1
0
mirror of https://github.com/GOSTSec/sgminer synced 2025-01-09 22:38:01 +00:00
sgminer/cpu-miner.c

1578 lines
38 KiB
C

/*
* Copyright 2011 Con Kolivas
* Copyright 2010 Jeff Garzik
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "cpuminer-config.h"
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/time.h>
#include <time.h>
#include <math.h>
#ifndef WIN32
#include <sys/resource.h>
#endif
#include <getopt.h>
#include <jansson.h>
#include <curl/curl.h>
#include "compat.h"
#include "miner.h"
#include "findnonce.h"
#include "ocl.h"
#define PROGRAM_NAME "minerd"
#define DEF_RPC_URL "http://127.0.0.1:8332/"
#define DEF_RPC_USERNAME "rpcuser"
#define DEF_RPC_PASSWORD "rpcpass"
#define DEF_RPC_USERPASS DEF_RPC_USERNAME ":" DEF_RPC_PASSWORD
#ifdef __linux /* Linux specific policy and affinity management */
#include <sched.h>
static inline void drop_policy(void)
{
struct sched_param param;
#ifdef SCHED_IDLE
if (unlikely(sched_setscheduler(0, SCHED_IDLE, &param) == -1))
#endif
#ifdef SCHED_BATCH
sched_setscheduler(0, SCHED_BATCH, &param);
#endif
}
static inline void affine_to_cpu(int id, int cpu)
{
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(cpu, &set);
sched_setaffinity(0, sizeof(&set), &set);
applog(LOG_INFO, "Binding cpu mining thread %d to cpu %d", id, cpu);
}
#else
static inline void drop_policy(void)
{
}
static inline void affine_to_cpu(int id, int cpu)
{
}
#endif
enum workio_commands {
WC_GET_WORK,
WC_SUBMIT_WORK,
WC_DIE,
};
struct workio_cmd {
enum workio_commands cmd;
struct thr_info *thr;
union {
struct work *work;
} u;
};
enum sha256_algos {
ALGO_C, /* plain C */
ALGO_4WAY, /* parallel SSE2 */
ALGO_VIA, /* VIA padlock */
ALGO_CRYPTOPP, /* Crypto++ (C) */
ALGO_CRYPTOPP_ASM32, /* Crypto++ 32-bit assembly */
ALGO_SSE2_64, /* SSE2 for x86_64 */
};
static const char *algo_names[] = {
[ALGO_C] = "c",
#ifdef WANT_SSE2_4WAY
[ALGO_4WAY] = "4way",
#endif
#ifdef WANT_VIA_PADLOCK
[ALGO_VIA] = "via",
#endif
[ALGO_CRYPTOPP] = "cryptopp",
#ifdef WANT_CRYPTOPP_ASM32
[ALGO_CRYPTOPP_ASM32] = "cryptopp_asm32",
#endif
#ifdef WANT_X8664_SSE2
[ALGO_SSE2_64] = "sse2_64",
#endif
};
bool opt_debug = false;
bool opt_protocol = false;
bool opt_ndevs = false;
bool want_longpoll = true;
bool have_longpoll = false;
bool use_syslog = false;
static bool opt_quiet = false;
static int opt_retries = 10;
static int opt_fail_pause = 30;
static int opt_log_interval = 5;
int opt_vectors;
int opt_worksize;
int opt_scantime = 60;
static json_t *opt_config;
static const bool opt_time = true;
#ifdef WANT_X8664_SSE2
static enum sha256_algos opt_algo = ALGO_SSE2_64;
#else
static enum sha256_algos opt_algo = ALGO_C;
#endif
static int nDevs;
static int opt_g_threads = 2;
static int gpu_threads;
static int opt_n_threads = 1;
static int num_processors;
static int scan_intensity = 4;
static char *rpc_url;
static char *rpc_userpass;
static char *rpc_user, *rpc_pass;
struct thr_info *thr_info;
static int work_thr_id;
int longpoll_thr_id;
struct work_restart *work_restart = NULL;
pthread_mutex_t time_lock;
static pthread_mutex_t hash_lock;
static pthread_mutex_t get_lock;
static double total_mhashes_done;
static struct timeval total_tv_start, total_tv_end;
static int accepted, rejected;
int hw_errors;
struct option_help {
const char *name;
const char *helptext;
};
static struct option_help options_help[] = {
{ "help",
"(-h) Display this help text" },
{ "algo XXX",
"(-a XXX) Specify sha256 implementation:\n"
"\tc\t\tLinux kernel sha256, implemented in C (default)"
#ifdef WANT_SSE2_4WAY
"\n\t4way\t\ttcatm's 4-way SSE2 implementation"
#endif
#ifdef WANT_VIA_PADLOCK
"\n\tvia\t\tVIA padlock implementation"
#endif
"\n\tcryptopp\tCrypto++ C/C++ implementation"
#ifdef WANT_CRYPTOPP_ASM32
"\n\tcryptopp_asm32\tCrypto++ 32-bit assembler implementation"
#endif
#ifdef WANT_X8664_SSE2
"\n\tsse2_64\t\tSSE2 implementation for x86_64 machines"
#endif
},
{ "config FILE",
"(-c FILE) JSON-format configuration file (default: none)\n"
"See example-cfg.json for an example configuration." },
{ "cpu-threads N",
"(-t N) Number of miner CPU threads (default: number of processors or 0 if GPU mining)" },
{ "debug",
"(-D) Enable debug output (default: off)" },
{ "gpu-threads N",
"(-g N) Number of threads per-GPU (0 - 10, default: 2)" },
{ "intensity",
"(-I) Intensity of scanning (0 - 14, default 4)" },
{ "log",
"(-l) Interval in seconds between log output (default: 5)" },
{ "ndevs",
"(-n) Display number of detected GPUs" },
{ "no-longpoll",
"Disable X-Long-Polling support (default: enabled)" },
{ "pass PASSWORD",
"(-p PASSWORD) Password for bitcoin JSON-RPC server "
"(default: " DEF_RPC_PASSWORD ")" },
{ "protocol-dump",
"(-P) Verbose dump of protocol-level activities (default: off)" },
{ "quiet",
"(-q) Disable per-thread hashmeter output (default: off)" },
{ "retries N",
"(-r N) Number of times to retry, if JSON-RPC call fails\n"
"\t(default: 10; use -1 for \"never\")" },
{ "retry-pause N",
"(-R N) Number of seconds to pause, between retries\n"
"\t(default: 30)" },
{ "scantime N",
"(-s N) Upper bound on time spent scanning current work,\n"
"\tin seconds. (default: 60)" },
#ifdef HAVE_SYSLOG_H
{ "syslog",
"Use system log for output messages (default: standard error)" },
#endif
{ "url URL",
"URL for bitcoin JSON-RPC server "
"(default: " DEF_RPC_URL ")" },
{ "userpass USERNAME:PASSWORD",
"Username:Password pair for bitcoin JSON-RPC server "
"(default: " DEF_RPC_USERPASS ")" },
{ "user USERNAME",
"(-u USERNAME) Username for bitcoin JSON-RPC server "
"(default: " DEF_RPC_USERNAME ")" },
{ "vectors N",
"(-v N) Override detected optimal vector width (default: detected, 1,2 or 4)" },
{ "worksize N",
"(-w N) Override detected optimal worksize (default: detected)" },
};
static struct option options[] = {
{ "algo", 1, NULL, 'a' },
{ "config", 1, NULL, 'c' },
{ "cpu-threads", 1, NULL, 't' },
{ "gpu-threads", 1, NULL, 'g' },
{ "debug", 0, NULL, 'D' },
{ "help", 0, NULL, 'h' },
{ "intensity", 1, NULL, 'I' },
{ "log", 1, NULL, 'l' },
{ "ndevs", 0, NULL, 'n' },
{ "no-longpoll", 0, NULL, 1003 },
{ "pass", 1, NULL, 'p' },
{ "protocol-dump", 0, NULL, 'P' },
{ "quiet", 0, NULL, 'q' },
{ "retries", 1, NULL, 'r' },
{ "retry-pause", 1, NULL, 'R' },
{ "scantime", 1, NULL, 's' },
#ifdef HAVE_SYSLOG_H
{ "syslog", 0, NULL, 1004 },
#endif
{ "url", 1, NULL, 1001 },
{ "user", 1, NULL, 'u' },
{ "vectors", 1, NULL, 'v' },
{ "worksize", 1, NULL, 'w' },
{ "userpass", 1, NULL, 1002 },
};
static bool jobj_binary(const json_t *obj, const char *key,
void *buf, size_t buflen)
{
const char *hexstr;
json_t *tmp;
tmp = json_object_get(obj, key);
if (unlikely(!tmp)) {
applog(LOG_ERR, "JSON key '%s' not found", key);
return false;
}
hexstr = json_string_value(tmp);
if (unlikely(!hexstr)) {
applog(LOG_ERR, "JSON key '%s' is not a string", key);
return false;
}
if (!hex2bin(buf, hexstr, buflen))
return false;
return true;
}
static bool work_decode(const json_t *val, struct work *work)
{
if (unlikely(!jobj_binary(val, "midstate",
work->midstate, sizeof(work->midstate)))) {
applog(LOG_ERR, "JSON inval midstate");
goto err_out;
}
if (unlikely(!jobj_binary(val, "data", work->data, sizeof(work->data)))) {
applog(LOG_ERR, "JSON inval data");
goto err_out;
}
if (unlikely(!jobj_binary(val, "hash1", work->hash1, sizeof(work->hash1)))) {
applog(LOG_ERR, "JSON inval hash1");
goto err_out;
}
if (unlikely(!jobj_binary(val, "target", work->target, sizeof(work->target)))) {
applog(LOG_ERR, "JSON inval target");
goto err_out;
}
memset(work->hash, 0, sizeof(work->hash));
return true;
err_out:
return false;
}
static bool submit_upstream_work(CURL *curl, const struct work *work)
{
char *hexstr = NULL;
json_t *val, *res;
char s[345];
bool rc = false;
struct cgpu_info *cgpu = thr_info[work->thr_id].cgpu;
/* build hex string */
hexstr = bin2hex(work->data, sizeof(work->data));
if (unlikely(!hexstr)) {
applog(LOG_ERR, "submit_upstream_work OOM");
goto out;
}
/* build JSON-RPC request */
sprintf(s,
"{\"method\": \"getwork\", \"params\": [ \"%s\" ], \"id\":1}\r\n",
hexstr);
if (opt_debug)
applog(LOG_DEBUG, "DBG: sending RPC call: %s", s);
/* issue JSON-RPC request */
val = json_rpc_call(curl, rpc_url, rpc_userpass, s, false, false);
if (unlikely(!val)) {
applog(LOG_ERR, "submit_upstream_work json_rpc_call failed");
goto out;
}
res = json_object_get(val, "result");
/* Theoretically threads could race when modifying accepted and
* rejected values but the chance of two submits completing at the
* same time is zero so there is no point adding extra locking */
if (json_is_true(res)) {
cgpu->accepted++;
accepted++;
if (opt_debug)
applog(LOG_DEBUG, "PROOF OF WORK RESULT: true (yay!!!)");
} else {
cgpu->rejected++;
rejected++;
if (opt_debug)
applog(LOG_DEBUG, "PROOF OF WORK RESULT: false (booooo)");
}
applog(LOG_INFO, "%sPU: %d Accepted: %d Rejected: %d HW errors: %d",
cgpu->is_gpu? "G" : "C", cgpu->cpu_gpu, cgpu->accepted, cgpu->rejected, cgpu->hw_errors);
json_decref(val);
rc = true;
out:
free(hexstr);
return rc;
}
static const char *rpc_req =
"{\"method\": \"getwork\", \"params\": [], \"id\":0}\r\n";
static bool get_upstream_work(CURL *curl, struct work *work)
{
json_t *val;
bool rc;
val = json_rpc_call(curl, rpc_url, rpc_userpass, rpc_req,
want_longpoll, false);
if (!val)
return false;
rc = work_decode(json_object_get(val, "result"), work);
json_decref(val);
return rc;
}
static void workio_cmd_free(struct workio_cmd *wc)
{
if (!wc)
return;
switch (wc->cmd) {
case WC_SUBMIT_WORK:
free(wc->u.work);
break;
default: /* do nothing */
break;
}
memset(wc, 0, sizeof(*wc)); /* poison */
free(wc);
}
static void kill_work(void)
{
struct workio_cmd *wc;
applog(LOG_INFO, "Received kill message");
wc = calloc(1, sizeof(*wc));
if (unlikely(!wc)) {
applog(LOG_ERR, "Failed to calloc wc in kill_work");
/* We're just trying to die anyway, so forget graceful */
exit (1);
}
wc->cmd = WC_DIE;
wc->thr = 0;
if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) {
applog(LOG_ERR, "Failed to tq_push work in kill_work");
exit (1);
}
}
struct io_data{
struct workio_cmd *wc;
CURL *curl;
};
static pthread_t *get_thread = NULL;
static pthread_t *submit_thread = NULL;
static void *get_work_thread(void *userdata)
{
struct io_data *io_data = (struct io_data *)userdata;
struct workio_cmd *wc = io_data->wc;
CURL *curl = io_data->curl;
struct work *ret_work;
int failures = 0;
ret_work = calloc(1, sizeof(*ret_work));
if (!ret_work) {
applog(LOG_ERR, "Failed to calloc ret_work in workio_get_work");
kill_work();
goto out;
}
/* obtain new work from bitcoin via JSON-RPC */
while (!get_upstream_work(curl, ret_work)) {
if (unlikely((opt_retries >= 0) && (++failures > opt_retries))) {
applog(LOG_ERR, "json_rpc_call failed, terminating workio thread");
free(ret_work);
kill_work();
goto out;
}
/* pause, then restart work-request loop */
applog(LOG_ERR, "json_rpc_call failed on get work, retry after %d seconds",
opt_fail_pause);
sleep(opt_fail_pause);
}
/* send work to requesting thread */
if (unlikely(!tq_push(wc->thr->q, ret_work))) {
applog(LOG_ERR, "Failed to tq_push work in workio_get_work");
kill_work();
free(ret_work);
}
out:
free(io_data);
workio_cmd_free(wc);
return NULL;
}
static bool workio_get_work(struct workio_cmd *wc, CURL *curl)
{
struct io_data *id = malloc(sizeof(struct io_data));
if (unlikely(!id)) {
applog(LOG_ERR, "Failed to malloc id in workio_get_work");
return false;
}
id->wc = wc;
id->curl = curl;
if (!get_thread) {
get_thread = malloc(sizeof(get_thread));
if (unlikely(!get_thread)) {
applog(LOG_ERR, "Failed to malloc get_thread in workio_get_work");
return false;
}
} else
pthread_join(*get_thread, NULL);
if (pthread_create(get_thread, NULL, get_work_thread, (void *)id)) {
applog(LOG_ERR, "Failed to create get_work_thread");
free(id);
return false;
}
return true;
}
static void *submit_work_thread(void *userdata)
{
struct io_data *io_data = (struct io_data *)userdata;
struct workio_cmd *wc = io_data->wc;
CURL *curl = io_data->curl;
int failures = 0;
/* submit solution to bitcoin via JSON-RPC */
while (!submit_upstream_work(curl, wc->u.work)) {
if (unlikely((opt_retries >= 0) && (++failures > opt_retries))) {
applog(LOG_ERR, "Failed %d retries ...terminating workio thread", opt_retries);
kill_work();
goto out;
}
/* pause, then restart work-request loop */
applog(LOG_ERR, "json_rpc_call failed on submit_work, retry after %d seconds",
opt_fail_pause);
sleep(opt_fail_pause);
}
out:
workio_cmd_free(wc);
free(io_data);
return NULL;
}
static bool workio_submit_work(struct workio_cmd *wc, CURL *curl)
{
struct io_data *id = malloc(sizeof(struct io_data));
if (unlikely(!id)) {
applog(LOG_ERR, "Failed to malloc id in workio_submit_work");
return false;
}
id->wc = wc;
id->curl = curl;
if (!submit_thread) {
submit_thread = malloc(sizeof(submit_thread));
if (unlikely(!submit_thread)) {
applog(LOG_ERR, "Failed to malloc submit_thread in workio_submit_work");
return false;
}
} else
pthread_join(*submit_thread, NULL);
if (pthread_create(submit_thread, NULL, submit_work_thread, (void *)id)) {
applog(LOG_ERR, "Failed to create submit_work_thread");
free(id);
return false;
}
return true;
}
static void *workio_thread(void *userdata)
{
struct thr_info *mythr = userdata;
bool ok = true;
CURL *get_curl, *submit_curl;
get_curl = curl_easy_init();
submit_curl = curl_easy_init();
if (unlikely(!get_curl || !submit_curl)) {
applog(LOG_ERR, "CURL initialization failed");
return NULL;
}
while (ok) {
struct workio_cmd *wc;
/* wait for workio_cmd sent to us, on our queue */
wc = tq_pop(mythr->q, NULL);
if (unlikely(!wc)) {
ok = false;
break;
}
/* process workio_cmd */
switch (wc->cmd) {
case WC_GET_WORK:
ok = workio_get_work(wc, get_curl);
break;
case WC_SUBMIT_WORK:
ok = workio_submit_work(wc, submit_curl);
break;
case WC_DIE:
default:
ok = false;
break;
}
}
tq_freeze(mythr->q);
curl_easy_cleanup(submit_curl);
curl_easy_cleanup(get_curl);
return NULL;
}
static void hashmeter(int thr_id, struct timeval *diff,
unsigned long hashes_done)
{
struct timeval temp_tv_end, total_diff;
double khashes, secs;
double total_secs;
double local_secs;
static double local_mhashes_done = 0;
static double rolling_local = 0;
double local_mhashes = (double)hashes_done / 1000000.0;
/* Don't bother calculating anything if we're not displaying it */
if (opt_quiet || !opt_log_interval)
return;
khashes = hashes_done / 1000.0;
secs = (double)diff->tv_sec + ((double)diff->tv_usec / 1000000.0);
if (opt_debug)
applog(LOG_DEBUG, "[thread %d: %lu hashes, %.0f khash/sec]",
thr_id, hashes_done, hashes_done / secs);
gettimeofday(&temp_tv_end, NULL);
timeval_subtract(&total_diff, &temp_tv_end, &total_tv_end);
local_secs = (double)total_diff.tv_sec + ((double)total_diff.tv_usec / 1000000.0);
if (opt_n_threads + gpu_threads > 1) {
/* Totals are updated by all threads so can race without locking */
pthread_mutex_lock(&hash_lock);
total_mhashes_done += local_mhashes;
local_mhashes_done += local_mhashes;
if (total_diff.tv_sec < opt_log_interval) {
/* Only update the total every opt_log_interval seconds */
pthread_mutex_unlock(&hash_lock);
return;
}
gettimeofday(&total_tv_end, NULL);
pthread_mutex_unlock(&hash_lock);
} else {
total_mhashes_done += local_mhashes;
local_mhashes_done += local_mhashes;
if (total_diff.tv_sec < opt_log_interval)
return;
gettimeofday(&total_tv_end, NULL);
}
/* Use a rolling average by faking an exponential decay over 5 * log */
rolling_local = ((rolling_local * 0.9) + local_mhashes_done) / 1.9;
timeval_subtract(&total_diff, &total_tv_end, &total_tv_start);
total_secs = (double)total_diff.tv_sec +
((double)total_diff.tv_usec / 1000000.0);
applog(LOG_INFO, "[%.2f | %.2f Mhash/s] [%d Accepted] [%d Rejected] [%d HW errors]",
rolling_local / local_secs,
total_mhashes_done / total_secs, accepted, rejected, hw_errors);
local_mhashes_done = 0;
}
static struct work *work_heap = NULL;
/* Since we always have one extra work item queued, set the thread id to 0
* for all the work and just give the work to the first thread that requests
* work */
static bool get_work(struct work *work)
{
struct thr_info *thr = &thr_info[0];
struct workio_cmd *wc;
bool ret = false;
/* fill out work request message */
wc = calloc(1, sizeof(*wc));
if (unlikely(!wc))
goto out;
wc->cmd = WC_GET_WORK;
wc->thr = thr;
/* send work request to workio thread */
if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) {
workio_cmd_free(wc);
goto out;
}
/* work_heap is protected by get_lock */
pthread_mutex_lock(&get_lock);
if (likely(work_heap)) {
memcpy(work, work_heap, sizeof(*work));
/* Wait for next response, a unit of work - it should be queued */
free(work_heap);
work_heap = tq_pop(thr->q, NULL);
} else {
/* wait for 1st response, or 1st response after failure */
work_heap = tq_pop(thr->q, NULL);
if (unlikely(!work_heap))
goto out_unlock;
/* send for another work request for the next time get_work
* is called. */
wc = calloc(1, sizeof(*wc));
if (unlikely(!wc)) {
free(work_heap);
work_heap = NULL;
goto out_unlock;
}
wc->cmd = WC_GET_WORK;
wc->thr = thr;
if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) {
workio_cmd_free(wc);
free(work_heap);
work_heap = NULL;
goto out_unlock;
}
}
ret = true;
out_unlock:
pthread_mutex_unlock(&get_lock);
out:
return ret;
}
static bool submit_work_sync(struct thr_info *thr, const struct work *work_in)
{
struct workio_cmd *wc;
/* fill out work request message */
wc = calloc(1, sizeof(*wc));
if (unlikely(!wc)) {
applog(LOG_ERR, "Failed to calloc wc in submit_work_sync");
return false;
}
wc->u.work = malloc(sizeof(*work_in));
if (unlikely(!wc->u.work)) {
applog(LOG_ERR, "Failed to calloc work in submit_work_sync");
goto err_out;
}
wc->cmd = WC_SUBMIT_WORK;
wc->thr = thr;
memcpy(wc->u.work, work_in, sizeof(*work_in));
/* send solution to workio thread */
if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) {
applog(LOG_ERR, "Failed to tq_push work in submit_work_sync");
goto err_out;
}
return true;
err_out:
workio_cmd_free(wc);
return false;
}
bool submit_nonce(struct thr_info *thr, struct work *work, uint32_t nonce)
{
work->data[64+12+0] = (nonce>>0) & 0xff;
work->data[64+12+1] = (nonce>>8) & 0xff;
work->data[64+12+2] = (nonce>>16) & 0xff;
work->data[64+12+3] = (nonce>>24) & 0xff;
return submit_work_sync(thr, work);
}
static inline int cpu_from_thr_id(int thr_id)
{
return (thr_id - gpu_threads) % num_processors;
}
static void *miner_thread(void *userdata)
{
struct thr_info *mythr = userdata;
const int thr_id = mythr->id;
uint32_t max_nonce = 0xffffff;
/* Set worker threads to nice 19 and then preferentially to SCHED_IDLE
* and if that fails, then SCHED_BATCH. No need for this to be an
* error if it fails */
setpriority(PRIO_PROCESS, 0, 19);
drop_policy();
/* Cpu affinity only makes sense if the number of threads is a multiple
* of the number of CPUs */
if (!(opt_n_threads % num_processors))
affine_to_cpu(thr_id - gpu_threads, cpu_from_thr_id(thr_id));
while (1) {
struct work work __attribute__((aligned(128)));
unsigned long hashes_done;
struct timeval tv_start, tv_end, diff;
uint64_t max64;
bool rc;
/* obtain new work from internal workio thread */
if (unlikely(!get_work(&work))) {
applog(LOG_ERR, "work retrieval failed, exiting "
"mining thread %d", mythr->id);
goto out;
}
work.thr_id = thr_id;
hashes_done = 0;
gettimeofday(&tv_start, NULL);
/* scan nonces for a proof-of-work hash */
switch (opt_algo) {
case ALGO_C:
rc = scanhash_c(thr_id, work.midstate, work.data + 64,
work.hash1, work.hash, work.target,
max_nonce, &hashes_done);
break;
#ifdef WANT_X8664_SSE2
case ALGO_SSE2_64: {
unsigned int rc5 =
scanhash_sse2_64(thr_id, work.midstate, work.data + 64,
work.hash1, work.hash,
work.target,
max_nonce, &hashes_done);
rc = (rc5 == -1) ? false : true;
}
break;
#endif
#ifdef WANT_SSE2_4WAY
case ALGO_4WAY: {
unsigned int rc4 =
ScanHash_4WaySSE2(thr_id, work.midstate, work.data + 64,
work.hash1, work.hash,
work.target,
max_nonce, &hashes_done);
rc = (rc4 == -1) ? false : true;
}
break;
#endif
#ifdef WANT_VIA_PADLOCK
case ALGO_VIA:
rc = scanhash_via(thr_id, work.data, work.target,
max_nonce, &hashes_done);
break;
#endif
case ALGO_CRYPTOPP:
rc = scanhash_cryptopp(thr_id, work.midstate, work.data + 64,
work.hash1, work.hash, work.target,
max_nonce, &hashes_done);
break;
#ifdef WANT_CRYPTOPP_ASM32
case ALGO_CRYPTOPP_ASM32:
rc = scanhash_asm32(thr_id, work.midstate, work.data + 64,
work.hash1, work.hash, work.target,
max_nonce, &hashes_done);
break;
#endif
default:
/* should never happen */
goto out;
}
/* record scanhash elapsed time */
gettimeofday(&tv_end, NULL);
timeval_subtract(&diff, &tv_end, &tv_start);
hashmeter(thr_id, &diff, hashes_done);
/* adjust max_nonce to meet target scan time */
if (diff.tv_usec > 500000)
diff.tv_sec++;
if (diff.tv_sec > 0) {
max64 =
((uint64_t)hashes_done * (opt_log_interval ? : opt_scantime)) / diff.tv_sec;
if (max64 > 0xfffffffaULL)
max64 = 0xfffffffaULL;
max_nonce = max64;
}
/* if nonce found, submit work */
if (unlikely(rc)) {
if (opt_debug)
applog(LOG_DEBUG, "CPU %d found something?", cpu_from_thr_id(thr_id));
if (!submit_work_sync(mythr, &work))
break;
}
}
out:
tq_freeze(mythr->q);
return NULL;
}
enum {
STAT_SLEEP_INTERVAL = 1,
STAT_CTR_INTERVAL = 10000000,
FAILURE_INTERVAL = 30,
};
static _clState *clStates[16];
static inline cl_int queue_kernel_parameters(_clState *clState, dev_blk_ctx *blk)
{
cl_kernel *kernel = &clState->kernel;
cl_int status = 0;
int num = 0;
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_a);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_b);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_c);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_d);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_e);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_f);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_g);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_h);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_b);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_c);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_d);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_f);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_g);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_h);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->nonce);
if (clState->hasBitAlign == true) {
/* Parameters for phatk kernel */
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W2);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W16);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W17);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->PreVal4);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->T1);
} else {
/* Parameters for poclbm kernel */
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW0);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW1);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW2);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW3);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW15);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW01r);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fcty_e);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fcty_e2);
}
status |= clSetKernelArg(*kernel, num++, sizeof(clState->outputBuffer),
(void *)&clState->outputBuffer);
return status;
}
static inline int gpu_from_thr_id(int thr_id)
{
return thr_id % nDevs;
}
static void *gpuminer_thread(void *userdata)
{
struct thr_info *mythr = userdata;
struct timeval tv_start, diff;
const int thr_id = mythr->id;
uint32_t *res, *blank_res;
size_t globalThreads[1];
size_t localThreads[1];
cl_int status;
_clState *clState = clStates[thr_id];
const cl_kernel *kernel = &clState->kernel;
struct work *work = malloc(sizeof(struct work));
unsigned const int threads = 1 << (15 + scan_intensity);
unsigned const int vectors = clState->preferred_vwidth;
unsigned const int hashes = threads * vectors;
unsigned int hashes_done = 0;
res = calloc(BUFFERSIZE, 1);
blank_res = calloc(BUFFERSIZE, 1);
if (!res || !blank_res) {
applog(LOG_ERR, "Failed to calloc in gpuminer_thread");
goto out;
}
gettimeofday(&tv_start, NULL);
globalThreads[0] = threads;
localThreads[0] = clState->work_size;
work_restart[thr_id].restart = 1;
diff.tv_sec = 0;
while (1) {
struct timeval tv_end, tv_workstart;
/* This finish flushes the readbuffer set with CL_FALSE later */
clFinish(clState->commandQueue);
if (diff.tv_sec > opt_scantime || work->blk.nonce >= MAXTHREADS - hashes || work_restart[thr_id].restart) {
/* Ignore any reads since we're getting new work and queue a clean buffer */
status = clEnqueueWriteBuffer(clState->commandQueue, clState->outputBuffer, CL_FALSE, 0,
BUFFERSIZE, blank_res, 0, NULL, NULL);
if (unlikely(status != CL_SUCCESS))
{ applog(LOG_ERR, "Error: clEnqueueWriteBuffer failed."); goto out; }
memset(res, 0, BUFFERSIZE);
gettimeofday(&tv_workstart, NULL);
/* obtain new work from internal workio thread */
if (unlikely(!get_work(work))) {
applog(LOG_ERR, "work retrieval failed, exiting "
"gpu mining thread %d", mythr->id);
goto out;
}
work->thr_id = thr_id;
precalc_hash(&work->blk, (uint32_t *)(work->midstate), (uint32_t *)(work->data + 64));
work->blk.nonce = 0;
work_restart[thr_id].restart = 0;
if (opt_debug)
applog(LOG_DEBUG, "getwork thread %d", thr_id);
/* Flushes the writebuffer set with CL_FALSE above */
clFinish(clState->commandQueue);
status = queue_kernel_parameters(clState, &work->blk);
if (unlikely(status != CL_SUCCESS))
{ applog(LOG_ERR, "Error: clSetKernelArg of all params failed."); goto out; }
} else {
status = clSetKernelArg(*kernel, 14, sizeof(uint), (void *)&work->blk.nonce);
if (unlikely(status != CL_SUCCESS))
{ applog(LOG_ERR, "Error: clSetKernelArg of nonce failed."); goto out; }
}
/* MAXBUFFERS entry is used as a flag to say nonces exist */
if (res[MAXBUFFERS]) {
/* Clear the buffer again */
status = clEnqueueWriteBuffer(clState->commandQueue, clState->outputBuffer, CL_FALSE, 0,
BUFFERSIZE, blank_res, 0, NULL, NULL);
if (unlikely(status != CL_SUCCESS))
{ applog(LOG_ERR, "Error: clEnqueueWriteBuffer failed."); goto out; }
if (opt_debug)
applog(LOG_DEBUG, "GPU %d found something?", gpu_from_thr_id(thr_id));
postcalc_hash_async(mythr, work, res);
memset(res, 0, BUFFERSIZE);
clFinish(clState->commandQueue);
}
status = clEnqueueNDRangeKernel(clState->commandQueue, *kernel, 1, NULL,
globalThreads, localThreads, 0, NULL, NULL);
if (unlikely(status != CL_SUCCESS))
{ applog(LOG_ERR, "Error: Enqueueing kernel onto command queue. (clEnqueueNDRangeKernel)"); goto out; }
status = clEnqueueReadBuffer(clState->commandQueue, clState->outputBuffer, CL_FALSE, 0,
BUFFERSIZE, res, 0, NULL, NULL);
if (unlikely(status != CL_SUCCESS))
{ applog(LOG_ERR, "Error: clEnqueueReadBuffer failed. (clEnqueueReadBuffer)"); goto out;}
gettimeofday(&tv_end, NULL);
timeval_subtract(&diff, &tv_end, &tv_start);
hashes_done += hashes;
work->blk.nonce += hashes;
if (diff.tv_sec >= 1) {
hashmeter(thr_id, &diff, hashes_done);
gettimeofday(&tv_start, NULL);
hashes_done = 0;
}
timeval_subtract(&diff, &tv_end, &tv_workstart);
}
out:
tq_freeze(mythr->q);
return NULL;
}
static void restart_threads(void)
{
int i;
pthread_mutex_lock(&get_lock);
for (i = 0; i < opt_n_threads + gpu_threads; i++)
work_restart[i].restart = 1;
/* If longpoll has detected a new block, we should discard any queued
* blocks in work_heap */
if (likely(work_heap)) {
free(work_heap);
work_heap = NULL;
}
pthread_mutex_unlock(&get_lock);
}
static void *longpoll_thread(void *userdata)
{
struct thr_info *mythr = userdata;
CURL *curl = NULL;
char *copy_start, *hdr_path, *lp_url = NULL;
bool need_slash = false;
int failures = 0;
hdr_path = tq_pop(mythr->q, NULL);
if (!hdr_path)
goto out;
/* full URL */
if (strstr(hdr_path, "://")) {
lp_url = hdr_path;
hdr_path = NULL;
}
/* absolute path, on current server */
else {
copy_start = (*hdr_path == '/') ? (hdr_path + 1) : hdr_path;
if (rpc_url[strlen(rpc_url) - 1] != '/')
need_slash = true;
lp_url = malloc(strlen(rpc_url) + strlen(copy_start) + 2);
if (!lp_url)
goto out;
sprintf(lp_url, "%s%s%s", rpc_url, need_slash ? "/" : "", copy_start);
}
applog(LOG_INFO, "Long-polling activated for %s", lp_url);
curl = curl_easy_init();
if (unlikely(!curl)) {
applog(LOG_ERR, "CURL initialization failed");
goto out;
}
while (1) {
json_t *val;
val = json_rpc_call(curl, lp_url, rpc_userpass, rpc_req,
false, true);
if (likely(val)) {
failures = 0;
json_decref(val);
applog(LOG_INFO, "LONGPOLL detected new block");
restart_threads();
} else {
if (failures++ < 10) {
sleep(30);
applog(LOG_ERR,
"longpoll failed, sleeping for 30s");
} else {
applog(LOG_ERR,
"longpoll failed, ending thread");
goto out;
}
}
}
out:
free(hdr_path);
free(lp_url);
tq_freeze(mythr->q);
if (curl)
curl_easy_cleanup(curl);
return NULL;
}
static void show_usage(void)
{
int i;
printf("minerd version %s\n\n", VERSION);
printf("Usage:\tminerd [options]\n\nSupported options:\n");
for (i = 0; i < ARRAY_SIZE(options_help); i++) {
struct option_help *h;
h = &options_help[i];
printf("--%s\n%s\n\n", h->name, h->helptext);
}
exit(1);
}
static void parse_arg (int key, char *arg)
{
int v, i;
switch(key) {
case 'a':
for (i = 0; i < ARRAY_SIZE(algo_names); i++) {
if (algo_names[i] &&
!strcmp(arg, algo_names[i])) {
opt_algo = i;
break;
}
}
if (i == ARRAY_SIZE(algo_names))
show_usage();
break;
case 'c': {
json_error_t err;
if (opt_config)
json_decref(opt_config);
opt_config = json_load_file(arg, &err);
if (!json_is_object(opt_config)) {
applog(LOG_ERR, "JSON decode of %s failed", arg);
show_usage();
}
break;
}
case 'g':
v = atoi(arg);
if (v < 0 || v > 10)
show_usage();
opt_g_threads = v;
break;
case 'D':
opt_debug = true;
break;
case 'I':
v = atoi(arg);
if (v < 0 || v > 14) /* sanity check */
show_usage();
scan_intensity = v;
break;
case 'l':
v = atoi(arg);
if (v < 0 || v > 9999) /* sanity check */
show_usage();
opt_log_interval = v;
break;
case 'p':
free(rpc_pass);
rpc_pass = strdup(arg);
break;
case 'P':
opt_protocol = true;
break;
case 'q':
opt_quiet = true;
break;
case 'r':
v = atoi(arg);
if (v < -1 || v > 9999) /* sanity check */
show_usage();
opt_retries = v;
break;
case 'R':
v = atoi(arg);
if (v < 1 || v > 9999) /* sanity check */
show_usage();
opt_fail_pause = v;
break;
case 's':
v = atoi(arg);
if (v < 1 || v > 9999) /* sanity check */
show_usage();
opt_scantime = v;
break;
case 't':
v = atoi(arg);
if (v < 0 || v > 9999) /* sanity check */
show_usage();
opt_n_threads = v;
break;
case 'u':
free(rpc_user);
rpc_user = strdup(arg);
break;
case 'v':
v = atoi(arg);
if (v != 1 && v != 2 && v != 4)
show_usage();
opt_vectors = v;
break;
case 'w':
v = atoi(arg);
if (v < 1 || v > 9999) /* sanity check */
show_usage();
opt_worksize = v;
break;
case 1001: /* --url */
if (strncmp(arg, "http://", 7) &&
strncmp(arg, "https://", 8))
show_usage();
free(rpc_url);
rpc_url = strdup(arg);
break;
case 1002: /* --userpass */
if (!strchr(arg, ':'))
show_usage();
free(rpc_userpass);
rpc_userpass = strdup(arg);
break;
case 1003:
want_longpoll = false;
break;
case 1004:
use_syslog = true;
break;
default:
show_usage();
}
}
static void parse_config(void)
{
int i;
json_t *val;
if (!json_is_object(opt_config))
return;
for (i = 0; i < ARRAY_SIZE(options); i++) {
if (!options[i].name)
break;
if (!strcmp(options[i].name, "config"))
continue;
val = json_object_get(opt_config, options[i].name);
if (!val)
continue;
if (options[i].has_arg && json_is_string(val)) {
char *s = strdup(json_string_value(val));
if (!s)
break;
parse_arg(options[i].val, s);
free(s);
} else if (!options[i].has_arg && json_is_true(val))
parse_arg(options[i].val, "");
else
applog(LOG_ERR, "JSON option %s invalid",
options[i].name);
}
}
static void parse_cmdline(int argc, char *argv[])
{
int key;
while (1) {
key = getopt_long(argc, argv, "a:c:qDPr:s:t:h?", options, NULL);
if (key < 0)
break;
parse_arg(key, optarg);
}
parse_config();
}
int main (int argc, char *argv[])
{
struct thr_info *thr;
unsigned int i;
char name[32];
struct cgpu_info *gpus, *cpus;
#ifdef WIN32
opt_n_threads = num_processors = 1;
#else
num_processors = sysconf(_SC_NPROCESSORS_ONLN);
opt_n_threads = num_processors;
#endif /* !WIN32 */
nDevs = clDevicesNum();
if (opt_ndevs) {
applog(LOG_INFO, "%i", nDevs);
return nDevs;
}
/* Invert the value to determine if we manually set it in cmdline
* or disable gpu threads */
if (nDevs)
opt_n_threads = - opt_n_threads;
rpc_url = strdup(DEF_RPC_URL);
/* parse command line */
parse_cmdline(argc, argv);
gpu_threads = nDevs * opt_g_threads;
if (opt_n_threads < 0) {
if (gpu_threads)
opt_n_threads = 0;
else
opt_n_threads = -opt_n_threads;
}
if (!rpc_userpass) {
if (!rpc_user || !rpc_pass) {
applog(LOG_ERR, "No login credentials supplied");
return 1;
}
rpc_userpass = malloc(strlen(rpc_user) + strlen(rpc_pass) + 2);
if (!rpc_userpass)
return 1;
sprintf(rpc_userpass, "%s:%s", rpc_user, rpc_pass);
}
if (unlikely(pthread_mutex_init(&time_lock, NULL)))
return 1;
if (unlikely(pthread_mutex_init(&hash_lock, NULL)))
return 1;
if (unlikely(pthread_mutex_init(&get_lock, NULL)))
return 1;
if (unlikely(curl_global_init(CURL_GLOBAL_ALL)))
return 1;
#ifdef HAVE_SYSLOG_H
if (use_syslog)
openlog("cpuminer", LOG_PID, LOG_USER);
#endif
work_restart = calloc(opt_n_threads + gpu_threads, sizeof(*work_restart));
if (!work_restart)
return 1;
thr_info = calloc(opt_n_threads + 2 + gpu_threads, sizeof(*thr));
if (!thr_info)
return 1;
/* init workio thread info */
work_thr_id = opt_n_threads + gpu_threads;
thr = &thr_info[work_thr_id];
thr->id = work_thr_id;
thr->q = tq_new();
if (!thr->q)
return 1;
/* start work I/O thread */
if (pthread_create(&thr->pth, NULL, workio_thread, thr)) {
applog(LOG_ERR, "workio thread create failed");
return 1;
}
/* init longpoll thread info */
if (want_longpoll) {
longpoll_thr_id = opt_n_threads + gpu_threads + 1;
thr = &thr_info[longpoll_thr_id];
thr->id = longpoll_thr_id;
thr->q = tq_new();
if (!thr->q)
return 1;
/* start longpoll thread */
if (unlikely(pthread_create(&thr->pth, NULL, longpoll_thread, thr))) {
applog(LOG_ERR, "longpoll thread create failed");
return 1;
}
pthread_detach(thr->pth);
} else
longpoll_thr_id = -1;
gettimeofday(&total_tv_start, NULL);
gettimeofday(&total_tv_end, NULL);
if (opt_n_threads ) {
cpus = calloc(num_processors, sizeof(struct cgpu_info));
if (unlikely(!cpus)) {
applog(LOG_ERR, "Failed to calloc cpus");
return 1;
}
}
if (gpu_threads) {
gpus = calloc(nDevs, sizeof(struct cgpu_info));
if (unlikely(!gpus)) {
applog(LOG_ERR, "Failed to calloc gpus");
return 1;
}
}
/* start GPU mining threads */
for (i = 0; i < gpu_threads; i++) {
int gpu = gpu_from_thr_id(i);
thr = &thr_info[i];
thr->id = i;
gpus[gpu].is_gpu = 1;
gpus[gpu].cpu_gpu = gpu;
thr->cgpu = &gpus[gpu];
thr->q = tq_new();
if (!thr->q) {
applog(LOG_ERR, "tq_new failed in starting gpu mining threads");
return 1;
}
applog(LOG_INFO, "Init GPU thread %i", i);
clStates[i] = initCl(gpu, name, sizeof(name));
if (!clStates[i]) {
applog(LOG_ERR, "Failed to init GPU thread %d", i);
continue;
}
applog(LOG_INFO, "initCl() finished. Found %s", name);
if (unlikely(pthread_create(&thr->pth, NULL, gpuminer_thread, thr))) {
applog(LOG_ERR, "thread %d create failed", i);
return 1;
}
pthread_detach(thr->pth);
}
applog(LOG_INFO, "%d gpu miner threads started", i);
/* start CPU mining threads */
for (i = gpu_threads; i < gpu_threads + opt_n_threads; i++) {
int cpu = cpu_from_thr_id(i);
thr = &thr_info[i];
thr->id = i;
cpus[cpu].cpu_gpu = cpu;
thr->cgpu = &cpus[cpu];
thr->q = tq_new();
if (!thr->q) {
applog(LOG_ERR, "tq_new failed in starting cpu mining threads");
return 1;
}
if (unlikely(pthread_create(&thr->pth, NULL, miner_thread, thr))) {
applog(LOG_ERR, "thread %d create failed", i);
return 1;
}
pthread_detach(thr->pth);
}
applog(LOG_INFO, "%d cpu miner threads started, "
"using SHA256 '%s' algorithm.",
opt_n_threads,
algo_names[opt_algo]);
/* Restart count as it will be wrong till all threads are started */
pthread_mutex_lock(&hash_lock);
gettimeofday(&total_tv_start, NULL);
gettimeofday(&total_tv_end, NULL);
total_mhashes_done = 0;
pthread_mutex_unlock(&hash_lock);
/* main loop - simply wait for workio thread to exit */
pthread_join(thr_info[work_thr_id].pth, NULL);
curl_global_cleanup();
if (gpu_threads)
free(gpus);
if (opt_n_threads)
free(cpus);
applog(LOG_INFO, "workio thread dead, exiting.");
return 0;
}