ~ %d",
colon2, AVALON_DEFAULT_ASIC_NUM);
quit(1, err_buf);
}
if (colon3 && *colon3) {
colon4 = strchr(colon3, ':');
if (colon4)
*(colon4++) = '\0';
tmp = atoi(colon3);
if (tmp > 0 && tmp <= 0xff)
*timeout = tmp;
else {
sprintf(err_buf,
"Invalid avalon-options for "
"timeout (%s) must be 1 ~ %d",
colon3, 0xff);
quit(1, err_buf);
}
if (colon4 && *colon4) {
tmp = atoi(colon4);
switch (tmp) {
case 256:
case 270:
case 282:
case 300:
*frequency = tmp;
break;
default:
sprintf(err_buf,
"Invalid avalon-options for "
"frequency must be 256/270/282/300");
quit(1, err_buf);
}
}
}
}
}
}
static bool avalon_detect_one(const char *devpath)
{
struct avalon_info *info;
struct avalon_result ar;
int fd, ret;
int baud, miner_count, asic_count, timeout, frequency = 0;
struct cgpu_info *avalon;
int this_option_offset = ++option_offset;
get_options(this_option_offset, &baud, &miner_count, &asic_count,
&timeout, &frequency);
applog(LOG_DEBUG, "Avalon Detect: Attempting to open %s "
"(baud=%d miner_count=%d asic_count=%d timeout=%d frequency=%d)",
devpath, baud, miner_count, asic_count, timeout, frequency);
fd = avalon_open2(devpath, baud, true);
if (unlikely(fd == -1)) {
applog(LOG_ERR, "Avalon Detect: Failed to open %s", devpath);
return false;
}
/* We have a real Avalon! */
avalon = calloc(1, sizeof(struct cgpu_info));
avalon->drv = &avalon_drv;
avalon->device_path = strdup(devpath);
avalon->device_fd = fd;
avalon->threads = AVALON_MINER_THREADS;
add_cgpu(avalon);
ret = avalon_reset(fd, &ar);
if (ret) {
; /* FIXME: I think IT IS avalon and wait on reset;
* avalon_close(fd);
* return false; */
}
avalon_infos = realloc(avalon_infos,
sizeof(struct avalon_info *) *
(total_devices + 1));
applog(LOG_INFO, "Avalon Detect: Found at %s, mark as %d",
devpath, avalon->device_id);
avalon_infos[avalon->device_id] = (struct avalon_info *)
malloc(sizeof(struct avalon_info));
if (unlikely(!(avalon_infos[avalon->device_id])))
quit(1, "Failed to malloc avalon_infos");
info = avalon_infos[avalon->device_id];
memset(info, 0, sizeof(struct avalon_info));
info->baud = baud;
info->miner_count = miner_count;
info->asic_count = asic_count;
info->timeout = timeout;
info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM;
info->temp_max = 0;
/* This is for check the temp/fan every 3~4s */
info->temp_history_count = (4 / (float)((float)info->timeout * ((float)1.67/0x32))) + 1;
if (info->temp_history_count <= 0)
info->temp_history_count = 1;
info->temp_history_index = 0;
info->temp_sum = 0;
info->temp_old = 0;
info->frequency = frequency;
/* Set asic to idle mode after detect */
avalon_idle(avalon);
avalon->device_fd = -1;
avalon_close(fd);
return true;
}
static inline void avalon_detect()
{
serial_detect(&avalon_drv, avalon_detect_one);
}
static void __avalon_init(struct cgpu_info *avalon)
{
applog(LOG_INFO, "Avalon: Opened on %s", avalon->device_path);
}
static void avalon_init(struct cgpu_info *avalon)
{
struct avalon_result ar;
int fd, ret;
avalon->device_fd = -1;
fd = avalon_open(avalon->device_path,
avalon_infos[avalon->device_id]->baud);
if (unlikely(fd == -1)) {
applog(LOG_ERR, "Avalon: Failed to open on %s",
avalon->device_path);
return;
}
ret = avalon_reset(fd, &ar);
if (ret) {
avalon_close(fd);
return;
}
avalon->device_fd = fd;
__avalon_init(avalon);
}
static bool avalon_prepare(struct thr_info *thr)
{
struct cgpu_info *avalon = thr->cgpu;
struct avalon_info *info = avalon_infos[avalon->device_id];
struct timeval now;
free(avalon->works);
avalon->works = calloc(info->miner_count * sizeof(struct work *),
AVALON_ARRAY_SIZE);
if (!avalon->works)
quit(1, "Failed to calloc avalon works in avalon_prepare");
if (avalon->device_fd == -1)
avalon_init(avalon);
else
__avalon_init(avalon);
cgtime(&now);
get_datestamp(avalon->init, &now);
return true;
}
static void avalon_free_work(struct thr_info *thr)
{
struct cgpu_info *avalon;
struct avalon_info *info;
struct work **works;
int i;
avalon = thr->cgpu;
avalon->queued = 0;
if (unlikely(!avalon->works))
return;
works = avalon->works;
info = avalon_infos[avalon->device_id];
for (i = 0; i < info->miner_count * 4; i++) {
if (works[i]) {
work_completed(avalon, works[i]);
works[i] = NULL;
}
}
}
static void do_avalon_close(struct thr_info *thr)
{
struct avalon_result ar;
struct cgpu_info *avalon = thr->cgpu;
struct avalon_info *info = avalon_infos[avalon->device_id];
avalon_free_work(thr);
sleep(1);
avalon_reset(avalon->device_fd, &ar);
avalon_idle(avalon);
avalon_close(avalon->device_fd);
avalon->device_fd = -1;
info->no_matching_work = 0;
}
static inline void record_temp_fan(struct avalon_info *info, struct avalon_result *ar, float *temp_avg)
{
info->fan0 = ar->fan0 * AVALON_FAN_FACTOR;
info->fan1 = ar->fan1 * AVALON_FAN_FACTOR;
info->fan2 = ar->fan2 * AVALON_FAN_FACTOR;
info->temp0 = ar->temp0;
info->temp1 = ar->temp1;
info->temp2 = ar->temp2;
if (ar->temp0 & 0x80) {
ar->temp0 &= 0x7f;
info->temp0 = 0 - ((~ar->temp0 & 0x7f) + 1);
}
if (ar->temp1 & 0x80) {
ar->temp1 &= 0x7f;
info->temp1 = 0 - ((~ar->temp1 & 0x7f) + 1);
}
if (ar->temp2 & 0x80) {
ar->temp2 &= 0x7f;
info->temp2 = 0 - ((~ar->temp2 & 0x7f) + 1);
}
*temp_avg = info->temp2 > info->temp1 ? info->temp2 : info->temp1;
if (info->temp0 > info->temp_max)
info->temp_max = info->temp0;
if (info->temp1 > info->temp_max)
info->temp_max = info->temp1;
if (info->temp2 > info->temp_max)
info->temp_max = info->temp2;
}
static inline void adjust_fan(struct avalon_info *info)
{
int temp_new;
temp_new = info->temp_sum / info->temp_history_count;
if (temp_new < 35) {
info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM;
info->temp_old = temp_new;
} else if (temp_new > 55) {
info->fan_pwm = AVALON_DEFAULT_FAN_MAX_PWM;
info->temp_old = temp_new;
} else if (abs(temp_new - info->temp_old) >= 2) {
info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM + (temp_new - 35) * 6.4;
info->temp_old = temp_new;
}
}
/* We use a replacement algorithm to only remove references to work done from
* the buffer when we need the extra space for new work. */
static bool avalon_fill(struct cgpu_info *avalon)
{
int subid, slot, mc = avalon_infos[avalon->device_id]->miner_count;
struct work *work;
if (avalon->queued >= mc)
return true;
work = get_queued(avalon);
if (unlikely(!work))
return false;
subid = avalon->queued++;
work->subid = subid;
slot = avalon->work_array * mc + subid;
if (likely(avalon->works[slot]))
work_completed(avalon, avalon->works[slot]);
avalon->works[slot] = work;
if (avalon->queued >= mc)
return true;
return false;
}
static void avalon_rotate_array(struct cgpu_info *avalon)
{
avalon->queued = 0;
if (++avalon->work_array >= AVALON_ARRAY_SIZE)
avalon->work_array = 0;
}
static int64_t avalon_scanhash(struct thr_info *thr)
{
struct cgpu_info *avalon;
struct work **works;
int fd, ret = AVA_GETS_OK, full;
struct avalon_info *info;
struct avalon_task at;
struct avalon_result ar;
int i;
int avalon_get_work_count;
int start_count, end_count;
struct timeval tv_start, tv_finish, elapsed;
uint32_t nonce;
int64_t hash_count;
static int first_try = 0;
int result_wrong;
avalon = thr->cgpu;
works = avalon->works;
info = avalon_infos[avalon->device_id];
avalon_get_work_count = info->miner_count;
if (unlikely(avalon->device_fd == -1)) {
if (!avalon_prepare(thr)) {
applog(LOG_ERR, "AVA%i: Comms error(open)",
avalon->device_id);
dev_error(avalon, REASON_DEV_COMMS_ERROR);
/* fail the device if the reopen attempt fails */
return -1;
}
}
fd = avalon->device_fd;
#ifndef WIN32
tcflush(fd, TCOFLUSH);
#endif
start_count = avalon->work_array * avalon_get_work_count;
end_count = start_count + avalon_get_work_count;
i = start_count;
while (true) {
avalon_init_task(&at, 0, 0, info->fan_pwm,
info->timeout, info->asic_count,
info->miner_count, 1, 0, info->frequency);
avalon_create_task(&at, works[i]);
ret = avalon_send_task(fd, &at, avalon);
if (unlikely(ret == AVA_SEND_ERROR ||
(ret == AVA_SEND_BUFFER_EMPTY &&
(i + 1 == end_count) &&
first_try))) {
do_avalon_close(thr);
applog(LOG_ERR, "AVA%i: Comms error(buffer)",
avalon->device_id);
dev_error(avalon, REASON_DEV_COMMS_ERROR);
first_try = 0;
sleep(1);
avalon_init(avalon);
return 0; /* This should never happen */
}
if (ret == AVA_SEND_BUFFER_EMPTY && (i + 1 == end_count)) {
first_try = 1;
avalon_rotate_array(avalon);
return 0xffffffff;
}
works[i]->blk.nonce = 0xffffffff;
if (ret == AVA_SEND_BUFFER_FULL)
break;
i++;
}
if (unlikely(first_try))
first_try = 0;
elapsed.tv_sec = elapsed.tv_usec = 0;
cgtime(&tv_start);
result_wrong = 0;
hash_count = 0;
while (true) {
full = avalon_buffer_full(fd);
applog(LOG_DEBUG, "Avalon: Buffer full: %s",
((full == AVA_BUFFER_FULL) ? "Yes" : "No"));
if (unlikely(full == AVA_BUFFER_EMPTY))
break;
ret = avalon_get_result(fd, &ar, thr, &tv_finish);
if (unlikely(ret == AVA_GETS_ERROR)) {
do_avalon_close(thr);
applog(LOG_ERR,
"AVA%i: Comms error(read)", avalon->device_id);
dev_error(avalon, REASON_DEV_COMMS_ERROR);
return 0;
}
if (unlikely(ret == AVA_GETS_RESTART))
break;
if (unlikely(ret == AVA_GETS_TIMEOUT)) {
timersub(&tv_finish, &tv_start, &elapsed);
applog(LOG_DEBUG, "Avalon: no nonce in (%ld.%06lds)",
elapsed.tv_sec, elapsed.tv_usec);
continue;
}
if (!avalon_decode_nonce(thr, &ar, &nonce)) {
info->no_matching_work++;
result_wrong++;
if (unlikely(result_wrong >= avalon_get_work_count))
break;
if (opt_debug) {
timersub(&tv_finish, &tv_start, &elapsed);
applog(LOG_DEBUG,"Avalon: no matching work: %d"
" (%ld.%06lds)", info->no_matching_work,
elapsed.tv_sec, elapsed.tv_usec);
}
continue;
}
hash_count += 0xffffffff;
if (opt_debug) {
timersub(&tv_finish, &tv_start, &elapsed);
applog(LOG_DEBUG,
"Avalon: nonce = 0x%08x = 0x%08llx hashes "
"(%ld.%06lds)", nonce, hash_count,
elapsed.tv_sec, elapsed.tv_usec);
}
}
if (hash_count && avalon->results < AVALON_ARRAY_SIZE)
avalon->results++;
if (unlikely((result_wrong >= avalon_get_work_count) ||
(!hash_count && ret != AVA_GETS_RESTART && --avalon->results < 0))) {
/* Look for all invalid results, or consecutive failure
* to generate any results suggesting the FPGA
* controller has screwed up. */
do_avalon_close(thr);
applog(LOG_ERR,
"AVA%i: FPGA controller messed up, %d wrong results",
avalon->device_id, result_wrong);
dev_error(avalon, REASON_DEV_COMMS_ERROR);
sleep(1);
avalon_init(avalon);
return 0;
}
avalon_rotate_array(avalon);
if (hash_count) {
record_temp_fan(info, &ar, &(avalon->temp));
applog(LOG_INFO,
"Avalon: Fan1: %d/m, Fan2: %d/m, Fan3: %d/m\t"
"Temp1: %dC, Temp2: %dC, Temp3: %dC, TempMAX: %dC",
info->fan0, info->fan1, info->fan2,
info->temp0, info->temp1, info->temp2, info->temp_max);
info->temp_history_index++;
info->temp_sum += avalon->temp;
applog(LOG_DEBUG, "Avalon: temp_index: %d, temp_count: %d, temp_old: %d",
info->temp_history_index, info->temp_history_count, info->temp_old);
if (info->temp_history_index == info->temp_history_count) {
adjust_fan(info);
info->temp_history_index = 0;
info->temp_sum = 0;
}
}
/* This hashmeter is just a utility counter based on returned shares */
return hash_count;
}
static struct api_data *avalon_api_stats(struct cgpu_info *cgpu)
{
struct api_data *root = NULL;
struct avalon_info *info = avalon_infos[cgpu->device_id];
root = api_add_int(root, "baud", &(info->baud), false);
root = api_add_int(root, "miner_count", &(info->miner_count),false);
root = api_add_int(root, "asic_count", &(info->asic_count), false);
root = api_add_int(root, "timeout", &(info->timeout), false);
root = api_add_int(root, "frequency", &(info->frequency), false);
root = api_add_int(root, "fan1", &(info->fan0), false);
root = api_add_int(root, "fan2", &(info->fan1), false);
root = api_add_int(root, "fan3", &(info->fan2), false);
root = api_add_int(root, "temp1", &(info->temp0), false);
root = api_add_int(root, "temp2", &(info->temp1), false);
root = api_add_int(root, "temp3", &(info->temp2), false);
root = api_add_int(root, "temp_max", &(info->temp_max), false);
root = api_add_int(root, "no_matching_work", &(info->no_matching_work), false);
root = api_add_int(root, "matching_work_count1", &(info->matching_work[0]), false);
root = api_add_int(root, "matching_work_count2", &(info->matching_work[1]), false);
root = api_add_int(root, "matching_work_count3", &(info->matching_work[2]), false);
root = api_add_int(root, "matching_work_count4", &(info->matching_work[3]), false);
root = api_add_int(root, "matching_work_count5", &(info->matching_work[4]), false);
root = api_add_int(root, "matching_work_count6", &(info->matching_work[5]), false);
root = api_add_int(root, "matching_work_count7", &(info->matching_work[6]), false);
root = api_add_int(root, "matching_work_count8", &(info->matching_work[7]), false);
root = api_add_int(root, "matching_work_count9", &(info->matching_work[8]), false);
root = api_add_int(root, "matching_work_count10", &(info->matching_work[9]), false);
root = api_add_int(root, "matching_work_count11", &(info->matching_work[10]), false);
root = api_add_int(root, "matching_work_count12", &(info->matching_work[11]), false);
root = api_add_int(root, "matching_work_count13", &(info->matching_work[12]), false);
root = api_add_int(root, "matching_work_count14", &(info->matching_work[13]), false);
root = api_add_int(root, "matching_work_count15", &(info->matching_work[14]), false);
root = api_add_int(root, "matching_work_count16", &(info->matching_work[15]), false);
root = api_add_int(root, "matching_work_count17", &(info->matching_work[16]), false);
root = api_add_int(root, "matching_work_count18", &(info->matching_work[17]), false);
root = api_add_int(root, "matching_work_count19", &(info->matching_work[18]), false);
root = api_add_int(root, "matching_work_count20", &(info->matching_work[19]), false);
root = api_add_int(root, "matching_work_count21", &(info->matching_work[20]), false);
root = api_add_int(root, "matching_work_count22", &(info->matching_work[21]), false);
root = api_add_int(root, "matching_work_count23", &(info->matching_work[22]), false);
root = api_add_int(root, "matching_work_count24", &(info->matching_work[23]), false);
return root;
}
static void avalon_shutdown(struct thr_info *thr)
{
do_avalon_close(thr);
}
struct device_drv avalon_drv = {
.drv_id = DRIVER_AVALON,
.dname = "avalon",
.name = "AVA",
.drv_detect = avalon_detect,
.thread_prepare = avalon_prepare,
.hash_work = hash_queued_work,
.queue_full = avalon_fill,
.scanwork = avalon_scanhash,
.get_api_stats = avalon_api_stats,
.reinit_device = avalon_init,
.thread_shutdown = avalon_shutdown,
};