1
0
mirror of https://github.com/GOSTSec/sgminer synced 2025-01-24 13:34:22 +00:00
sgminer/driver-avalon.c

1157 lines
29 KiB
C

/*
* Copyright 2013 Con Kolivas <kernel@kolivas.org>
* Copyright 2012-2013 Xiangfu <xiangfu@openmobilefree.com>
* Copyright 2012 Luke Dashjr
* Copyright 2012 Andrew Smith
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include <limits.h>
#include <pthread.h>
#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <dirent.h>
#include <unistd.h>
#ifndef WIN32
#include <sys/select.h>
#include <termios.h>
#include <sys/stat.h>
#include <fcntl.h>
#ifndef O_CLOEXEC
#define O_CLOEXEC 0
#endif
#else
#include "compat.h"
#include <windows.h>
#include <io.h>
#endif
#include "elist.h"
#include "miner.h"
#include "usbutils.h"
#include "driver-avalon.h"
#include "hexdump.c"
#include "util.h"
static int option_offset = -1;
struct device_drv avalon_drv;
static int avalon_init_task(struct avalon_task *at,
uint8_t reset, uint8_t ff, uint8_t fan,
uint8_t timeout, uint8_t asic_num,
uint8_t miner_num, uint8_t nonce_elf,
uint8_t gate_miner, int frequency)
{
uint8_t *buf;
static bool first = true;
if (unlikely(!at))
return -1;
if (unlikely(timeout <= 0 || asic_num <= 0 || miner_num <= 0))
return -1;
memset(at, 0, sizeof(struct avalon_task));
if (unlikely(reset)) {
at->reset = 1;
at->fan_eft = 1;
at->timer_eft = 1;
first = true;
}
at->flush_fifo = (ff ? 1 : 0);
at->fan_eft = (fan ? 1 : 0);
if (unlikely(first && !at->reset)) {
at->fan_eft = 1;
at->timer_eft = 1;
first = false;
}
at->fan_pwm_data = (fan ? fan : AVALON_DEFAULT_FAN_MAX_PWM);
at->timeout_data = timeout;
at->asic_num = asic_num;
at->miner_num = miner_num;
at->nonce_elf = nonce_elf;
at->gate_miner_elf = 1;
at->asic_pll = 1;
if (unlikely(gate_miner)) {
at-> gate_miner = 1;
at->asic_pll = 0;
}
buf = (uint8_t *)at;
buf[5] = 0x00;
buf[8] = 0x74;
buf[9] = 0x01;
buf[10] = 0x00;
buf[11] = 0x00;
if (frequency == 256) {
buf[6] = 0x03;
buf[7] = 0x08;
} else if (frequency == 270) {
buf[6] = 0x73;
buf[7] = 0x08;
} else if (frequency == 282) {
buf[6] = 0xd3;
buf[7] = 0x08;
} else if (frequency == 300) {
buf[6] = 0x63;
buf[7] = 0x09;
}
return 0;
}
static inline void avalon_create_task(struct avalon_task *at,
struct work *work)
{
memcpy(at->midstate, work->midstate, 32);
memcpy(at->data, work->data + 64, 12);
}
static int avalon_write(struct cgpu_info *avalon, char *buf, ssize_t len, int ep)
{
int err, amount;
err = usb_write(avalon, buf, len, &amount, ep);
applog(LOG_DEBUG, "%s%i: usb_write got err %d", avalon->drv->name,
avalon->device_id, err);
if (unlikely(err != 0)) {
applog(LOG_WARNING, "usb_write error on avalon_write");
return AVA_SEND_ERROR;
}
if (amount != len) {
applog(LOG_WARNING, "usb_write length mismatch on avalon_write");
return AVA_SEND_ERROR;
}
return AVA_SEND_OK;
}
static int avalon_send_task(const struct avalon_task *at, struct cgpu_info *avalon)
{
struct timespec p;
uint8_t buf[AVALON_WRITE_SIZE + 4 * AVALON_DEFAULT_ASIC_NUM];
size_t nr_len;
struct avalon_info *info;
uint64_t delay = 32000000; /* Default 32ms for B19200 */
uint32_t nonce_range;
int ret, i, ep = C_AVALON_TASK;
if (at->nonce_elf)
nr_len = AVALON_WRITE_SIZE + 4 * at->asic_num;
else
nr_len = AVALON_WRITE_SIZE;
memcpy(buf, at, AVALON_WRITE_SIZE);
if (at->nonce_elf) {
nonce_range = (uint32_t)0xffffffff / at->asic_num;
for (i = 0; i < at->asic_num; i++) {
buf[AVALON_WRITE_SIZE + (i * 4) + 3] =
(i * nonce_range & 0xff000000) >> 24;
buf[AVALON_WRITE_SIZE + (i * 4) + 2] =
(i * nonce_range & 0x00ff0000) >> 16;
buf[AVALON_WRITE_SIZE + (i * 4) + 1] =
(i * nonce_range & 0x0000ff00) >> 8;
buf[AVALON_WRITE_SIZE + (i * 4) + 0] =
(i * nonce_range & 0x000000ff) >> 0;
}
}
#if defined(__BIG_ENDIAN__) || defined(MIPSEB)
uint8_t tt = 0;
tt = (buf[0] & 0x0f) << 4;
tt |= ((buf[0] & 0x10) ? (1 << 3) : 0);
tt |= ((buf[0] & 0x20) ? (1 << 2) : 0);
tt |= ((buf[0] & 0x40) ? (1 << 1) : 0);
tt |= ((buf[0] & 0x80) ? (1 << 0) : 0);
buf[0] = tt;
tt = (buf[4] & 0x0f) << 4;
tt |= ((buf[4] & 0x10) ? (1 << 3) : 0);
tt |= ((buf[4] & 0x20) ? (1 << 2) : 0);
tt |= ((buf[4] & 0x40) ? (1 << 1) : 0);
tt |= ((buf[4] & 0x80) ? (1 << 0) : 0);
buf[4] = tt;
#endif
if (likely(avalon)) {
info = avalon->device_data;
delay = nr_len * 10 * 1000000000ULL;
delay = delay / info->baud;
}
if (at->reset) {
ep = C_AVALON_RESET;
nr_len = 1;
}
if (opt_debug) {
applog(LOG_DEBUG, "Avalon: Sent(%u):", (unsigned int)nr_len);
hexdump(buf, nr_len);
}
ret = avalon_write(avalon, (char *)buf, nr_len, ep);
p.tv_sec = 0;
p.tv_nsec = (long)delay + 4000000;
nanosleep(&p, NULL);
applog(LOG_DEBUG, "Avalon: Sent: Buffer delay: %ld", p.tv_nsec);
return ret;
}
static bool avalon_decode_nonce(struct thr_info *thr, struct cgpu_info *avalon,
struct avalon_info *info, struct avalon_result *ar,
struct work *work)
{
uint32_t nonce;
info = avalon->device_data;
info->matching_work[work->subid]++;
nonce = htole32(ar->nonce);
applog(LOG_DEBUG, "Avalon: nonce = %0x08x", nonce);
return submit_nonce(thr, work, nonce);
}
/* Wait until the ftdi chip returns a CTS saying we can send more data. The
* status is updated every 40ms. */
static void wait_avalon_ready(struct cgpu_info *avalon)
{
while (avalon_buffer_full(avalon)) {
nmsleep(40);
}
}
static int avalon_read(struct cgpu_info *avalon, unsigned char *buf,
size_t bufsize, int timeout, int ep)
{
size_t total = 0, readsize = bufsize + 2;
char readbuf[AVALON_READBUF_SIZE];
int err, amount, ofs = 2, cp;
err = usb_read_once_timeout(avalon, readbuf, readsize, &amount, timeout, ep);
applog(LOG_DEBUG, "%s%i: Get avalon read got err %d",
avalon->drv->name, avalon->device_id, err);
/* The first 2 of every 64 bytes are status on FTDIRL */
while (amount > 2) {
cp = amount - 2;
if (cp > 62)
cp = 62;
memcpy(&buf[total], &readbuf[ofs], cp);
total += cp;
amount -= cp + 2;
ofs += 64;
}
return total;
}
static int avalon_reset(struct cgpu_info *avalon, bool initial)
{
struct avalon_result ar;
int ret, i, spare;
struct avalon_task at;
uint8_t *buf, *tmp;
struct timespec p;
/* Send reset, then check for result */
avalon_init_task(&at, 1, 0,
AVALON_DEFAULT_FAN_MAX_PWM,
AVALON_DEFAULT_TIMEOUT,
AVALON_DEFAULT_ASIC_NUM,
AVALON_DEFAULT_MINER_NUM,
0, 0,
AVALON_DEFAULT_FREQUENCY);
wait_avalon_ready(avalon);
ret = avalon_send_task(&at, avalon);
if (unlikely(ret == AVA_SEND_ERROR))
return -1;
if (!initial) {
applog(LOG_ERR, "AVA%d reset sequence sent", avalon->device_id);
return 0;
}
ret = avalon_read(avalon, (unsigned char *)&ar, AVALON_READ_SIZE,
AVALON_RESET_TIMEOUT, C_GET_AVALON_RESET);
/* What do these sleeps do?? */
p.tv_sec = 0;
p.tv_nsec = AVALON_RESET_PITCH;
nanosleep(&p, NULL);
/* Look for the first occurrence of 0xAA, the reset response should be:
* AA 55 AA 55 00 00 00 00 00 00 */
spare = ret - 10;
buf = tmp = (uint8_t *)&ar;
if (opt_debug) {
applog(LOG_DEBUG, "AVA%d reset: get:", avalon->device_id);
hexdump(tmp, AVALON_READ_SIZE);
}
for (i = 0; i <= spare; i++) {
buf = &tmp[i];
if (buf[0] == 0xAA)
break;
}
i = 0;
if (buf[0] == 0xAA && buf[1] == 0x55 &&
buf[2] == 0xAA && buf[3] == 0x55) {
for (i = 4; i < 11; i++)
if (buf[i] != 0)
break;
}
if (i != 11) {
applog(LOG_ERR, "AVA%d: Reset failed! not an Avalon?"
" (%d: %02x %02x %02x %02x)", avalon->device_id,
i, buf[0], buf[1], buf[2], buf[3]);
/* FIXME: return 1; */
} else
applog(LOG_WARNING, "AVA%d: Reset succeeded",
avalon->device_id);
return 0;
}
static bool get_options(int this_option_offset, int *baud, int *miner_count,
int *asic_count, int *timeout, int *frequency)
{
char err_buf[BUFSIZ+1];
char buf[BUFSIZ+1];
char *ptr, *comma, *colon, *colon2, *colon3, *colon4;
size_t max;
int i, tmp;
if (opt_avalon_options == NULL)
buf[0] = '\0';
else {
ptr = opt_avalon_options;
for (i = 0; i < this_option_offset; i++) {
comma = strchr(ptr, ',');
if (comma == NULL)
break;
ptr = comma + 1;
}
comma = strchr(ptr, ',');
if (comma == NULL)
max = strlen(ptr);
else
max = comma - ptr;
if (max > BUFSIZ)
max = BUFSIZ;
strncpy(buf, ptr, max);
buf[max] = '\0';
}
if (!(*buf))
return false;
colon = strchr(buf, ':');
if (colon)
*(colon++) = '\0';
tmp = atoi(buf);
switch (tmp) {
case 115200:
*baud = 115200;
break;
case 57600:
*baud = 57600;
break;
case 38400:
*baud = 38400;
break;
case 19200:
*baud = 19200;
break;
default:
sprintf(err_buf,
"Invalid avalon-options for baud (%s) "
"must be 115200, 57600, 38400 or 19200", buf);
quit(1, err_buf);
}
if (colon && *colon) {
colon2 = strchr(colon, ':');
if (colon2)
*(colon2++) = '\0';
if (*colon) {
tmp = atoi(colon);
if (tmp > 0 && tmp <= AVALON_DEFAULT_MINER_NUM) {
*miner_count = tmp;
} else {
sprintf(err_buf,
"Invalid avalon-options for "
"miner_count (%s) must be 1 ~ %d",
colon, AVALON_DEFAULT_MINER_NUM);
quit(1, err_buf);
}
}
if (colon2 && *colon2) {
colon3 = strchr(colon2, ':');
if (colon3)
*(colon3++) = '\0';
tmp = atoi(colon2);
if (tmp > 0 && tmp <= AVALON_DEFAULT_ASIC_NUM)
*asic_count = tmp;
else {
sprintf(err_buf,
"Invalid avalon-options for "
"asic_count (%s) must be 1 ~ %d",
colon2, AVALON_DEFAULT_ASIC_NUM);
quit(1, err_buf);
}
if (colon3 && *colon3) {
colon4 = strchr(colon3, ':');
if (colon4)
*(colon4++) = '\0';
tmp = atoi(colon3);
if (tmp > 0 && tmp <= 0xff)
*timeout = tmp;
else {
sprintf(err_buf,
"Invalid avalon-options for "
"timeout (%s) must be 1 ~ %d",
colon3, 0xff);
quit(1, err_buf);
}
if (colon4 && *colon4) {
tmp = atoi(colon4);
switch (tmp) {
case 256:
case 270:
case 282:
case 300:
*frequency = tmp;
break;
default:
sprintf(err_buf,
"Invalid avalon-options for "
"frequency must be 256/270/282/300");
quit(1, err_buf);
}
}
}
}
}
return true;
}
static void avalon_idle(struct cgpu_info *avalon, struct avalon_info *info)
{
int i;
info->idle = true;
wait_avalon_ready(avalon);
/* Send idle to all miners */
for (i = 0; i < info->miner_count; i++) {
struct avalon_task at;
if (unlikely(avalon_buffer_full(avalon)))
break;
avalon_init_task(&at, 0, 0, info->fan_pwm, info->timeout,
info->asic_count, info->miner_count, 1, 1,
info->frequency);
avalon_send_task(&at, avalon);
}
applog(LOG_WARNING, "AVA%i: Idling %d miners", avalon->device_id, i);
wait_avalon_ready(avalon);
}
static void avalon_initialise(struct cgpu_info *avalon)
{
int err, interface;
if (avalon->usbinfo.nodev)
return;
interface = avalon->usbdev->found->interface;
// Reset
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_RESET,
FTDI_VALUE_RESET, interface, C_RESET);
applog(LOG_DEBUG, "%s%i: reset got err %d",
avalon->drv->name, avalon->device_id, err);
if (avalon->usbinfo.nodev)
return;
// Set latency
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_LATENCY,
AVALON_READ_TIMEOUT, interface, C_LATENCY);
applog(LOG_DEBUG, "%s%i: latency got err %d",
avalon->drv->name, avalon->device_id, err);
if (avalon->usbinfo.nodev)
return;
// Set data
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_DATA,
FTDI_VALUE_DATA_AVA, interface, C_SETDATA);
applog(LOG_DEBUG, "%s%i: data got err %d",
avalon->drv->name, avalon->device_id, err);
if (avalon->usbinfo.nodev)
return;
// Set the baud
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_BAUD, FTDI_VALUE_BAUD_AVA,
(FTDI_INDEX_BAUD_AVA & 0xff00) | interface,
C_SETBAUD);
applog(LOG_DEBUG, "%s%i: setbaud got err %d",
avalon->drv->name, avalon->device_id, err);
if (avalon->usbinfo.nodev)
return;
// Set Modem Control
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_MODEM,
FTDI_VALUE_MODEM, interface, C_SETMODEM);
applog(LOG_DEBUG, "%s%i: setmodemctrl got err %d",
avalon->drv->name, avalon->device_id, err);
if (avalon->usbinfo.nodev)
return;
// Set Flow Control
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_FLOW,
FTDI_VALUE_FLOW, interface, C_SETFLOW);
applog(LOG_DEBUG, "%s%i: setflowctrl got err %d",
avalon->drv->name, avalon->device_id, err);
if (avalon->usbinfo.nodev)
return;
/* Avalon repeats the following */
// Set Modem Control
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_MODEM,
FTDI_VALUE_MODEM, interface, C_SETMODEM);
applog(LOG_DEBUG, "%s%i: setmodemctrl 2 got err %d",
avalon->drv->name, avalon->device_id, err);
if (avalon->usbinfo.nodev)
return;
// Set Flow Control
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_FLOW,
FTDI_VALUE_FLOW, interface, C_SETFLOW);
applog(LOG_DEBUG, "%s%i: setflowctrl 2 got err %d",
avalon->drv->name, avalon->device_id, err);
}
static bool avalon_detect_one(libusb_device *dev, struct usb_find_devices *found)
{
int baud, miner_count, asic_count, timeout, frequency = 0;
int this_option_offset = ++option_offset;
struct avalon_info *info;
struct cgpu_info *avalon;
char devpath[20];
bool configured;
int ret;
avalon = calloc(1, sizeof(struct cgpu_info));
if (unlikely(!avalon))
quit(1, "Failed to calloc avalon in avalon_detect_one");;
avalon->drv = &avalon_drv;
avalon->threads = AVALON_MINER_THREADS;
configured = get_options(this_option_offset, &baud, &miner_count,
&asic_count, &timeout, &frequency);
if (!usb_init(avalon, dev, found))
return false;
/* Even though this is an FTDI type chip, we want to do the parsing
* all ourselves so set it to std usb type */
avalon->usbdev->usb_type = USB_TYPE_STD;
/* We have a real Avalon! */
sprintf(devpath, "%d:%d",
(int)(avalon->usbinfo.bus_number),
(int)(avalon->usbinfo.device_address));
avalon_initialise(avalon);
avalon->device_path = strdup(devpath);
add_cgpu(avalon);
avalon->device_data = calloc(sizeof(struct avalon_info), 1);
if (unlikely(!(avalon->device_data)))
quit(1, "Failed to malloc avalon_info data");
info = avalon->device_data;
if (configured) {
info->baud = baud;
info->miner_count = miner_count;
info->asic_count = asic_count;
info->timeout = timeout;
info->frequency = frequency;
} else {
info->baud = AVALON_IO_SPEED;
info->miner_count = AVALON_DEFAULT_MINER_NUM;
info->asic_count = AVALON_DEFAULT_ASIC_NUM;
info->timeout = AVALON_DEFAULT_TIMEOUT;
info->frequency = AVALON_DEFAULT_FREQUENCY;
}
info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM;
info->temp_max = 0;
/* This is for check the temp/fan every 3~4s */
info->temp_history_count = (4 / (float)((float)info->timeout * ((float)1.67/0x32))) + 1;
if (info->temp_history_count <= 0)
info->temp_history_count = 1;
info->temp_history_index = 0;
info->temp_sum = 0;
info->temp_old = 0;
ret = avalon_reset(avalon, true);
if (ret && !configured) {
usb_uninit(avalon);
return false;
}
avalon_idle(avalon, info);
applog(LOG_DEBUG, "Avalon Detected: %s "
"(miner_count=%d asic_count=%d timeout=%d frequency=%d)",
devpath, info->miner_count, info->asic_count, info->timeout,
info->frequency);
return true;
}
static void avalon_detect(void)
{
usb_detect(&avalon_drv, avalon_detect_one);
}
static void avalon_init(struct cgpu_info *avalon)
{
applog(LOG_INFO, "Avalon: Opened on %s", avalon->device_path);
}
static struct work *avalon_valid_result(struct cgpu_info *avalon, struct avalon_result *ar)
{
return find_queued_work_bymidstate(avalon, (char *)ar->midstate, 32,
(char *)ar->data, 64, 12);
}
static void avalon_update_temps(struct cgpu_info *avalon, struct avalon_info *info,
struct avalon_result *ar);
static void avalon_inc_nvw(struct avalon_info *info, struct thr_info *thr)
{
if (unlikely(info->idle))
return;
applog(LOG_WARNING, "%s%d: No valid work - HW error",
thr->cgpu->drv->name, thr->cgpu->device_id);
inc_hw_errors(thr);
info->no_matching_work++;
}
static void avalon_parse_results(struct cgpu_info *avalon, struct avalon_info *info,
struct thr_info *thr, char *buf, int *offset)
{
int i, spare = *offset - AVALON_READ_SIZE;
bool found = false;
for (i = 0; i <= spare; i++) {
struct avalon_result *ar;
struct work *work;
ar = (struct avalon_result *)&buf[i];
work = avalon_valid_result(avalon, ar);
if (work) {
bool gettemp = false;
found = true;
if (avalon_decode_nonce(thr, avalon, info, ar, work)) {
mutex_lock(&info->lock);
if (!info->nonces++)
gettemp = true;
mutex_unlock(&info->lock);
}
if (gettemp)
avalon_update_temps(avalon, info, ar);
break;
}
}
if (!found) {
spare = *offset - AVALON_READ_SIZE;
/* We are buffering and haven't accumulated one more corrupt
* work result. */
if (spare < (int)AVALON_READ_SIZE)
return;
avalon_inc_nvw(info, thr);
} else {
spare = AVALON_READ_SIZE + i;
if (i) {
if (i >= (int)AVALON_READ_SIZE)
avalon_inc_nvw(info, thr);
else
applog(LOG_WARNING, "Avalon: Discarding %d bytes from buffer", i);
}
}
*offset -= spare;
memmove(buf, buf + spare, *offset);
}
static void avalon_running_reset(struct cgpu_info *avalon,
struct avalon_info *info)
{
avalon_reset(avalon, false);
avalon_idle(avalon, info);
avalon->results = 0;
info->reset = false;
}
static void *avalon_get_results(void *userdata)
{
struct cgpu_info *avalon = (struct cgpu_info *)userdata;
struct avalon_info *info = avalon->device_data;
const int rsize = AVALON_FTDI_READSIZE;
char readbuf[AVALON_READBUF_SIZE];
struct thr_info *thr = info->thr;
char threadname[24];
int offset = 0;
snprintf(threadname, 24, "ava_recv/%d", avalon->device_id);
RenameThread(threadname);
while (likely(!avalon->shutdown)) {
unsigned char buf[rsize];
int ret;
if (offset >= (int)AVALON_READ_SIZE)
avalon_parse_results(avalon, info, thr, readbuf, &offset);
if (unlikely(offset + rsize >= AVALON_READBUF_SIZE)) {
/* This should never happen */
applog(LOG_ERR, "Avalon readbuf overflow, resetting buffer");
offset = 0;
}
if (unlikely(info->reset)) {
/* Tell the write thread it can start the reset */
cgsem_post(&info->write_sem);
cgsem_wait(&info->read_sem);
/* Discard anything in the buffer */
offset = 0;
}
ret = avalon_read(avalon, buf, rsize, AVALON_READ_TIMEOUT,
C_AVALON_READ);
if (ret < 1)
continue;
if (opt_debug) {
applog(LOG_DEBUG, "Avalon: get:");
hexdump((uint8_t *)buf, ret);
}
memcpy(&readbuf[offset], &buf, ret);
offset += ret;
}
return NULL;
}
static void avalon_rotate_array(struct cgpu_info *avalon)
{
avalon->queued = 0;
if (++avalon->work_array >= AVALON_ARRAY_SIZE)
avalon->work_array = 0;
}
static void *avalon_send_tasks(void *userdata)
{
struct cgpu_info *avalon = (struct cgpu_info *)userdata;
struct avalon_info *info = avalon->device_data;
const int avalon_get_work_count = info->miner_count;
char threadname[24];
snprintf(threadname, 24, "ava_send/%d", avalon->device_id);
RenameThread(threadname);
while (likely(!avalon->shutdown)) {
int start_count, end_count, i, j, ret;
struct avalon_task at;
int idled = 0;
wait_avalon_ready(avalon);
if (unlikely(info->reset)) {
/* Wait till read thread tells us it's received the
* reset message */
cgsem_wait(&info->write_sem);
avalon_running_reset(avalon, info);
cgsem_post(&info->read_sem);
}
mutex_lock(&info->qlock);
start_count = avalon->work_array * avalon_get_work_count;
end_count = start_count + avalon_get_work_count;
for (i = start_count, j = 0; i < end_count; i++, j++) {
if (avalon_buffer_full(avalon)) {
applog(LOG_INFO,
"AVA%i: Buffer full after only %d of %d work queued",
avalon->device_id, j, avalon_get_work_count);
break;
}
if (likely(j < avalon->queued)) {
info->idle = false;
avalon_init_task(&at, 0, 0, info->fan_pwm,
info->timeout, info->asic_count,
info->miner_count, 1, 0, info->frequency);
avalon_create_task(&at, avalon->works[i]);
} else {
idled++;
avalon_init_task(&at, 0, 0, info->fan_pwm,
info->timeout, info->asic_count,
info->miner_count, 1, 1, info->frequency);
}
ret = avalon_send_task(&at, avalon);
if (unlikely(ret == AVA_SEND_ERROR)) {
applog(LOG_ERR, "AVA%i: Comms error(buffer)",
avalon->device_id);
dev_error(avalon, REASON_DEV_COMMS_ERROR);
info->reset = true;
break;
}
}
avalon_rotate_array(avalon);
pthread_cond_signal(&info->qcond);
mutex_unlock(&info->qlock);
if (unlikely(idled && !info->idle)) {
info->idle = true;
applog(LOG_WARNING, "AVA%i: Idled %d miners",
avalon->device_id, idled);
}
}
return NULL;
}
static bool avalon_prepare(struct thr_info *thr)
{
struct cgpu_info *avalon = thr->cgpu;
struct avalon_info *info = avalon->device_data;
struct timeval now;
free(avalon->works);
avalon->works = calloc(info->miner_count * sizeof(struct work *),
AVALON_ARRAY_SIZE);
if (!avalon->works)
quit(1, "Failed to calloc avalon works in avalon_prepare");
info->thr = thr;
mutex_init(&info->lock);
mutex_init(&info->qlock);
if (unlikely(pthread_cond_init(&info->qcond, NULL)))
quit(1, "Failed to pthread_cond_init avalon qcond");
cgsem_init(&info->read_sem);
cgsem_init(&info->write_sem);
if (pthread_create(&info->read_thr, NULL, avalon_get_results, (void *)avalon))
quit(1, "Failed to create avalon read_thr");
if (pthread_create(&info->write_thr, NULL, avalon_send_tasks, (void *)avalon))
quit(1, "Failed to create avalon write_thr");
avalon_init(avalon);
cgtime(&now);
get_datestamp(avalon->init, &now);
return true;
}
static void do_avalon_close(struct thr_info *thr)
{
struct cgpu_info *avalon = thr->cgpu;
struct avalon_info *info = avalon->device_data;
pthread_join(info->read_thr, NULL);
pthread_join(info->write_thr, NULL);
avalon_running_reset(avalon, info);
info->no_matching_work = 0;
cgsem_destroy(&info->read_sem);
cgsem_destroy(&info->write_sem);
}
static inline void record_temp_fan(struct avalon_info *info, struct avalon_result *ar, float *temp_avg)
{
info->fan0 = ar->fan0 * AVALON_FAN_FACTOR;
info->fan1 = ar->fan1 * AVALON_FAN_FACTOR;
info->fan2 = ar->fan2 * AVALON_FAN_FACTOR;
info->temp0 = ar->temp0;
info->temp1 = ar->temp1;
info->temp2 = ar->temp2;
if (ar->temp0 & 0x80) {
ar->temp0 &= 0x7f;
info->temp0 = 0 - ((~ar->temp0 & 0x7f) + 1);
}
if (ar->temp1 & 0x80) {
ar->temp1 &= 0x7f;
info->temp1 = 0 - ((~ar->temp1 & 0x7f) + 1);
}
if (ar->temp2 & 0x80) {
ar->temp2 &= 0x7f;
info->temp2 = 0 - ((~ar->temp2 & 0x7f) + 1);
}
*temp_avg = info->temp2 > info->temp1 ? info->temp2 : info->temp1;
if (info->temp0 > info->temp_max)
info->temp_max = info->temp0;
if (info->temp1 > info->temp_max)
info->temp_max = info->temp1;
if (info->temp2 > info->temp_max)
info->temp_max = info->temp2;
}
static inline void adjust_fan(struct avalon_info *info)
{
int temp_new;
temp_new = info->temp_sum / info->temp_history_count;
if (temp_new < 35) {
info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM;
info->temp_old = temp_new;
} else if (temp_new > 55) {
info->fan_pwm = AVALON_DEFAULT_FAN_MAX_PWM;
info->temp_old = temp_new;
} else if (abs(temp_new - info->temp_old) >= 2) {
info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM + (temp_new - 35) * 6.4;
info->temp_old = temp_new;
}
}
static void avalon_update_temps(struct cgpu_info *avalon, struct avalon_info *info,
struct avalon_result *ar)
{
record_temp_fan(info, ar, &(avalon->temp));
applog(LOG_INFO,
"Avalon: Fan1: %d/m, Fan2: %d/m, Fan3: %d/m\t"
"Temp1: %dC, Temp2: %dC, Temp3: %dC, TempMAX: %dC",
info->fan0, info->fan1, info->fan2,
info->temp0, info->temp1, info->temp2, info->temp_max);
info->temp_history_index++;
info->temp_sum += avalon->temp;
applog(LOG_DEBUG, "Avalon: temp_index: %d, temp_count: %d, temp_old: %d",
info->temp_history_index, info->temp_history_count, info->temp_old);
if (info->temp_history_index == info->temp_history_count) {
adjust_fan(info);
info->temp_history_index = 0;
info->temp_sum = 0;
}
}
static void get_avalon_statline_before(char *buf, struct cgpu_info *avalon)
{
struct avalon_info *info = avalon->device_data;
int lowfan = 10000;
/* Find the lowest fan speed of the ASIC cooling fans. */
if (info->fan1 >= 0 && info->fan1 < lowfan)
lowfan = info->fan1;
if (info->fan2 >= 0 && info->fan2 < lowfan)
lowfan = info->fan2;
tailsprintf(buf, "%2d/%3dC %04dR | ", info->temp0, info->temp2, lowfan);
}
/* We use a replacement algorithm to only remove references to work done from
* the buffer when we need the extra space for new work. */
static bool avalon_fill(struct cgpu_info *avalon)
{
struct avalon_info *info = avalon->device_data;
int subid, slot, mc;
struct work *work;
bool ret = true;
mc = info->miner_count;
mutex_lock(&info->qlock);
if (avalon->queued >= mc)
goto out_unlock;
work = get_queued(avalon);
if (unlikely(!work)) {
ret = false;
goto out_unlock;
}
subid = avalon->queued++;
work->subid = subid;
slot = avalon->work_array * mc + subid;
if (likely(avalon->works[slot]))
work_completed(avalon, avalon->works[slot]);
avalon->works[slot] = work;
if (avalon->queued < mc)
ret = false;
out_unlock:
mutex_unlock(&info->qlock);
return ret;
}
static int64_t avalon_scanhash(struct thr_info *thr)
{
struct cgpu_info *avalon = thr->cgpu;
struct avalon_info *info = avalon->device_data;
const int miner_count = info->miner_count;
struct timeval now, then, tdiff;
int64_t hash_count, us_timeout;
struct timespec abstime;
/* Full nonce range */
us_timeout = 0x100000000ll / info->asic_count / info->frequency;
tdiff.tv_sec = us_timeout / 1000000;
tdiff.tv_usec = us_timeout - (tdiff.tv_sec * 1000000);
cgtime(&now);
timeradd(&now, &tdiff, &then);
abstime.tv_sec = then.tv_sec;
abstime.tv_nsec = then.tv_usec * 1000;
/* Wait until avalon_send_tasks signals us that it has completed
* sending its work or a full nonce range timeout has occurred */
mutex_lock(&info->qlock);
pthread_cond_timedwait(&info->qcond, &info->qlock, &abstime);
mutex_unlock(&info->qlock);
mutex_lock(&info->lock);
hash_count = 0xffffffffull * (uint64_t)info->nonces;
avalon->results += info->nonces;
if (avalon->results > miner_count)
avalon->results = miner_count;
if (!info->idle && !info->reset)
avalon->results -= miner_count / 3;
else
avalon->results = miner_count;
info->nonces = 0;
mutex_unlock(&info->lock);
/* Check for nothing but consecutive bad results or consistently less
* results than we should be getting and reset the FPGA if necessary */
if (avalon->results < -miner_count && !info->reset) {
applog(LOG_ERR, "AVA%d: Result return rate low, resetting!",
avalon->device_id);
info->reset = true;
}
if (unlikely(avalon->usbinfo.nodev)) {
applog(LOG_ERR, "AVA%d: Device disappeared, shutting down thread",
avalon->device_id);
avalon->shutdown = true;
}
/* This hashmeter is just a utility counter based on returned shares */
return hash_count;
}
static void avalon_flush_work(struct cgpu_info *avalon)
{
struct avalon_info *info = avalon->device_data;
mutex_lock(&info->qlock);
/* Will overwrite any work queued */
avalon->queued = 0;
pthread_cond_signal(&info->qcond);
mutex_unlock(&info->qlock);
}
static struct api_data *avalon_api_stats(struct cgpu_info *cgpu)
{
struct api_data *root = NULL;
struct avalon_info *info = cgpu->device_data;
int i;
root = api_add_int(root, "baud", &(info->baud), false);
root = api_add_int(root, "miner_count", &(info->miner_count),false);
root = api_add_int(root, "asic_count", &(info->asic_count), false);
root = api_add_int(root, "timeout", &(info->timeout), false);
root = api_add_int(root, "frequency", &(info->frequency), false);
root = api_add_int(root, "fan1", &(info->fan0), false);
root = api_add_int(root, "fan2", &(info->fan1), false);
root = api_add_int(root, "fan3", &(info->fan2), false);
root = api_add_int(root, "temp1", &(info->temp0), false);
root = api_add_int(root, "temp2", &(info->temp1), false);
root = api_add_int(root, "temp3", &(info->temp2), false);
root = api_add_int(root, "temp_max", &(info->temp_max), false);
root = api_add_int(root, "no_matching_work", &(info->no_matching_work), false);
for (i = 0; i < info->miner_count; i++) {
char mcw[24];
sprintf(mcw, "match_work_count%d", i + 1);
root = api_add_int(root, mcw, &(info->matching_work[i]), false);
}
return root;
}
static void avalon_shutdown(struct thr_info *thr)
{
do_avalon_close(thr);
}
struct device_drv avalon_drv = {
.drv_id = DRIVER_AVALON,
.dname = "avalon",
.name = "AVA",
.drv_detect = avalon_detect,
.thread_prepare = avalon_prepare,
.hash_work = hash_queued_work,
.queue_full = avalon_fill,
.scanwork = avalon_scanhash,
.flush_work = avalon_flush_work,
.get_api_stats = avalon_api_stats,
.get_statline_before = get_avalon_statline_before,
.reinit_device = avalon_init,
.thread_shutdown = avalon_shutdown,
};