1
0
mirror of https://github.com/GOSTSec/sgminer synced 2025-01-22 20:44:19 +00:00
sgminer/usbutils.c

3696 lines
96 KiB
C

/*
* Copyright 2012-2013 Andrew Smith
* Copyright 2013 Con Kolivas <kernel@kolivas.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include <ctype.h>
#include <stdint.h>
#include <stdbool.h>
#include "logging.h"
#include "miner.h"
#include "usbutils.h"
#define NODEV(err) ((err) == LIBUSB_ERROR_NO_DEVICE || \
(err) == LIBUSB_ERROR_PIPE || \
(err) == LIBUSB_ERROR_OTHER)
#define NOCONTROLDEV(err) ((err) == LIBUSB_ERROR_NO_DEVICE || \
(err) == LIBUSB_ERROR_OTHER)
#ifdef USE_BFLSC
#define DRV_BFLSC 1
#endif
#ifdef USE_BITFORCE
#define DRV_BITFORCE 2
#endif
#ifdef USE_MODMINER
#define DRV_MODMINER 3
#endif
#ifdef USE_ZTEX
#define DRV_ZTEX 4
#endif
#ifdef USE_ICARUS
#define DRV_ICARUS 5
#endif
#ifdef USE_AVALON
#define DRV_AVALON 6
#endif
#define DRV_LAST -1
#define USB_CONFIG 1
#ifdef WIN32
#define BFLSC_TIMEOUT_MS 999
#define BITFORCE_TIMEOUT_MS 999
#define MODMINER_TIMEOUT_MS 999
#define AVALON_TIMEOUT_MS 999
#define ICARUS_TIMEOUT_MS 999
#else
#define BFLSC_TIMEOUT_MS 300
#define BITFORCE_TIMEOUT_MS 200
#define MODMINER_TIMEOUT_MS 100
#define AVALON_TIMEOUT_MS 200
#define ICARUS_TIMEOUT_MS 200
#endif
#define USB_READ_MINPOLL 40
#ifdef USE_BFLSC
// N.B. transfer size is 512 with USB2.0, but only 64 with USB1.1
static struct usb_endpoints bas_eps[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0 }
};
#endif
#ifdef USE_BITFORCE
// N.B. transfer size is 512 with USB2.0, but only 64 with USB1.1
static struct usb_endpoints bfl_eps[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0 }
};
#endif
#ifdef USE_MODMINER
static struct usb_endpoints mmq_eps[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(3), 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(3), 0 }
};
#endif
#ifdef USE_AVALON
static struct usb_endpoints ava_eps[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0 }
};
#endif
#ifdef USE_ICARUS
static struct usb_endpoints ica_eps[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(3), 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0 }
};
static struct usb_endpoints amu_eps[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(1), 0 }
};
static struct usb_endpoints llt_eps[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0 }
};
static struct usb_endpoints cmr1_eps[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0 }
/*
Interface 1
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(3), 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(4), 0 },
Interface 2
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(5), 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(6), 0 },
Interface 3
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(7), 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(8), 0 }
*/
};
static struct usb_endpoints cmr2_eps[] = {
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0 },
{ LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0 }
};
#endif
#define IDVENDOR_FTDI 0x0403
// TODO: Add support for (at least) Isochronous endpoints
static struct usb_find_devices find_dev[] = {
#ifdef USE_BFLSC
{
.drv = DRV_BFLSC,
.name = "BAS",
.ident = IDENT_BAS,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6014,
//.iManufacturer = "Butterfly Labs",
.iProduct = "BitFORCE SHA256 SC",
.kernel = 0,
.config = 1,
.interface = 0,
.timeout = BFLSC_TIMEOUT_MS,
.latency = LATENCY_STD,
.epcount = ARRAY_SIZE(bas_eps),
.eps = bas_eps },
#endif
#ifdef USE_BITFORCE
{
.drv = DRV_BITFORCE,
.name = "BFL",
.ident = IDENT_BFL,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6014,
.iManufacturer = "Butterfly Labs Inc.",
.iProduct = "BitFORCE SHA256",
.kernel = 0,
.config = 1,
.interface = 0,
.timeout = BITFORCE_TIMEOUT_MS,
.latency = LATENCY_STD,
.epcount = ARRAY_SIZE(bfl_eps),
.eps = bfl_eps },
#endif
#ifdef USE_MODMINER
{
.drv = DRV_MODMINER,
.name = "MMQ",
.ident = IDENT_MMQ,
.idVendor = 0x1fc9,
.idProduct = 0x0003,
.kernel = 0,
.config = 1,
.interface = 1,
.timeout = MODMINER_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
.epcount = ARRAY_SIZE(mmq_eps),
.eps = mmq_eps },
#endif
#ifdef USE_AVALON
{
.drv = DRV_AVALON,
.name = "BTB",
.ident = IDENT_BTB,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6001,
.iManufacturer = "Burnin Electronics",
.iProduct = "BitBurner",
.kernel = 0,
.config = 1,
.interface = 0,
.timeout = AVALON_TIMEOUT_MS,
.latency = 10,
.epcount = ARRAY_SIZE(ava_eps),
.eps = ava_eps },
{
.drv = DRV_AVALON,
.name = "AVA",
.ident = IDENT_AVA,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6001,
.kernel = 0,
.config = 1,
.interface = 0,
.timeout = AVALON_TIMEOUT_MS,
.latency = 10,
.epcount = ARRAY_SIZE(ava_eps),
.eps = ava_eps },
#endif
#ifdef USE_ICARUS
{
.drv = DRV_ICARUS,
.name = "ICA",
.ident = IDENT_ICA,
.idVendor = 0x067b,
.idProduct = 0x2303,
.kernel = 0,
.config = 1,
.interface = 0,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
.epcount = ARRAY_SIZE(ica_eps),
.eps = ica_eps },
{
.drv = DRV_ICARUS,
.name = "AMU",
.ident = IDENT_AMU,
.idVendor = 0x10c4,
.idProduct = 0xea60,
.kernel = 0,
.config = 1,
.interface = 0,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_UNUSED,
.epcount = ARRAY_SIZE(amu_eps),
.eps = amu_eps },
{
.drv = DRV_ICARUS,
.name = "BLT",
.ident = IDENT_BLT,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6001,
.iProduct = "FT232R USB UART",
.kernel = 0,
.config = 1,
.interface = 0,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_STD,
.epcount = ARRAY_SIZE(llt_eps),
.eps = llt_eps },
// For any that don't match the above "BLT"
{
.drv = DRV_ICARUS,
.name = "LLT",
.ident = IDENT_LLT,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6001,
.kernel = 0,
.config = 1,
.interface = 0,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_STD,
.epcount = ARRAY_SIZE(llt_eps),
.eps = llt_eps },
{
.drv = DRV_ICARUS,
.name = "CMR",
.ident = IDENT_CMR1,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x8350,
.iProduct = "Cairnsmore1",
.kernel = 0,
.config = 1,
.interface = 0,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_STD,
.epcount = ARRAY_SIZE(cmr1_eps),
.eps = cmr1_eps },
{
.drv = DRV_ICARUS,
.name = "CMR",
.ident = IDENT_CMR2,
.idVendor = IDVENDOR_FTDI,
.idProduct = 0x6014,
.iProduct = "Cairnsmore1",
.kernel = 0,
.config = 1,
.interface = 0,
.timeout = ICARUS_TIMEOUT_MS,
.latency = LATENCY_STD,
.epcount = ARRAY_SIZE(cmr2_eps),
.eps = cmr2_eps },
#endif
#ifdef USE_ZTEX
// This is here so cgminer -n shows them
// the ztex driver (as at 201303) doesn't use usbutils
{
.drv = DRV_ZTEX,
.name = "ZTX",
.ident = IDENT_ZTX,
.idVendor = 0x221a,
.idProduct = 0x0100,
.kernel = 0,
.config = 1,
.interface = 1,
.timeout = 100,
.latency = LATENCY_UNUSED,
.epcount = 0,
.eps = NULL },
#endif
{ DRV_LAST, NULL, 0, 0, 0, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, NULL }
};
#ifdef USE_BFLSC
extern struct device_drv bflsc_drv;
#endif
#ifdef USE_BITFORCE
extern struct device_drv bitforce_drv;
#endif
#ifdef USE_MODMINER
extern struct device_drv modminer_drv;
#endif
#ifdef USE_ICARUS
extern struct device_drv icarus_drv;
#endif
#ifdef USE_AVALON
extern struct device_drv avalon_drv;
#endif
#define STRBUFLEN 256
static const char *BLANK = "";
static const char *space = " ";
static const char *nodatareturned = "no data returned ";
#define IOERR_CHECK(cgpu, err) \
if (err == LIBUSB_ERROR_IO) { \
cgpu->usbinfo.ioerr_count++; \
cgpu->usbinfo.continuous_ioerr_count++; \
} else { \
cgpu->usbinfo.continuous_ioerr_count = 0; \
}
#if 0 // enable USBDEBUG - only during development testing
static const char *debug_true_str = "true";
static const char *debug_false_str = "false";
static const char *nodevstr = "=NODEV";
#define bool_str(boo) ((boo) ? debug_true_str : debug_false_str)
#define isnodev(err) (NODEV(err) ? nodevstr : BLANK)
#define USBDEBUG(fmt, ...) applog(LOG_WARNING, fmt, ##__VA_ARGS__)
#else
#define USBDEBUG(fmt, ...)
#endif
// For device limits by driver
static struct driver_count {
uint32_t count;
uint32_t limit;
} drv_count[DRIVER_MAX];
// For device limits by list of bus/dev
static struct usb_busdev {
int bus_number;
int device_address;
void *resource1;
void *resource2;
} *busdev;
static int busdev_count = 0;
// Total device limit
static int total_count = 0;
static int total_limit = 999999;
struct usb_in_use_list {
struct usb_busdev in_use;
struct usb_in_use_list *prev;
struct usb_in_use_list *next;
};
// List of in use devices
static struct usb_in_use_list *in_use_head = NULL;
struct resource_work {
bool lock;
const char *dname;
uint8_t bus_number;
uint8_t device_address;
struct resource_work *next;
};
// Pending work for the reslock thread
struct resource_work *res_work_head = NULL;
struct resource_reply {
uint8_t bus_number;
uint8_t device_address;
bool got;
struct resource_reply *next;
};
// Replies to lock requests
struct resource_reply *res_reply_head = NULL;
// Some stats need to always be defined
#define SEQ0 0
#define SEQ1 1
// NONE must be 0 - calloced
#define MODE_NONE 0
#define MODE_CTRL_READ (1 << 0)
#define MODE_CTRL_WRITE (1 << 1)
#define MODE_BULK_READ (1 << 2)
#define MODE_BULK_WRITE (1 << 3)
// Set this to 0 to remove stats processing
#define DO_USB_STATS 1
static bool stats_initialised = false;
#if DO_USB_STATS
#define MODE_SEP_STR "+"
#define MODE_NONE_STR "X"
#define MODE_CTRL_READ_STR "cr"
#define MODE_CTRL_WRITE_STR "cw"
#define MODE_BULK_READ_STR "br"
#define MODE_BULK_WRITE_STR "bw"
// One for each CMD, TIMEOUT, ERROR
struct cg_usb_stats_item {
uint64_t count;
double total_delay;
double min_delay;
double max_delay;
struct timeval first;
struct timeval last;
};
#define CMD_CMD 0
#define CMD_TIMEOUT 1
#define CMD_ERROR 2
// One for each C_CMD
struct cg_usb_stats_details {
int seq;
uint32_t modes;
struct cg_usb_stats_item item[CMD_ERROR+1];
};
// One for each device
struct cg_usb_stats {
char *name;
int device_id;
struct cg_usb_stats_details *details;
};
static struct cg_usb_stats *usb_stats = NULL;
static int next_stat = USB_NOSTAT;
#define SECTOMS(s) ((int)((s) * 1000))
#define USB_STATS(sgpu_, sta_, fin_, err_, mode_, cmd_, seq_, tmo_) \
stats(sgpu_, sta_, fin_, err_, mode_, cmd_, seq_, tmo_)
#define STATS_TIMEVAL(tv_) cgtime(tv_)
#define USB_REJECT(sgpu_, mode_) rejected_inc(sgpu_, mode_)
#else
#define USB_STATS(sgpu_, sta_, fin_, err_, mode_, cmd_, seq_, tmo_)
#define STATS_TIMEVAL(tv_)
#define USB_REJECT(sgpu_, mode_)
#endif // DO_USB_STATS
static const char **usb_commands;
static const char *C_REJECTED_S = "RejectedNoDevice";
static const char *C_PING_S = "Ping";
static const char *C_CLEAR_S = "Clear";
static const char *C_REQUESTVERSION_S = "RequestVersion";
static const char *C_GETVERSION_S = "GetVersion";
static const char *C_REQUESTFPGACOUNT_S = "RequestFPGACount";
static const char *C_GETFPGACOUNT_S = "GetFPGACount";
static const char *C_STARTPROGRAM_S = "StartProgram";
static const char *C_STARTPROGRAMSTATUS_S = "StartProgramStatus";
static const char *C_PROGRAM_S = "Program";
static const char *C_PROGRAMSTATUS_S = "ProgramStatus";
static const char *C_PROGRAMSTATUS2_S = "ProgramStatus2";
static const char *C_FINALPROGRAMSTATUS_S = "FinalProgramStatus";
static const char *C_SETCLOCK_S = "SetClock";
static const char *C_REPLYSETCLOCK_S = "ReplySetClock";
static const char *C_REQUESTUSERCODE_S = "RequestUserCode";
static const char *C_GETUSERCODE_S = "GetUserCode";
static const char *C_REQUESTTEMPERATURE_S = "RequestTemperature";
static const char *C_GETTEMPERATURE_S = "GetTemperature";
static const char *C_SENDWORK_S = "SendWork";
static const char *C_SENDWORKSTATUS_S = "SendWorkStatus";
static const char *C_REQUESTWORKSTATUS_S = "RequestWorkStatus";
static const char *C_GETWORKSTATUS_S = "GetWorkStatus";
static const char *C_REQUESTIDENTIFY_S = "RequestIdentify";
static const char *C_GETIDENTIFY_S = "GetIdentify";
static const char *C_REQUESTFLASH_S = "RequestFlash";
static const char *C_REQUESTSENDWORK_S = "RequestSendWork";
static const char *C_REQUESTSENDWORKSTATUS_S = "RequestSendWorkStatus";
static const char *C_RESET_S = "Reset";
static const char *C_SETBAUD_S = "SetBaud";
static const char *C_SETDATA_S = "SetDataCtrl";
static const char *C_SETFLOW_S = "SetFlowCtrl";
static const char *C_SETMODEM_S = "SetModemCtrl";
static const char *C_PURGERX_S = "PurgeRx";
static const char *C_PURGETX_S = "PurgeTx";
static const char *C_FLASHREPLY_S = "FlashReply";
static const char *C_REQUESTDETAILS_S = "RequestDetails";
static const char *C_GETDETAILS_S = "GetDetails";
static const char *C_REQUESTRESULTS_S = "RequestResults";
static const char *C_GETRESULTS_S = "GetResults";
static const char *C_REQUESTQUEJOB_S = "RequestQueJob";
static const char *C_REQUESTQUEJOBSTATUS_S = "RequestQueJobStatus";
static const char *C_QUEJOB_S = "QueJob";
static const char *C_QUEJOBSTATUS_S = "QueJobStatus";
static const char *C_QUEFLUSH_S = "QueFlush";
static const char *C_QUEFLUSHREPLY_S = "QueFlushReply";
static const char *C_REQUESTVOLTS_S = "RequestVolts";
static const char *C_GETVOLTS_S = "GetVolts";
static const char *C_SENDTESTWORK_S = "SendTestWork";
static const char *C_LATENCY_S = "SetLatency";
static const char *C_SETLINE_S = "SetLine";
static const char *C_VENDOR_S = "Vendor";
static const char *C_SETFAN_S = "SetFan";
static const char *C_FANREPLY_S = "GetFan";
static const char *C_AVALON_TASK_S = "AvalonTask";
static const char *C_AVALON_READ_S = "AvalonRead";
static const char *C_GET_AVALON_READY_S = "AvalonReady";
static const char *C_AVALON_RESET_S = "AvalonReset";
static const char *C_GET_AVALON_RESET_S = "GetAvalonReset";
static const char *C_FTDI_STATUS_S = "FTDIStatus";
static const char *C_ENABLE_UART_S = "EnableUART";
static const char *C_BB_SET_VOLTAGE_S = "SetCoreVoltage";
static const char *C_BB_GET_VOLTAGE_S = "GetCoreVoltage";
#ifdef EOL
#undef EOL
#endif
#define EOL "\n"
static const char *DESDEV = "Device";
static const char *DESCON = "Config";
static const char *DESSTR = "String";
static const char *DESINT = "Interface";
static const char *DESEP = "Endpoint";
static const char *DESHID = "HID";
static const char *DESRPT = "Report";
static const char *DESPHY = "Physical";
static const char *DESHUB = "Hub";
static const char *EPIN = "In: ";
static const char *EPOUT = "Out: ";
static const char *EPX = "?: ";
static const char *CONTROL = "Control";
static const char *ISOCHRONOUS_X = "Isochronous+?";
static const char *ISOCHRONOUS_N_X = "Isochronous+None+?";
static const char *ISOCHRONOUS_N_D = "Isochronous+None+Data";
static const char *ISOCHRONOUS_N_F = "Isochronous+None+Feedback";
static const char *ISOCHRONOUS_N_I = "Isochronous+None+Implicit";
static const char *ISOCHRONOUS_A_X = "Isochronous+Async+?";
static const char *ISOCHRONOUS_A_D = "Isochronous+Async+Data";
static const char *ISOCHRONOUS_A_F = "Isochronous+Async+Feedback";
static const char *ISOCHRONOUS_A_I = "Isochronous+Async+Implicit";
static const char *ISOCHRONOUS_D_X = "Isochronous+Adaptive+?";
static const char *ISOCHRONOUS_D_D = "Isochronous+Adaptive+Data";
static const char *ISOCHRONOUS_D_F = "Isochronous+Adaptive+Feedback";
static const char *ISOCHRONOUS_D_I = "Isochronous+Adaptive+Implicit";
static const char *ISOCHRONOUS_S_X = "Isochronous+Sync+?";
static const char *ISOCHRONOUS_S_D = "Isochronous+Sync+Data";
static const char *ISOCHRONOUS_S_F = "Isochronous+Sync+Feedback";
static const char *ISOCHRONOUS_S_I = "Isochronous+Sync+Implicit";
static const char *BULK = "Bulk";
static const char *INTERRUPT = "Interrupt";
static const char *UNKNOWN = "Unknown";
static const char *err_io_str = " IO Error";
static const char *err_access_str = " Access Denied-a";
static const char *err_timeout_str = " Reply Timeout";
static const char *err_pipe_str = " Access denied-p";
static const char *err_other_str = " Access denied-o";
static const char *usberrstr(int err)
{
switch (err) {
case LIBUSB_ERROR_IO:
return err_io_str;
case LIBUSB_ERROR_ACCESS:
return err_access_str;
case LIBUSB_ERROR_TIMEOUT:
return err_timeout_str;
case LIBUSB_ERROR_PIPE:
return err_pipe_str;
case LIBUSB_ERROR_OTHER:
return err_other_str;
}
return BLANK;
}
static const char *destype(uint8_t bDescriptorType)
{
switch (bDescriptorType) {
case LIBUSB_DT_DEVICE:
return DESDEV;
case LIBUSB_DT_CONFIG:
return DESCON;
case LIBUSB_DT_STRING:
return DESSTR;
case LIBUSB_DT_INTERFACE:
return DESINT;
case LIBUSB_DT_ENDPOINT:
return DESEP;
case LIBUSB_DT_HID:
return DESHID;
case LIBUSB_DT_REPORT:
return DESRPT;
case LIBUSB_DT_PHYSICAL:
return DESPHY;
case LIBUSB_DT_HUB:
return DESHUB;
}
return UNKNOWN;
}
static const char *epdir(uint8_t bEndpointAddress)
{
switch (bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) {
case LIBUSB_ENDPOINT_IN:
return EPIN;
case LIBUSB_ENDPOINT_OUT:
return EPOUT;
}
return EPX;
}
static const char *epatt(uint8_t bmAttributes)
{
switch(bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) {
case LIBUSB_TRANSFER_TYPE_CONTROL:
return CONTROL;
case LIBUSB_TRANSFER_TYPE_BULK:
return BULK;
case LIBUSB_TRANSFER_TYPE_INTERRUPT:
return INTERRUPT;
case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
switch(bmAttributes & LIBUSB_ISO_SYNC_TYPE_MASK) {
case LIBUSB_ISO_SYNC_TYPE_NONE:
switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) {
case LIBUSB_ISO_USAGE_TYPE_DATA:
return ISOCHRONOUS_N_D;
case LIBUSB_ISO_USAGE_TYPE_FEEDBACK:
return ISOCHRONOUS_N_F;
case LIBUSB_ISO_USAGE_TYPE_IMPLICIT:
return ISOCHRONOUS_N_I;
}
return ISOCHRONOUS_N_X;
case LIBUSB_ISO_SYNC_TYPE_ASYNC:
switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) {
case LIBUSB_ISO_USAGE_TYPE_DATA:
return ISOCHRONOUS_A_D;
case LIBUSB_ISO_USAGE_TYPE_FEEDBACK:
return ISOCHRONOUS_A_F;
case LIBUSB_ISO_USAGE_TYPE_IMPLICIT:
return ISOCHRONOUS_A_I;
}
return ISOCHRONOUS_A_X;
case LIBUSB_ISO_SYNC_TYPE_ADAPTIVE:
switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) {
case LIBUSB_ISO_USAGE_TYPE_DATA:
return ISOCHRONOUS_D_D;
case LIBUSB_ISO_USAGE_TYPE_FEEDBACK:
return ISOCHRONOUS_D_F;
case LIBUSB_ISO_USAGE_TYPE_IMPLICIT:
return ISOCHRONOUS_D_I;
}
return ISOCHRONOUS_D_X;
case LIBUSB_ISO_SYNC_TYPE_SYNC:
switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) {
case LIBUSB_ISO_USAGE_TYPE_DATA:
return ISOCHRONOUS_S_D;
case LIBUSB_ISO_USAGE_TYPE_FEEDBACK:
return ISOCHRONOUS_S_F;
case LIBUSB_ISO_USAGE_TYPE_IMPLICIT:
return ISOCHRONOUS_S_I;
}
return ISOCHRONOUS_S_X;
}
return ISOCHRONOUS_X;
}
return UNKNOWN;
}
static void append(char **buf, char *append, size_t *off, size_t *len)
{
int new = strlen(append);
if ((new + *off) >= *len)
{
*len *= 2;
*buf = realloc(*buf, *len);
if (unlikely(!*buf))
quit(1, "USB failed to realloc append");
}
strcpy(*buf + *off, append);
*off += new;
}
static bool setgetdes(ssize_t count, libusb_device *dev, struct libusb_device_handle *handle, struct libusb_config_descriptor **config, int cd, char **buf, size_t *off, size_t *len)
{
char tmp[512];
int err;
err = libusb_set_configuration(handle, cd);
if (err) {
snprintf(tmp, sizeof(tmp), EOL " ** dev %d: Failed to set config descriptor to %d, err %d",
(int)count, cd, err);
append(buf, tmp, off, len);
return false;
}
err = libusb_get_active_config_descriptor(dev, config);
if (err) {
snprintf(tmp, sizeof(tmp), EOL " ** dev %d: Failed to get active config descriptor set to %d, err %d",
(int)count, cd, err);
append(buf, tmp, off, len);
return false;
}
snprintf(tmp, sizeof(tmp), EOL " ** dev %d: Set & Got active config descriptor to %d, err %d",
(int)count, cd, err);
append(buf, tmp, off, len);
return true;
}
static void usb_full(ssize_t *count, libusb_device *dev, char **buf, size_t *off, size_t *len, int level)
{
struct libusb_device_descriptor desc;
uint8_t bus_number;
uint8_t device_address;
struct libusb_device_handle *handle;
struct libusb_config_descriptor *config;
const struct libusb_interface_descriptor *idesc;
const struct libusb_endpoint_descriptor *epdesc;
unsigned char man[STRBUFLEN+1];
unsigned char prod[STRBUFLEN+1];
unsigned char ser[STRBUFLEN+1];
char tmp[512];
int err, i, j, k;
err = libusb_get_device_descriptor(dev, &desc);
if (opt_usb_list_all && err) {
snprintf(tmp, sizeof(tmp), EOL ".USB dev %d: Failed to get descriptor, err %d",
(int)(++(*count)), err);
append(buf, tmp, off, len);
return;
}
bus_number = libusb_get_bus_number(dev);
device_address = libusb_get_device_address(dev);
if (!opt_usb_list_all) {
bool known = false;
for (i = 0; find_dev[i].drv != DRV_LAST; i++)
if ((find_dev[i].idVendor == desc.idVendor) &&
(find_dev[i].idProduct == desc.idProduct)) {
known = true;
break;
}
if (!known)
return;
}
(*count)++;
if (level == 0) {
snprintf(tmp, sizeof(tmp), EOL ".USB dev %d: Bus %d Device %d ID: %04x:%04x",
(int)(*count), (int)bus_number, (int)device_address,
desc.idVendor, desc.idProduct);
} else {
snprintf(tmp, sizeof(tmp), EOL ".USB dev %d: Bus %d Device %d Device Descriptor:" EOL "\tLength: %d" EOL
"\tDescriptor Type: %s" EOL "\tUSB: %04x" EOL "\tDeviceClass: %d" EOL
"\tDeviceSubClass: %d" EOL "\tDeviceProtocol: %d" EOL "\tMaxPacketSize0: %d" EOL
"\tidVendor: %04x" EOL "\tidProduct: %04x" EOL "\tDeviceRelease: %x" EOL
"\tNumConfigurations: %d",
(int)(*count), (int)bus_number, (int)device_address,
(int)(desc.bLength), destype(desc.bDescriptorType),
desc.bcdUSB, (int)(desc.bDeviceClass), (int)(desc.bDeviceSubClass),
(int)(desc.bDeviceProtocol), (int)(desc.bMaxPacketSize0),
desc.idVendor, desc.idProduct, desc.bcdDevice,
(int)(desc.bNumConfigurations));
}
append(buf, tmp, off, len);
err = libusb_open(dev, &handle);
if (err) {
snprintf(tmp, sizeof(tmp), EOL " ** dev %d: Failed to open, err %d", (int)(*count), err);
append(buf, tmp, off, len);
return;
}
err = libusb_get_string_descriptor_ascii(handle, desc.iManufacturer, man, STRBUFLEN);
if (err < 0)
snprintf((char *)man, sizeof(man), "** err(%d)%s", err, usberrstr(err));
err = libusb_get_string_descriptor_ascii(handle, desc.iProduct, prod, STRBUFLEN);
if (err < 0)
snprintf((char *)prod, sizeof(prod), "** err(%d)%s", err, usberrstr(err));
if (level == 0) {
libusb_close(handle);
snprintf(tmp, sizeof(tmp), EOL " Manufacturer: '%s'" EOL " Product: '%s'", man, prod);
append(buf, tmp, off, len);
return;
}
if (libusb_kernel_driver_active(handle, 0) == 1) {
snprintf(tmp, sizeof(tmp), EOL " * dev %d: kernel attached", (int)(*count));
append(buf, tmp, off, len);
}
err = libusb_get_active_config_descriptor(dev, &config);
if (err) {
if (!setgetdes(*count, dev, handle, &config, 1, buf, off, len)
&& !setgetdes(*count, dev, handle, &config, 0, buf, off, len)) {
libusb_close(handle);
snprintf(tmp, sizeof(tmp), EOL " ** dev %d: Failed to set config descriptor to %d or %d",
(int)(*count), 1, 0);
append(buf, tmp, off, len);
return;
}
}
snprintf(tmp, sizeof(tmp), EOL " dev %d: Active Config:" EOL "\tDescriptorType: %s" EOL
"\tNumInterfaces: %d" EOL "\tConfigurationValue: %d" EOL
"\tAttributes: %d" EOL "\tMaxPower: %d",
(int)(*count), destype(config->bDescriptorType),
(int)(config->bNumInterfaces), (int)(config->iConfiguration),
(int)(config->bmAttributes), (int)(config->MaxPower));
append(buf, tmp, off, len);
for (i = 0; i < (int)(config->bNumInterfaces); i++) {
for (j = 0; j < config->interface[i].num_altsetting; j++) {
idesc = &(config->interface[i].altsetting[j]);
snprintf(tmp, sizeof(tmp), EOL " _dev %d: Interface Descriptor %d:" EOL
"\tDescriptorType: %s" EOL "\tInterfaceNumber: %d" EOL
"\tNumEndpoints: %d" EOL "\tInterfaceClass: %d" EOL
"\tInterfaceSubClass: %d" EOL "\tInterfaceProtocol: %d",
(int)(*count), j, destype(idesc->bDescriptorType),
(int)(idesc->bInterfaceNumber),
(int)(idesc->bNumEndpoints),
(int)(idesc->bInterfaceClass),
(int)(idesc->bInterfaceSubClass),
(int)(idesc->bInterfaceProtocol));
append(buf, tmp, off, len);
for (k = 0; k < (int)(idesc->bNumEndpoints); k++) {
epdesc = &(idesc->endpoint[k]);
snprintf(tmp, sizeof(tmp), EOL " __dev %d: Interface %d Endpoint %d:" EOL
"\tDescriptorType: %s" EOL
"\tEndpointAddress: %s0x%x" EOL
"\tAttributes: %s" EOL "\tMaxPacketSize: %d" EOL
"\tInterval: %d" EOL "\tRefresh: %d",
(int)(*count), (int)(idesc->bInterfaceNumber), k,
destype(epdesc->bDescriptorType),
epdir(epdesc->bEndpointAddress),
(int)(epdesc->bEndpointAddress),
epatt(epdesc->bmAttributes),
epdesc->wMaxPacketSize,
(int)(epdesc->bInterval),
(int)(epdesc->bRefresh));
append(buf, tmp, off, len);
}
}
}
libusb_free_config_descriptor(config);
config = NULL;
err = libusb_get_string_descriptor_ascii(handle, desc.iSerialNumber, ser, STRBUFLEN);
if (err < 0)
snprintf((char *)ser, sizeof(ser), "** err(%d)%s", err, usberrstr(err));
snprintf(tmp, sizeof(tmp), EOL " dev %d: More Info:" EOL "\tManufacturer: '%s'" EOL
"\tProduct: '%s'" EOL "\tSerial '%s'",
(int)(*count), man, prod, ser);
append(buf, tmp, off, len);
libusb_close(handle);
}
// Function to dump all USB devices
void usb_all(int level)
{
libusb_device **list;
ssize_t count, i, j;
char *buf;
size_t len, off;
count = libusb_get_device_list(NULL, &list);
if (count < 0) {
applog(LOG_ERR, "USB all: failed, err %d%s", (int)count, usberrstr((int)count));
return;
}
if (count == 0)
applog(LOG_WARNING, "USB all: found no devices");
else
{
len = 10000;
buf = malloc(len+1);
if (unlikely(!buf))
quit(1, "USB failed to malloc buf in usb_all");
sprintf(buf, "USB all: found %d devices", (int)count);
off = strlen(buf);
if (!opt_usb_list_all)
append(&buf, " - listing known devices", &off, &len);
j = -1;
for (i = 0; i < count; i++)
usb_full(&j, list[i], &buf, &off, &len, level);
_applog(LOG_WARNING, buf);
free(buf);
if (j == -1)
applog(LOG_WARNING, "No known USB devices");
else
applog(LOG_WARNING, "%d %sUSB devices",
(int)(++j), opt_usb_list_all ? BLANK : "known ");
}
libusb_free_device_list(list, 1);
}
static void cgusb_check_init()
{
mutex_lock(&cgusb_lock);
if (stats_initialised == false) {
// N.B. environment LIBUSB_DEBUG also sets libusb_set_debug()
if (opt_usbdump >= 0) {
libusb_set_debug(NULL, opt_usbdump);
usb_all(opt_usbdump);
}
usb_commands = malloc(sizeof(*usb_commands) * C_MAX);
if (unlikely(!usb_commands))
quit(1, "USB failed to malloc usb_commands");
// use constants so the stat generation is very quick
// and the association between number and name can't
// be missalined easily
usb_commands[C_REJECTED] = C_REJECTED_S;
usb_commands[C_PING] = C_PING_S;
usb_commands[C_CLEAR] = C_CLEAR_S;
usb_commands[C_REQUESTVERSION] = C_REQUESTVERSION_S;
usb_commands[C_GETVERSION] = C_GETVERSION_S;
usb_commands[C_REQUESTFPGACOUNT] = C_REQUESTFPGACOUNT_S;
usb_commands[C_GETFPGACOUNT] = C_GETFPGACOUNT_S;
usb_commands[C_STARTPROGRAM] = C_STARTPROGRAM_S;
usb_commands[C_STARTPROGRAMSTATUS] = C_STARTPROGRAMSTATUS_S;
usb_commands[C_PROGRAM] = C_PROGRAM_S;
usb_commands[C_PROGRAMSTATUS] = C_PROGRAMSTATUS_S;
usb_commands[C_PROGRAMSTATUS2] = C_PROGRAMSTATUS2_S;
usb_commands[C_FINALPROGRAMSTATUS] = C_FINALPROGRAMSTATUS_S;
usb_commands[C_SETCLOCK] = C_SETCLOCK_S;
usb_commands[C_REPLYSETCLOCK] = C_REPLYSETCLOCK_S;
usb_commands[C_REQUESTUSERCODE] = C_REQUESTUSERCODE_S;
usb_commands[C_GETUSERCODE] = C_GETUSERCODE_S;
usb_commands[C_REQUESTTEMPERATURE] = C_REQUESTTEMPERATURE_S;
usb_commands[C_GETTEMPERATURE] = C_GETTEMPERATURE_S;
usb_commands[C_SENDWORK] = C_SENDWORK_S;
usb_commands[C_SENDWORKSTATUS] = C_SENDWORKSTATUS_S;
usb_commands[C_REQUESTWORKSTATUS] = C_REQUESTWORKSTATUS_S;
usb_commands[C_GETWORKSTATUS] = C_GETWORKSTATUS_S;
usb_commands[C_REQUESTIDENTIFY] = C_REQUESTIDENTIFY_S;
usb_commands[C_GETIDENTIFY] = C_GETIDENTIFY_S;
usb_commands[C_REQUESTFLASH] = C_REQUESTFLASH_S;
usb_commands[C_REQUESTSENDWORK] = C_REQUESTSENDWORK_S;
usb_commands[C_REQUESTSENDWORKSTATUS] = C_REQUESTSENDWORKSTATUS_S;
usb_commands[C_RESET] = C_RESET_S;
usb_commands[C_SETBAUD] = C_SETBAUD_S;
usb_commands[C_SETDATA] = C_SETDATA_S;
usb_commands[C_SETFLOW] = C_SETFLOW_S;
usb_commands[C_SETMODEM] = C_SETMODEM_S;
usb_commands[C_PURGERX] = C_PURGERX_S;
usb_commands[C_PURGETX] = C_PURGETX_S;
usb_commands[C_FLASHREPLY] = C_FLASHREPLY_S;
usb_commands[C_REQUESTDETAILS] = C_REQUESTDETAILS_S;
usb_commands[C_GETDETAILS] = C_GETDETAILS_S;
usb_commands[C_REQUESTRESULTS] = C_REQUESTRESULTS_S;
usb_commands[C_GETRESULTS] = C_GETRESULTS_S;
usb_commands[C_REQUESTQUEJOB] = C_REQUESTQUEJOB_S;
usb_commands[C_REQUESTQUEJOBSTATUS] = C_REQUESTQUEJOBSTATUS_S;
usb_commands[C_QUEJOB] = C_QUEJOB_S;
usb_commands[C_QUEJOBSTATUS] = C_QUEJOBSTATUS_S;
usb_commands[C_QUEFLUSH] = C_QUEFLUSH_S;
usb_commands[C_QUEFLUSHREPLY] = C_QUEFLUSHREPLY_S;
usb_commands[C_REQUESTVOLTS] = C_REQUESTVOLTS_S;
usb_commands[C_GETVOLTS] = C_GETVOLTS_S;
usb_commands[C_SENDTESTWORK] = C_SENDTESTWORK_S;
usb_commands[C_LATENCY] = C_LATENCY_S;
usb_commands[C_SETLINE] = C_SETLINE_S;
usb_commands[C_VENDOR] = C_VENDOR_S;
usb_commands[C_SETFAN] = C_SETFAN_S;
usb_commands[C_FANREPLY] = C_FANREPLY_S;
usb_commands[C_AVALON_TASK] = C_AVALON_TASK_S;
usb_commands[C_AVALON_READ] = C_AVALON_READ_S;
usb_commands[C_GET_AVALON_READY] = C_GET_AVALON_READY_S;
usb_commands[C_AVALON_RESET] = C_AVALON_RESET_S;
usb_commands[C_GET_AVALON_RESET] = C_GET_AVALON_RESET_S;
usb_commands[C_FTDI_STATUS] = C_FTDI_STATUS_S;
usb_commands[C_ENABLE_UART] = C_ENABLE_UART_S;
usb_commands[C_BB_SET_VOLTAGE] = C_BB_SET_VOLTAGE_S;
usb_commands[C_BB_GET_VOLTAGE] = C_BB_GET_VOLTAGE_S;
stats_initialised = true;
}
mutex_unlock(&cgusb_lock);
}
const char *usb_cmdname(enum usb_cmds cmd)
{
cgusb_check_init();
return usb_commands[cmd];
}
void usb_applog(struct cgpu_info *cgpu, enum usb_cmds cmd, char *msg, int amount, int err)
{
if (msg && !*msg)
msg = NULL;
if (!msg && amount == 0 && err == LIBUSB_SUCCESS)
msg = (char *)nodatareturned;
applog(LOG_ERR, "%s%i: %s failed%s%s (err=%d amt=%d)",
cgpu->drv->name, cgpu->device_id,
usb_cmdname(cmd),
msg ? space : BLANK, msg ? msg : BLANK,
err, amount);
}
static void in_use_store_ress(uint8_t bus_number, uint8_t device_address, void *resource1, void *resource2)
{
struct usb_in_use_list *in_use_tmp;
bool found = false, empty = true;
mutex_lock(&cgusb_lock);
in_use_tmp = in_use_head;
while (in_use_tmp) {
if (in_use_tmp->in_use.bus_number == (int)bus_number &&
in_use_tmp->in_use.device_address == (int)device_address) {
found = true;
if (in_use_tmp->in_use.resource1)
empty = false;
in_use_tmp->in_use.resource1 = resource1;
if (in_use_tmp->in_use.resource2)
empty = false;
in_use_tmp->in_use.resource2 = resource2;
break;
}
in_use_tmp = in_use_tmp->next;
}
mutex_unlock(&cgusb_lock);
if (found == false)
applog(LOG_ERR, "FAIL: USB store_ress not found (%d:%d)",
(int)bus_number, (int)device_address);
if (empty == false)
applog(LOG_ERR, "FAIL: USB store_ress not empty (%d:%d)",
(int)bus_number, (int)device_address);
}
static void in_use_get_ress(uint8_t bus_number, uint8_t device_address, void **resource1, void **resource2)
{
struct usb_in_use_list *in_use_tmp;
bool found = false, empty = false;
mutex_lock(&cgusb_lock);
in_use_tmp = in_use_head;
while (in_use_tmp) {
if (in_use_tmp->in_use.bus_number == (int)bus_number &&
in_use_tmp->in_use.device_address == (int)device_address) {
found = true;
if (!in_use_tmp->in_use.resource1)
empty = true;
*resource1 = in_use_tmp->in_use.resource1;
in_use_tmp->in_use.resource1 = NULL;
if (!in_use_tmp->in_use.resource2)
empty = true;
*resource2 = in_use_tmp->in_use.resource2;
in_use_tmp->in_use.resource2 = NULL;
break;
}
in_use_tmp = in_use_tmp->next;
}
mutex_unlock(&cgusb_lock);
if (found == false)
applog(LOG_ERR, "FAIL: USB get_lock not found (%d:%d)",
(int)bus_number, (int)device_address);
if (empty == true)
applog(LOG_ERR, "FAIL: USB get_lock empty (%d:%d)",
(int)bus_number, (int)device_address);
}
static bool __is_in_use(uint8_t bus_number, uint8_t device_address)
{
struct usb_in_use_list *in_use_tmp;
bool ret = false;
in_use_tmp = in_use_head;
while (in_use_tmp) {
if (in_use_tmp->in_use.bus_number == (int)bus_number &&
in_use_tmp->in_use.device_address == (int)device_address) {
ret = true;
break;
}
in_use_tmp = in_use_tmp->next;
}
return ret;
}
static bool is_in_use_bd(uint8_t bus_number, uint8_t device_address)
{
bool ret;
mutex_lock(&cgusb_lock);
ret = __is_in_use(bus_number, device_address);
mutex_unlock(&cgusb_lock);
return ret;
}
static bool is_in_use(libusb_device *dev)
{
return is_in_use_bd(libusb_get_bus_number(dev), libusb_get_device_address(dev));
}
static void add_in_use(uint8_t bus_number, uint8_t device_address)
{
struct usb_in_use_list *in_use_tmp;
bool found = false;
mutex_lock(&cgusb_lock);
if (unlikely(__is_in_use(bus_number, device_address))) {
found = true;
goto nofway;
}
in_use_tmp = calloc(1, sizeof(*in_use_tmp));
if (unlikely(!in_use_tmp))
quit(1, "USB failed to calloc in_use_tmp");
in_use_tmp->in_use.bus_number = (int)bus_number;
in_use_tmp->in_use.device_address = (int)device_address;
in_use_tmp->next = in_use_head;
if (in_use_head)
in_use_head->prev = in_use_tmp;
in_use_head = in_use_tmp;
nofway:
mutex_unlock(&cgusb_lock);
if (found)
applog(LOG_ERR, "FAIL: USB add already in use (%d:%d)",
(int)bus_number, (int)device_address);
}
static void remove_in_use(uint8_t bus_number, uint8_t device_address)
{
struct usb_in_use_list *in_use_tmp;
bool found = false;
mutex_lock(&cgusb_lock);
in_use_tmp = in_use_head;
while (in_use_tmp) {
if (in_use_tmp->in_use.bus_number == (int)bus_number &&
in_use_tmp->in_use.device_address == (int)device_address) {
found = true;
if (in_use_tmp == in_use_head) {
in_use_head = in_use_head->next;
if (in_use_head)
in_use_head->prev = NULL;
} else {
in_use_tmp->prev->next = in_use_tmp->next;
if (in_use_tmp->next)
in_use_tmp->next->prev = in_use_tmp->prev;
}
free(in_use_tmp);
break;
}
in_use_tmp = in_use_tmp->next;
}
mutex_unlock(&cgusb_lock);
if (!found)
applog(LOG_ERR, "FAIL: USB remove not already in use (%d:%d)",
(int)bus_number, (int)device_address);
}
static bool cgminer_usb_lock_bd(struct device_drv *drv, uint8_t bus_number, uint8_t device_address)
{
struct resource_work *res_work;
bool ret;
applog(LOG_DEBUG, "USB lock %s %d-%d", drv->dname, (int)bus_number, (int)device_address);
res_work = calloc(1, sizeof(*res_work));
if (unlikely(!res_work))
quit(1, "USB failed to calloc lock res_work");
res_work->lock = true;
res_work->dname = (const char *)(drv->dname);
res_work->bus_number = bus_number;
res_work->device_address = device_address;
mutex_lock(&cgusbres_lock);
res_work->next = res_work_head;
res_work_head = res_work;
mutex_unlock(&cgusbres_lock);
cgsem_post(&usb_resource_sem);
// TODO: add a timeout fail - restart the resource thread?
while (true) {
cgsleep_ms(50);
mutex_lock(&cgusbres_lock);
if (res_reply_head) {
struct resource_reply *res_reply_prev = NULL;
struct resource_reply *res_reply = res_reply_head;
while (res_reply) {
if (res_reply->bus_number == bus_number &&
res_reply->device_address == device_address) {
if (res_reply_prev)
res_reply_prev->next = res_reply->next;
else
res_reply_head = res_reply->next;
mutex_unlock(&cgusbres_lock);
ret = res_reply->got;
free(res_reply);
return ret;
}
res_reply_prev = res_reply;
res_reply = res_reply->next;
}
}
mutex_unlock(&cgusbres_lock);
}
}
static bool cgminer_usb_lock(struct device_drv *drv, libusb_device *dev)
{
return cgminer_usb_lock_bd(drv, libusb_get_bus_number(dev), libusb_get_device_address(dev));
}
static void cgminer_usb_unlock_bd(struct device_drv *drv, uint8_t bus_number, uint8_t device_address)
{
struct resource_work *res_work;
applog(LOG_DEBUG, "USB unlock %s %d-%d", drv->dname, (int)bus_number, (int)device_address);
res_work = calloc(1, sizeof(*res_work));
if (unlikely(!res_work))
quit(1, "USB failed to calloc unlock res_work");
res_work->lock = false;
res_work->dname = (const char *)(drv->dname);
res_work->bus_number = bus_number;
res_work->device_address = device_address;
mutex_lock(&cgusbres_lock);
res_work->next = res_work_head;
res_work_head = res_work;
mutex_unlock(&cgusbres_lock);
cgsem_post(&usb_resource_sem);
return;
}
static void cgminer_usb_unlock(struct device_drv *drv, libusb_device *dev)
{
cgminer_usb_unlock_bd(drv, libusb_get_bus_number(dev), libusb_get_device_address(dev));
}
static struct cg_usb_device *free_cgusb(struct cg_usb_device *cgusb)
{
applog(LOG_DEBUG, "USB free %s", cgusb->found->name);
if (cgusb->serial_string && cgusb->serial_string != BLANK)
free(cgusb->serial_string);
if (cgusb->manuf_string && cgusb->manuf_string != BLANK)
free(cgusb->manuf_string);
if (cgusb->prod_string && cgusb->prod_string != BLANK)
free(cgusb->prod_string);
free(cgusb->descriptor);
free(cgusb->found);
if (cgusb->buffer)
free(cgusb->buffer);
free(cgusb);
return NULL;
}
void usb_uninit(struct cgpu_info *cgpu)
{
applog(LOG_DEBUG, "USB uninit %s%i",
cgpu->drv->name, cgpu->device_id);
// May have happened already during a failed initialisation
// if release_cgpu() was called due to a USB NODEV(err)
if (!cgpu->usbdev)
return;
if (!libusb_release_interface(cgpu->usbdev->handle, cgpu->usbdev->found->interface)) {
cg_wlock(&cgusb_fd_lock);
libusb_close(cgpu->usbdev->handle);
cg_wunlock(&cgusb_fd_lock);
}
cgpu->usbdev = free_cgusb(cgpu->usbdev);
}
/*
* N.B. this is always called inside
* DEVLOCK(cgpu, pstate);
*/
static void release_cgpu(struct cgpu_info *cgpu)
{
struct cg_usb_device *cgusb = cgpu->usbdev;
struct cgpu_info *lookcgpu;
int i;
applog(LOG_DEBUG, "USB release %s%i",
cgpu->drv->name, cgpu->device_id);
// It has already been done
if (cgpu->usbinfo.nodev)
return;
zombie_devs++;
total_count--;
drv_count[cgpu->drv->drv_id].count--;
cgpu->usbinfo.nodev = true;
cgpu->usbinfo.nodev_count++;
cgtime(&cgpu->usbinfo.last_nodev);
// Any devices sharing the same USB device should be marked also
// Currently only MMQ shares a USB device
for (i = 0; i < total_devices; i++) {
lookcgpu = get_devices(i);
if (lookcgpu != cgpu && lookcgpu->usbdev == cgusb) {
total_count--;
drv_count[lookcgpu->drv->drv_id].count--;
lookcgpu->usbinfo.nodev = true;
lookcgpu->usbinfo.nodev_count++;
memcpy(&(lookcgpu->usbinfo.last_nodev),
&(cgpu->usbinfo.last_nodev), sizeof(struct timeval));
lookcgpu->usbdev = NULL;
}
}
usb_uninit(cgpu);
cgminer_usb_unlock_bd(cgpu->drv, cgpu->usbinfo.bus_number, cgpu->usbinfo.device_address);
}
// Currently only used by MMQ
struct cgpu_info *usb_copy_cgpu(struct cgpu_info *orig)
{
struct cgpu_info *copy = calloc(1, sizeof(*copy));
if (unlikely(!copy))
quit(1, "Failed to calloc cgpu for %s in usb_copy_cgpu", orig->drv->dname);
copy->name = orig->name;
copy->drv = copy_drv(orig->drv);
copy->deven = orig->deven;
copy->threads = orig->threads;
copy->usbdev = orig->usbdev;
memcpy(&(copy->usbinfo), &(orig->usbinfo), sizeof(copy->usbinfo));
copy->usbinfo.nodev = (copy->usbdev == NULL);
copy->usbinfo.devlock = orig->usbinfo.devlock;
return copy;
}
struct cgpu_info *usb_alloc_cgpu(struct device_drv *drv, int threads)
{
struct cgpu_info *cgpu = calloc(1, sizeof(*cgpu));
if (unlikely(!cgpu))
quit(1, "Failed to calloc cgpu for %s in usb_alloc_cgpu", drv->dname);
cgpu->drv = drv;
cgpu->deven = DEV_ENABLED;
cgpu->threads = threads;
cgpu->usbinfo.nodev = true;
cgpu->usbinfo.devlock = calloc(1, sizeof(*(cgpu->usbinfo.devlock)));
if (unlikely(!cgpu->usbinfo.devlock))
quit(1, "Failed to calloc devlock for %s in usb_alloc_cgpu", drv->dname);
rwlock_init(cgpu->usbinfo.devlock);
return cgpu;
}
struct cgpu_info *usb_free_cgpu_devlock(struct cgpu_info *cgpu, bool free_devlock)
{
if (cgpu->drv->copy)
free(cgpu->drv);
free(cgpu->device_path);
if (free_devlock)
free(cgpu->usbinfo.devlock);
free(cgpu);
return NULL;
}
#define USB_INIT_FAIL 0
#define USB_INIT_OK 1
#define USB_INIT_IGNORE 2
/*
* WARNING - these assume DEVLOCK(cgpu, pstate) is called first and
* DEVUNLOCK(cgpu, pstate) in called in the same function with the same pstate
* given to DEVLOCK.
* You must call DEVUNLOCK(cgpu, pstate) before exiting the function or it will leave
* the thread Cancelability unrestored
*/
#define DEVLOCK(cgpu, _pth_state) do { \
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &_pth_state); \
wr_lock(cgpu->usbinfo.devlock); \
} while (0)
#define DEVUNLOCK(cgpu, _pth_state) do { \
wr_unlock(cgpu->usbinfo.devlock); \
pthread_setcancelstate(_pth_state, NULL); \
} while (0)
static int _usb_init(struct cgpu_info *cgpu, struct libusb_device *dev, struct usb_find_devices *found)
{
struct cg_usb_device *cgusb = NULL;
struct libusb_config_descriptor *config = NULL;
const struct libusb_interface_descriptor *idesc;
const struct libusb_endpoint_descriptor *epdesc;
unsigned char strbuf[STRBUFLEN+1];
char devpath[32];
char devstr[STRBUFLEN+1];
int err, i, j, k, pstate;
int bad = USB_INIT_FAIL;
int cfg;
DEVLOCK(cgpu, pstate);
cgpu->usbinfo.bus_number = libusb_get_bus_number(dev);
cgpu->usbinfo.device_address = libusb_get_device_address(dev);
snprintf(devpath, sizeof(devpath), "%d:%d",
(int)(cgpu->usbinfo.bus_number),
(int)(cgpu->usbinfo.device_address));
cgpu->device_path = strdup(devpath);
snprintf(devstr, sizeof(devstr), "- %s device %s", found->name, devpath);
cgusb = calloc(1, sizeof(*cgusb));
if (unlikely(!cgusb))
quit(1, "USB failed to calloc _usb_init cgusb");
cgusb->found = found;
if (found->idVendor == IDVENDOR_FTDI)
cgusb->usb_type = USB_TYPE_FTDI;
cgusb->ident = found->ident;
cgusb->descriptor = calloc(1, sizeof(*(cgusb->descriptor)));
if (unlikely(!cgusb->descriptor))
quit(1, "USB failed to calloc _usb_init cgusb descriptor");
err = libusb_get_device_descriptor(dev, cgusb->descriptor);
if (err) {
applog(LOG_DEBUG,
"USB init failed to get descriptor, err %d %s",
err, devstr);
goto dame;
}
cg_wlock(&cgusb_fd_lock);
err = libusb_open(dev, &(cgusb->handle));
cg_wunlock(&cgusb_fd_lock);
if (err) {
switch (err) {
case LIBUSB_ERROR_ACCESS:
applog(LOG_ERR,
"USB init open device failed, err %d, "
"you dont have priviledge to access %s",
err, devstr);
break;
#ifdef WIN32
// Windows specific message
case LIBUSB_ERROR_NOT_SUPPORTED:
applog(LOG_ERR,
"USB init, open device failed, err %d, "
"you need to install a WinUSB driver for %s",
err, devstr);
break;
#endif
default:
applog(LOG_DEBUG,
"USB init, open failed, err %d %s",
err, devstr);
}
goto dame;
}
#ifndef WIN32
if (libusb_kernel_driver_active(cgusb->handle, found->kernel) == 1) {
applog(LOG_DEBUG, "USB init, kernel attached ... %s", devstr);
err = libusb_detach_kernel_driver(cgusb->handle, found->kernel);
if (err == 0) {
applog(LOG_DEBUG,
"USB init, kernel detached successfully %s",
devstr);
} else {
applog(LOG_WARNING,
"USB init, kernel detach failed, err %d in use? %s",
err, devstr);
goto cldame;
}
}
#endif
if (found->iManufacturer) {
unsigned char man[STRBUFLEN+1];
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iManufacturer,
man, STRBUFLEN);
if (err < 0) {
applog(LOG_DEBUG,
"USB init, failed to get iManufacturer, err %d %s",
err, devstr);
goto cldame;
}
if (strcmp((char *)man, found->iManufacturer)) {
applog(LOG_DEBUG, "USB init, iManufacturer mismatch %s",
devstr);
bad = USB_INIT_IGNORE;
goto cldame;
}
}
if (found->iProduct) {
unsigned char prod[STRBUFLEN+1];
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iProduct,
prod, STRBUFLEN);
if (err < 0) {
applog(LOG_DEBUG,
"USB init, failed to get iProduct, err %d %s",
err, devstr);
goto cldame;
}
if (strcmp((char *)prod, found->iProduct)) {
applog(LOG_DEBUG, "USB init, iProduct mismatch %s",
devstr);
bad = USB_INIT_IGNORE;
goto cldame;
}
}
cfg = -1;
err = libusb_get_configuration(cgusb->handle, &cfg);
if (err)
cfg = -1;
// Try to set it if we can't read it or it's different
if (cfg != found->config) {
err = libusb_set_configuration(cgusb->handle, found->config);
if (err) {
switch(err) {
case LIBUSB_ERROR_BUSY:
applog(LOG_WARNING,
"USB init, set config %d in use %s",
found->config, devstr);
break;
default:
applog(LOG_DEBUG,
"USB init, failed to set config to %d, err %d %s",
found->config, err, devstr);
}
goto cldame;
}
}
err = libusb_get_active_config_descriptor(dev, &config);
if (err) {
applog(LOG_DEBUG,
"USB init, failed to get config descriptor, err %d %s",
err, devstr);
goto cldame;
}
if ((int)(config->bNumInterfaces) <= found->interface) {
applog(LOG_DEBUG, "USB init bNumInterfaces <= interface %s",
devstr);
goto cldame;
}
for (i = 0; i < found->epcount; i++)
found->eps[i].found = false;
for (i = 0; i < config->interface[found->interface].num_altsetting; i++) {
idesc = &(config->interface[found->interface].altsetting[i]);
for (j = 0; j < (int)(idesc->bNumEndpoints); j++) {
epdesc = &(idesc->endpoint[j]);
for (k = 0; k < found->epcount; k++) {
if (!found->eps[k].found) {
if (epdesc->bmAttributes == found->eps[k].att
&& epdesc->wMaxPacketSize >= found->eps[k].size
&& epdesc->bEndpointAddress == found->eps[k].ep) {
found->eps[k].found = true;
found->wMaxPacketSize = epdesc->wMaxPacketSize;
break;
}
}
}
}
}
for (i = 0; i < found->epcount; i++) {
if (found->eps[i].found == false) {
applog(LOG_DEBUG, "USB init found == false %s",
devstr);
goto cldame;
}
}
err = libusb_claim_interface(cgusb->handle, found->interface);
if (err) {
switch(err) {
case LIBUSB_ERROR_BUSY:
applog(LOG_WARNING,
"USB init, claim interface %d in use %s",
found->interface, devstr);
break;
default:
applog(LOG_DEBUG,
"USB init, claim interface %d failed, err %d %s",
found->interface, err, devstr);
}
goto cldame;
}
cfg = -1;
err = libusb_get_configuration(cgusb->handle, &cfg);
if (err)
cfg = -1;
if (cfg != found->config) {
applog(LOG_WARNING,
"USB init, incorrect config (%d!=%d) after claim of %s",
cfg, found->config, devstr);
goto reldame;
}
cgusb->usbver = cgusb->descriptor->bcdUSB;
// TODO: allow this with the right version of the libusb include and running library
// cgusb->speed = libusb_get_device_speed(dev);
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iProduct, strbuf, STRBUFLEN);
if (err > 0)
cgusb->prod_string = strdup((char *)strbuf);
else
cgusb->prod_string = (char *)BLANK;
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iManufacturer, strbuf, STRBUFLEN);
if (err > 0)
cgusb->manuf_string = strdup((char *)strbuf);
else
cgusb->manuf_string = (char *)BLANK;
err = libusb_get_string_descriptor_ascii(cgusb->handle,
cgusb->descriptor->iSerialNumber, strbuf, STRBUFLEN);
if (err > 0)
cgusb->serial_string = strdup((char *)strbuf);
else
cgusb->serial_string = (char *)BLANK;
// TODO: ?
// cgusb->fwVersion <- for temp1/temp2 decision? or serial? (driver-modminer.c)
// cgusb->interfaceVersion
applog(LOG_DEBUG,
"USB init %s usbver=%04x prod='%s' manuf='%s' serial='%s'",
devstr, cgusb->usbver, cgusb->prod_string,
cgusb->manuf_string, cgusb->serial_string);
cgpu->usbdev = cgusb;
cgpu->usbinfo.nodev = false;
libusb_free_config_descriptor(config);
// Allow a name change based on the idVendor+idProduct
// N.B. must be done before calling add_cgpu()
if (strcmp(cgpu->drv->name, found->name)) {
if (!cgpu->drv->copy)
cgpu->drv = copy_drv(cgpu->drv);
cgpu->drv->name = (char *)(found->name);
}
bad = USB_INIT_OK;
goto out_unlock;
reldame:
libusb_release_interface(cgusb->handle, found->interface);
cldame:
cg_wlock(&cgusb_fd_lock);
libusb_close(cgusb->handle);
cg_wunlock(&cgusb_fd_lock);
dame:
if (config)
libusb_free_config_descriptor(config);
cgusb = free_cgusb(cgusb);
out_unlock:
DEVUNLOCK(cgpu, pstate);
return bad;
}
bool usb_init(struct cgpu_info *cgpu, struct libusb_device *dev, struct usb_find_devices *found_match)
{
struct usb_find_devices *found_use = NULL;
int uninitialised_var(ret);
int i;
for (i = 0; find_dev[i].drv != DRV_LAST; i++) {
if (find_dev[i].drv == found_match->drv &&
find_dev[i].idVendor == found_match->idVendor &&
find_dev[i].idProduct == found_match->idProduct) {
found_use = malloc(sizeof(*found_use));
if (unlikely(!found_use))
quit(1, "USB failed to malloc found_use");
memcpy(found_use, &(find_dev[i]), sizeof(*found_use));
ret = _usb_init(cgpu, dev, found_use);
if (ret != USB_INIT_IGNORE)
break;
}
}
if (ret == USB_INIT_FAIL)
applog(LOG_ERR, "%s detect (%d:%d) failed to initialise (incorrect device?)",
cgpu->drv->dname,
(int)(cgpu->usbinfo.bus_number),
(int)(cgpu->usbinfo.device_address));
return (ret == USB_INIT_OK);
}
static bool usb_check_device(struct device_drv *drv, struct libusb_device *dev, struct usb_find_devices *look)
{
struct libusb_device_descriptor desc;
int bus_number, device_address;
int err, i;
bool ok;
err = libusb_get_device_descriptor(dev, &desc);
if (err) {
applog(LOG_DEBUG, "USB check device: Failed to get descriptor, err %d", err);
return false;
}
if (desc.idVendor != look->idVendor || desc.idProduct != look->idProduct) {
applog(LOG_DEBUG, "%s looking for %s %04x:%04x but found %04x:%04x instead",
drv->name, look->name, look->idVendor, look->idProduct, desc.idVendor, desc.idProduct);
return false;
}
if (busdev_count > 0) {
bus_number = (int)libusb_get_bus_number(dev);
device_address = (int)libusb_get_device_address(dev);
ok = false;
for (i = 0; i < busdev_count; i++) {
if (bus_number == busdev[i].bus_number) {
if (busdev[i].device_address == -1 ||
device_address == busdev[i].device_address) {
ok = true;
break;
}
}
}
if (!ok) {
applog(LOG_DEBUG, "%s rejected %s %04x:%04x with bus:dev (%d:%d)",
drv->name, look->name, look->idVendor, look->idProduct,
bus_number, device_address);
return false;
}
}
applog(LOG_DEBUG, "%s looking for and found %s %04x:%04x",
drv->name, look->name, look->idVendor, look->idProduct);
return true;
}
static struct usb_find_devices *usb_check_each(int drvnum, struct device_drv *drv, struct libusb_device *dev)
{
struct usb_find_devices *found;
int i;
for (i = 0; find_dev[i].drv != DRV_LAST; i++)
if (find_dev[i].drv == drvnum) {
if (usb_check_device(drv, dev, &(find_dev[i]))) {
found = malloc(sizeof(*found));
if (unlikely(!found))
quit(1, "USB failed to malloc found");
memcpy(found, &(find_dev[i]), sizeof(*found));
return found;
}
}
return NULL;
}
static struct usb_find_devices *usb_check(__maybe_unused struct device_drv *drv, __maybe_unused struct libusb_device *dev)
{
if (drv_count[drv->drv_id].count >= drv_count[drv->drv_id].limit) {
applog(LOG_DEBUG,
"USB scan devices3: %s limit %d reached",
drv->dname, drv_count[drv->drv_id].limit);
return NULL;
}
#ifdef USE_BFLSC
if (drv->drv_id == DRIVER_BFLSC)
return usb_check_each(DRV_BFLSC, drv, dev);
#endif
#ifdef USE_BITFORCE
if (drv->drv_id == DRIVER_BITFORCE)
return usb_check_each(DRV_BITFORCE, drv, dev);
#endif
#ifdef USE_MODMINER
if (drv->drv_id == DRIVER_MODMINER)
return usb_check_each(DRV_MODMINER, drv, dev);
#endif
#ifdef USE_ICARUS
if (drv->drv_id == DRIVER_ICARUS)
return usb_check_each(DRV_ICARUS, drv, dev);
#endif
#ifdef USE_AVALON
if (drv->drv_id == DRIVER_AVALON)
return usb_check_each(DRV_AVALON, drv, dev);
#endif
return NULL;
}
void usb_detect(struct device_drv *drv, bool (*device_detect)(struct libusb_device *, struct usb_find_devices *))
{
libusb_device **list;
ssize_t count, i;
struct usb_find_devices *found;
applog(LOG_DEBUG, "USB scan devices: checking for %s devices", drv->name);
if (total_count >= total_limit) {
applog(LOG_DEBUG, "USB scan devices: total limit %d reached", total_limit);
return;
}
if (drv_count[drv->drv_id].count >= drv_count[drv->drv_id].limit) {
applog(LOG_DEBUG,
"USB scan devices: %s limit %d reached",
drv->dname, drv_count[drv->drv_id].limit);
return;
}
count = libusb_get_device_list(NULL, &list);
if (count < 0) {
applog(LOG_DEBUG, "USB scan devices: failed, err %d", (int)count);
return;
}
if (count == 0)
applog(LOG_DEBUG, "USB scan devices: found no devices");
else
cgsleep_ms(166);
for (i = 0; i < count; i++) {
if (total_count >= total_limit) {
applog(LOG_DEBUG, "USB scan devices2: total limit %d reached", total_limit);
break;
}
if (drv_count[drv->drv_id].count >= drv_count[drv->drv_id].limit) {
applog(LOG_DEBUG,
"USB scan devices2: %s limit %d reached",
drv->dname, drv_count[drv->drv_id].limit);
break;
}
found = usb_check(drv, list[i]);
if (found != NULL) {
if (is_in_use(list[i]) || cgminer_usb_lock(drv, list[i]) == false)
free(found);
else {
if (!device_detect(list[i], found))
cgminer_usb_unlock(drv, list[i]);
else {
total_count++;
drv_count[drv->drv_id].count++;
}
free(found);
}
}
}
libusb_free_device_list(list, 1);
}
#if DO_USB_STATS
static void modes_str(char *buf, uint32_t modes)
{
bool first;
*buf = '\0';
if (modes == MODE_NONE)
strcpy(buf, MODE_NONE_STR);
else {
first = true;
if (modes & MODE_CTRL_READ) {
strcpy(buf, MODE_CTRL_READ_STR);
first = false;
}
if (modes & MODE_CTRL_WRITE) {
if (!first)
strcat(buf, MODE_SEP_STR);
strcat(buf, MODE_CTRL_WRITE_STR);
first = false;
}
if (modes & MODE_BULK_READ) {
if (!first)
strcat(buf, MODE_SEP_STR);
strcat(buf, MODE_BULK_READ_STR);
first = false;
}
if (modes & MODE_BULK_WRITE) {
if (!first)
strcat(buf, MODE_SEP_STR);
strcat(buf, MODE_BULK_WRITE_STR);
first = false;
}
}
}
#endif
// The stat data can be spurious due to not locking it before copying it -
// however that would require the stat() function to also lock and release
// a mutex every time a usb read or write is called which would slow
// things down more
struct api_data *api_usb_stats(__maybe_unused int *count)
{
#if DO_USB_STATS
struct cg_usb_stats_details *details;
struct cg_usb_stats *sta;
struct api_data *root = NULL;
int device;
int cmdseq;
char modes_s[32];
if (next_stat == USB_NOSTAT)
return NULL;
while (*count < next_stat * C_MAX * 2) {
device = *count / (C_MAX * 2);
cmdseq = *count % (C_MAX * 2);
(*count)++;
sta = &(usb_stats[device]);
details = &(sta->details[cmdseq]);
// Only show stats that have results
if (details->item[CMD_CMD].count == 0 &&
details->item[CMD_TIMEOUT].count == 0 &&
details->item[CMD_ERROR].count == 0)
continue;
root = api_add_string(root, "Name", sta->name, false);
root = api_add_int(root, "ID", &(sta->device_id), false);
root = api_add_const(root, "Stat", usb_commands[cmdseq/2], false);
root = api_add_int(root, "Seq", &(details->seq), true);
modes_str(modes_s, details->modes);
root = api_add_string(root, "Modes", modes_s, true);
root = api_add_uint64(root, "Count",
&(details->item[CMD_CMD].count), true);
root = api_add_double(root, "Total Delay",
&(details->item[CMD_CMD].total_delay), true);
root = api_add_double(root, "Min Delay",
&(details->item[CMD_CMD].min_delay), true);
root = api_add_double(root, "Max Delay",
&(details->item[CMD_CMD].max_delay), true);
root = api_add_uint64(root, "Timeout Count",
&(details->item[CMD_TIMEOUT].count), true);
root = api_add_double(root, "Timeout Total Delay",
&(details->item[CMD_TIMEOUT].total_delay), true);
root = api_add_double(root, "Timeout Min Delay",
&(details->item[CMD_TIMEOUT].min_delay), true);
root = api_add_double(root, "Timeout Max Delay",
&(details->item[CMD_TIMEOUT].max_delay), true);
root = api_add_uint64(root, "Error Count",
&(details->item[CMD_ERROR].count), true);
root = api_add_double(root, "Error Total Delay",
&(details->item[CMD_ERROR].total_delay), true);
root = api_add_double(root, "Error Min Delay",
&(details->item[CMD_ERROR].min_delay), true);
root = api_add_double(root, "Error Max Delay",
&(details->item[CMD_ERROR].max_delay), true);
root = api_add_timeval(root, "First Command",
&(details->item[CMD_CMD].first), true);
root = api_add_timeval(root, "Last Command",
&(details->item[CMD_CMD].last), true);
root = api_add_timeval(root, "First Timeout",
&(details->item[CMD_TIMEOUT].first), true);
root = api_add_timeval(root, "Last Timeout",
&(details->item[CMD_TIMEOUT].last), true);
root = api_add_timeval(root, "First Error",
&(details->item[CMD_ERROR].first), true);
root = api_add_timeval(root, "Last Error",
&(details->item[CMD_ERROR].last), true);
return root;
}
#endif
return NULL;
}
#if DO_USB_STATS
static void newstats(struct cgpu_info *cgpu)
{
int i;
mutex_lock(&cgusb_lock);
cgpu->usbinfo.usbstat = next_stat + 1;
usb_stats = realloc(usb_stats, sizeof(*usb_stats) * (next_stat+1));
if (unlikely(!usb_stats))
quit(1, "USB failed to realloc usb_stats %d", next_stat+1);
usb_stats[next_stat].name = cgpu->drv->name;
usb_stats[next_stat].device_id = -1;
usb_stats[next_stat].details = calloc(1, sizeof(struct cg_usb_stats_details) * C_MAX * 2);
if (unlikely(!usb_stats[next_stat].details))
quit(1, "USB failed to calloc details for %d", next_stat+1);
for (i = 1; i < C_MAX * 2; i += 2)
usb_stats[next_stat].details[i].seq = 1;
next_stat++;
mutex_unlock(&cgusb_lock);
}
#endif
void update_usb_stats(__maybe_unused struct cgpu_info *cgpu)
{
#if DO_USB_STATS
if (cgpu->usbinfo.usbstat < 1)
newstats(cgpu);
// we don't know the device_id until after add_cgpu()
usb_stats[cgpu->usbinfo.usbstat - 1].device_id = cgpu->device_id;
#endif
}
#if DO_USB_STATS
static void stats(struct cgpu_info *cgpu, struct timeval *tv_start, struct timeval *tv_finish, int err, int mode, enum usb_cmds cmd, int seq, int timeout)
{
struct cg_usb_stats_details *details;
double diff;
int item, extrams;
if (cgpu->usbinfo.usbstat < 1)
newstats(cgpu);
cgpu->usbinfo.tmo_count++;
// timeout checks are only done when stats are enabled
extrams = SECTOMS(tdiff(tv_finish, tv_start)) - timeout;
if (extrams >= USB_TMO_0) {
uint32_t totms = (uint32_t)(timeout + extrams);
int offset = 0;
if (extrams >= USB_TMO_2) {
applog(LOG_ERR, "%s%i: TIMEOUT %s took %dms but was %dms",
cgpu->drv->name, cgpu->device_id,
usb_cmdname(cmd), totms, timeout) ;
offset = 2;
} else if (extrams >= USB_TMO_1)
offset = 1;
cgpu->usbinfo.usb_tmo[offset].count++;
cgpu->usbinfo.usb_tmo[offset].total_over += extrams;
cgpu->usbinfo.usb_tmo[offset].total_tmo += timeout;
if (cgpu->usbinfo.usb_tmo[offset].min_tmo == 0) {
cgpu->usbinfo.usb_tmo[offset].min_tmo = totms;
cgpu->usbinfo.usb_tmo[offset].max_tmo = totms;
} else {
if (cgpu->usbinfo.usb_tmo[offset].min_tmo > totms)
cgpu->usbinfo.usb_tmo[offset].min_tmo = totms;
if (cgpu->usbinfo.usb_tmo[offset].max_tmo < totms)
cgpu->usbinfo.usb_tmo[offset].max_tmo = totms;
}
}
details = &(usb_stats[cgpu->usbinfo.usbstat - 1].details[cmd * 2 + seq]);
details->modes |= mode;
diff = tdiff(tv_finish, tv_start);
switch (err) {
case LIBUSB_SUCCESS:
item = CMD_CMD;
break;
case LIBUSB_ERROR_TIMEOUT:
item = CMD_TIMEOUT;
break;
default:
item = CMD_ERROR;
break;
}
if (details->item[item].count == 0) {
details->item[item].min_delay = diff;
memcpy(&(details->item[item].first), tv_start, sizeof(*tv_start));
} else if (diff < details->item[item].min_delay)
details->item[item].min_delay = diff;
if (diff > details->item[item].max_delay)
details->item[item].max_delay = diff;
details->item[item].total_delay += diff;
memcpy(&(details->item[item].last), tv_start, sizeof(*tv_start));
details->item[item].count++;
}
static void rejected_inc(struct cgpu_info *cgpu, uint32_t mode)
{
struct cg_usb_stats_details *details;
int item = CMD_ERROR;
if (cgpu->usbinfo.usbstat < 1)
newstats(cgpu);
details = &(usb_stats[cgpu->usbinfo.usbstat - 1].details[C_REJECTED * 2 + 0]);
details->modes |= mode;
details->item[item].count++;
}
#endif
static char *find_end(unsigned char *buf, unsigned char *ptr, int ptrlen, int tot, char *end, int endlen, bool first)
{
unsigned char *search;
if (endlen > tot)
return NULL;
// If end is only 1 char - do a faster search
if (endlen == 1) {
if (first)
search = buf;
else
search = ptr;
return strchr((char *)search, *end);
} else {
if (first)
search = buf;
else {
// must allow end to have been chopped in 2
if ((tot - ptrlen) >= (endlen - 1))
search = ptr - (endlen - 1);
else
search = ptr - (tot - ptrlen);
}
return strstr((char *)search, end);
}
}
#define USB_MAX_READ 8192
#define USB_RETRY_MAX 5
static int
usb_bulk_transfer(struct libusb_device_handle *dev_handle,
unsigned char endpoint, unsigned char *data, int length,
int *transferred, unsigned int timeout,
struct cgpu_info *cgpu, __maybe_unused int mode,
enum usb_cmds cmd, __maybe_unused int seq)
{
uint16_t MaxPacketSize;
int err, errn, tries = 0;
#if DO_USB_STATS
struct timeval tv_start, tv_finish;
#endif
/* Limit length of transfer to the largest this descriptor supports
* and leave the higher level functions to transfer more if needed. */
if (cgpu->usbdev->PrefPacketSize)
MaxPacketSize = cgpu->usbdev->PrefPacketSize;
else
MaxPacketSize = cgpu->usbdev->found->wMaxPacketSize;
if (length > MaxPacketSize)
length = MaxPacketSize;
STATS_TIMEVAL(&tv_start);
cg_rlock(&cgusb_fd_lock);
err = libusb_bulk_transfer(dev_handle, endpoint, data, length,
transferred, timeout);
errn = errno;
cg_runlock(&cgusb_fd_lock);
STATS_TIMEVAL(&tv_finish);
USB_STATS(cgpu, &tv_start, &tv_finish, err, mode, cmd, seq, timeout);
if (err < 0)
applog(LOG_DEBUG, "%s%i: %s (amt=%d err=%d ern=%d)",
cgpu->drv->name, cgpu->device_id,
usb_cmdname(cmd), *transferred, err, errn);
if (err == LIBUSB_ERROR_PIPE) {
cgpu->usbinfo.last_pipe = time(NULL);
cgpu->usbinfo.pipe_count++;
applog(LOG_INFO, "%s%i: libusb pipe error, trying to clear",
cgpu->drv->name, cgpu->device_id);
do {
err = libusb_clear_halt(dev_handle, endpoint);
if (unlikely(err == LIBUSB_ERROR_NOT_FOUND ||
err == LIBUSB_ERROR_NO_DEVICE)) {
cgpu->usbinfo.clear_err_count++;
break;
}
STATS_TIMEVAL(&tv_start);
cg_rlock(&cgusb_fd_lock);
err = libusb_bulk_transfer(dev_handle, endpoint, data,
length, transferred, timeout);
errn = errno;
cg_runlock(&cgusb_fd_lock);
STATS_TIMEVAL(&tv_finish);
USB_STATS(cgpu, &tv_start, &tv_finish, err, mode, cmd, seq, timeout);
if (err < 0)
applog(LOG_DEBUG, "%s%i: %s (amt=%d err=%d ern=%d)",
cgpu->drv->name, cgpu->device_id,
usb_cmdname(cmd), *transferred, err, errn);
if (err)
cgpu->usbinfo.retry_err_count++;
} while (err == LIBUSB_ERROR_PIPE && tries++ < USB_RETRY_MAX);
applog(LOG_DEBUG, "%s%i: libusb pipe error%scleared",
cgpu->drv->name, cgpu->device_id, err ? " not " : " ");
if (err)
cgpu->usbinfo.clear_fail_count++;
}
return err;
}
int _usb_read(struct cgpu_info *cgpu, int ep, char *buf, size_t bufsiz, int *processed, unsigned int timeout, const char *end, enum usb_cmds cmd, bool readonce)
{
struct cg_usb_device *usbdev;
bool ftdi;
struct timeval read_start, tv_finish;
unsigned int initial_timeout;
double max, done;
int bufleft, err, got, tot, pstate;
bool first = true;
char *search;
int endlen;
unsigned char *ptr, *usbbuf = cgpu->usbinfo.bulkbuf;
size_t usbbufread;
DEVLOCK(cgpu, pstate);
if (cgpu->usbinfo.nodev) {
*buf = '\0';
*processed = 0;
USB_REJECT(cgpu, MODE_BULK_READ);
err = LIBUSB_ERROR_NO_DEVICE;
goto out_unlock;
}
usbdev = cgpu->usbdev;
ftdi = (usbdev->usb_type == USB_TYPE_FTDI);
USBDEBUG("USB debug: _usb_read(%s (nodev=%s),ep=%d,buf=%p,bufsiz=%zu,proc=%p,timeout=%u,end=%s,cmd=%s,ftdi=%s,readonce=%s)", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), ep, buf, bufsiz, processed, timeout, end ? (char *)str_text((char *)end) : "NULL", usb_cmdname(cmd), bool_str(ftdi), bool_str(readonce));
if (bufsiz > USB_MAX_READ)
quit(1, "%s USB read request %d too large (max=%d)", cgpu->drv->name, (int)bufsiz, USB_MAX_READ);
if (timeout == DEVTIMEOUT)
timeout = usbdev->found->timeout;
if (end == NULL) {
if (usbdev->buffer && usbdev->bufamt) {
tot = usbdev->bufamt;
bufleft = bufsiz - tot;
memcpy(usbbuf, usbdev->buffer, tot);
ptr = usbbuf + tot;
usbdev->bufamt = 0;
} else {
tot = 0;
bufleft = bufsiz;
ptr = usbbuf;
}
err = LIBUSB_SUCCESS;
initial_timeout = timeout;
max = ((double)timeout) / 1000.0;
cgtime(&read_start);
while (bufleft > 0) {
// TODO: use (USB_MAX_READ - tot) always?
if (usbdev->buffer)
usbbufread = USB_MAX_READ - tot;
else {
if (ftdi)
usbbufread = bufleft + 2;
else
usbbufread = bufleft;
}
got = 0;
if (first && usbdev->usecps && usbdev->last_write_siz) {
cgtimer_t now, already_done;
double sleep_estimate;
double write_time = (double)(usbdev->last_write_siz) /
(double)(usbdev->cps);
cgtimer_time(&now);
cgtimer_sub(&now, &usbdev->cgt_last_write, &already_done);
sleep_estimate = write_time - cgtimer_to_ms(&already_done);
if (sleep_estimate > 0.0) {
cgsleep_ms_r(&usbdev->cgt_last_write, write_time * 1000.0);
cgpu->usbinfo.read_delay_count++;
cgpu->usbinfo.total_read_delay += sleep_estimate;
}
}
err = usb_bulk_transfer(usbdev->handle,
usbdev->found->eps[ep].ep,
ptr, usbbufread, &got, timeout,
cgpu, MODE_BULK_READ, cmd, first ? SEQ0 : SEQ1);
cgtime(&tv_finish);
ptr[got] = '\0';
USBDEBUG("USB debug: @_usb_read(%s (nodev=%s)) first=%s err=%d%s got=%d ptr='%s' usbbufread=%zu", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), bool_str(first), err, isnodev(err), got, (char *)str_text((char *)ptr), usbbufread);
IOERR_CHECK(cgpu, err);
if (ftdi) {
// first 2 bytes returned are an FTDI status
if (got > 2) {
got -= 2;
memmove(ptr, ptr+2, got+1);
} else {
got = 0;
*ptr = '\0';
}
}
tot += got;
if (err || readonce)
break;
ptr += got;
bufleft -= got;
first = false;
done = tdiff(&tv_finish, &read_start);
// N.B. this is: return LIBUSB_SUCCESS with whatever size has already been read
if (unlikely(done >= max))
break;
timeout = initial_timeout - (done * 1000);
if (!timeout)
break;
}
// N.B. usbdev->buffer was emptied before the while() loop
if (usbdev->buffer && tot > (int)bufsiz) {
usbdev->bufamt = tot - bufsiz;
memcpy(usbdev->buffer, ptr + bufsiz, usbdev->bufamt);
tot -= usbdev->bufamt;
usbbuf[tot] = '\0';
applog(LOG_ERR, "USB: %s%i read1 buffering %d extra bytes",
cgpu->drv->name, cgpu->device_id, usbdev->bufamt);
}
*processed = tot;
memcpy((char *)buf, (const char *)usbbuf, (tot < (int)bufsiz) ? tot + 1 : (int)bufsiz);
if (NODEV(err))
release_cgpu(cgpu);
goto out_unlock;
}
if (usbdev->buffer && usbdev->bufamt) {
tot = usbdev->bufamt;
bufleft = bufsiz - tot;
memcpy(usbbuf, usbdev->buffer, tot);
ptr = usbbuf + tot;
usbdev->bufamt = 0;
} else {
tot = 0;
bufleft = bufsiz;
ptr = usbbuf;
}
endlen = strlen(end);
err = LIBUSB_SUCCESS;
initial_timeout = timeout;
max = ((double)timeout) / 1000.0;
cgtime(&read_start);
while (bufleft > 0) {
// TODO: use (USB_MAX_READ - tot) always?
if (usbdev->buffer)
usbbufread = USB_MAX_READ - tot;
else {
if (ftdi)
usbbufread = bufleft + 2;
else
usbbufread = bufleft;
}
got = 0;
if (first && usbdev->usecps && usbdev->last_write_siz) {
cgtimer_t now, already_done;
double sleep_estimate;
double write_time = (double)(usbdev->last_write_siz) /
(double)(usbdev->cps);
cgtimer_time(&now);
cgtimer_sub(&now, &usbdev->cgt_last_write, &already_done);
sleep_estimate = write_time - cgtimer_to_ms(&already_done);
if (sleep_estimate > 0.0) {
cgsleep_ms_r(&usbdev->cgt_last_write, write_time * 1000.0);
cgpu->usbinfo.read_delay_count++;
cgpu->usbinfo.total_read_delay += sleep_estimate;
}
}
err = usb_bulk_transfer(usbdev->handle,
usbdev->found->eps[ep].ep, ptr,
usbbufread, &got, timeout,
cgpu, MODE_BULK_READ, cmd, first ? SEQ0 : SEQ1);
cgtime(&tv_finish);
ptr[got] = '\0';
USBDEBUG("USB debug: @_usb_read(%s (nodev=%s)) first=%s err=%d%s got=%d ptr='%s' usbbufread=%zu", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), bool_str(first), err, isnodev(err), got, (char *)str_text((char *)ptr), usbbufread);
IOERR_CHECK(cgpu, err);
if (ftdi) {
// first 2 bytes returned are an FTDI status
if (got > 2) {
got -= 2;
memmove(ptr, ptr+2, got+1);
} else {
got = 0;
*ptr = '\0';
}
}
tot += got;
if (err || readonce)
break;
if (find_end(usbbuf, ptr, got, tot, (char *)end, endlen, first))
break;
ptr += got;
bufleft -= got;
first = false;
done = tdiff(&tv_finish, &read_start);
// N.B. this is: return LIBUSB_SUCCESS with whatever size has already been read
if (unlikely(done >= max))
break;
timeout = initial_timeout - (done * 1000);
if (!timeout)
break;
}
if (usbdev->buffer) {
bool dobuffer = false;
if ((search = find_end(usbbuf, usbbuf, tot, tot, (char *)end, endlen, true))) {
// end finishes after bufsiz
if ((search + endlen - (char *)usbbuf) > (int)bufsiz) {
usbdev->bufamt = tot - bufsiz;
dobuffer = true;
} else {
// extra data after end
if (*(search + endlen)) {
usbdev->bufamt = tot - (search + endlen - (char *)usbbuf);
dobuffer = true;
}
}
} else {
// no end, but still bigger than bufsiz
if (tot > (int)bufsiz) {
usbdev->bufamt = tot - bufsiz;
dobuffer = true;
}
}
if (dobuffer) {
tot -= usbdev->bufamt;
memcpy(usbdev->buffer, usbbuf + tot, usbdev->bufamt);
usbbuf[tot] = '\0';
applog(LOG_ERR, "USB: %s%i read2 buffering %d extra bytes",
cgpu->drv->name, cgpu->device_id, usbdev->bufamt);
}
}
*processed = tot;
memcpy((char *)buf, (const char *)usbbuf, (tot < (int)bufsiz) ? tot + 1 : (int)bufsiz);
if (NODEV(err))
release_cgpu(cgpu);
out_unlock:
DEVUNLOCK(cgpu, pstate);
return err;
}
int _usb_write(struct cgpu_info *cgpu, int ep, char *buf, size_t bufsiz, int *processed, unsigned int timeout, enum usb_cmds cmd)
{
struct cg_usb_device *usbdev;
struct timeval read_start, tv_finish;
unsigned int initial_timeout;
double max, done;
__maybe_unused bool first = true;
int err, sent, tot, pstate;
DEVLOCK(cgpu, pstate);
USBDEBUG("USB debug: _usb_write(%s (nodev=%s),ep=%d,buf='%s',bufsiz=%zu,proc=%p,timeout=%u,cmd=%s)", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), ep, (char *)str_text(buf), bufsiz, processed, timeout, usb_cmdname(cmd));
*processed = 0;
if (cgpu->usbinfo.nodev) {
USB_REJECT(cgpu, MODE_BULK_WRITE);
err = LIBUSB_ERROR_NO_DEVICE;
goto out_unlock;
}
usbdev = cgpu->usbdev;
if (timeout == DEVTIMEOUT)
timeout = usbdev->found->timeout;
tot = 0;
err = LIBUSB_SUCCESS;
initial_timeout = timeout;
max = ((double)timeout) / 1000.0;
cgtime(&read_start);
while (bufsiz > 0) {
sent = 0;
if (usbdev->usecps) {
if (usbdev->last_write_siz) {
cgtimer_t now, already_done;
double sleep_estimate;
double write_time = (double)(usbdev->last_write_siz) /
(double)(usbdev->cps);
cgtimer_time(&now);
cgtimer_sub(&now, &usbdev->cgt_last_write, &already_done);
sleep_estimate = write_time - cgtimer_to_ms(&already_done);
if (sleep_estimate > 0.0) {
cgsleep_ms_r(&usbdev->cgt_last_write, write_time * 1000.0);
cgpu->usbinfo.write_delay_count++;
cgpu->usbinfo.total_write_delay += sleep_estimate;
}
}
cgsleep_prepare_r(&usbdev->cgt_last_write);
usbdev->last_write_siz = bufsiz;
}
err = usb_bulk_transfer(usbdev->handle,
usbdev->found->eps[ep].ep,
(unsigned char *)buf, bufsiz, &sent,
timeout, cgpu, MODE_BULK_WRITE, cmd, first ? SEQ0 : SEQ1);
cgtime(&tv_finish);
USBDEBUG("USB debug: @_usb_write(%s (nodev=%s)) err=%d%s sent=%d", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), err, isnodev(err), sent);
IOERR_CHECK(cgpu, err);
tot += sent;
if (err)
break;
buf += sent;
bufsiz -= sent;
first = false;
done = tdiff(&tv_finish, &read_start);
// N.B. this is: return LIBUSB_SUCCESS with whatever size was written
if (unlikely(done >= max))
break;
timeout = initial_timeout - (done * 1000);
if (!timeout)
break;
}
*processed = tot;
if (NODEV(err))
release_cgpu(cgpu);
out_unlock:
DEVUNLOCK(cgpu, pstate);
return err;
}
int __usb_transfer(struct cgpu_info *cgpu, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, uint32_t *data, int siz, unsigned int timeout, __maybe_unused enum usb_cmds cmd)
{
struct cg_usb_device *usbdev;
#if DO_USB_STATS
struct timeval tv_start, tv_finish;
#endif
uint32_t *buf = NULL;
int err, i, bufsiz;
USBDEBUG("USB debug: _usb_transfer(%s (nodev=%s),type=%"PRIu8",req=%"PRIu8",value=%"PRIu16",index=%"PRIu16",siz=%d,timeout=%u,cmd=%s)", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), request_type, bRequest, wValue, wIndex, siz, timeout, usb_cmdname(cmd));
if (cgpu->usbinfo.nodev) {
USB_REJECT(cgpu, MODE_CTRL_WRITE);
err = LIBUSB_ERROR_NO_DEVICE;
goto out_;
}
usbdev = cgpu->usbdev;
if (timeout == DEVTIMEOUT)
timeout = usbdev->found->timeout;
USBDEBUG("USB debug: @_usb_transfer() data=%s", bin2hex((unsigned char *)data, (size_t)siz));
if (siz > 0) {
bufsiz = siz - 1;
bufsiz >>= 2;
bufsiz++;
buf = malloc(bufsiz << 2);
if (unlikely(!buf))
quit(1, "Failed to malloc in _usb_transfer");
for (i = 0; i < bufsiz; i++)
buf[i] = htole32(data[i]);
}
USBDEBUG("USB debug: @_usb_transfer() buf=%s", bin2hex((unsigned char *)buf, (size_t)siz));
if (usbdev->usecps) {
if (usbdev->last_write_siz) {
cgtimer_t now, already_done;
double sleep_estimate;
double write_time = (double)(usbdev->last_write_siz) /
(double)(usbdev->cps);
cgtimer_time(&now);
cgtimer_sub(&now, &usbdev->cgt_last_write, &already_done);
sleep_estimate = write_time - cgtimer_to_ms(&already_done);
if (sleep_estimate > 0.0) {
cgsleep_ms_r(&usbdev->cgt_last_write, write_time * 1000.0);
cgpu->usbinfo.write_delay_count++;
cgpu->usbinfo.total_write_delay += sleep_estimate;
}
}
cgsleep_prepare_r(&usbdev->cgt_last_write);
usbdev->last_write_siz = siz;
}
STATS_TIMEVAL(&tv_start);
cg_rlock(&cgusb_fd_lock);
err = libusb_control_transfer(usbdev->handle, request_type,
bRequest, wValue, wIndex, (unsigned char *)buf, (uint16_t)siz, timeout);
cg_runlock(&cgusb_fd_lock);
STATS_TIMEVAL(&tv_finish);
USB_STATS(cgpu, &tv_start, &tv_finish, err, MODE_CTRL_WRITE, cmd, SEQ0, timeout);
USBDEBUG("USB debug: @_usb_transfer(%s (nodev=%s)) err=%d%s", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), err, isnodev(err));
IOERR_CHECK(cgpu, err);
free(buf);
if (NOCONTROLDEV(err))
release_cgpu(cgpu);
out_:
return err;
}
int _usb_transfer(struct cgpu_info *cgpu, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, uint32_t *data, int siz, unsigned int timeout, enum usb_cmds cmd)
{
int pstate, err;
DEVLOCK(cgpu, pstate);
err = __usb_transfer(cgpu, request_type, bRequest, wValue, wIndex, data, siz, timeout, cmd);
DEVUNLOCK(cgpu, pstate);
return err;
}
int _usb_transfer_read(struct cgpu_info *cgpu, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, char *buf, int bufsiz, int *amount, unsigned int timeout, __maybe_unused enum usb_cmds cmd)
{
struct cg_usb_device *usbdev;
#if DO_USB_STATS
struct timeval tv_start, tv_finish;
#endif
int err, pstate;
DEVLOCK(cgpu, pstate);
USBDEBUG("USB debug: _usb_transfer_read(%s (nodev=%s),type=%"PRIu8",req=%"PRIu8",value=%"PRIu16",index=%"PRIu16",bufsiz=%d,timeout=%u,cmd=%s)", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), request_type, bRequest, wValue, wIndex, bufsiz, timeout, usb_cmdname(cmd));
if (cgpu->usbinfo.nodev) {
USB_REJECT(cgpu, MODE_CTRL_READ);
err = LIBUSB_ERROR_NO_DEVICE;
goto out_unlock;
}
usbdev = cgpu->usbdev;
if (timeout == DEVTIMEOUT)
timeout = usbdev->found->timeout;
*amount = 0;
if (usbdev->usecps && usbdev->last_write_siz) {
cgtimer_t now, already_done;
double sleep_estimate;
double write_time = (double)(usbdev->last_write_siz) /
(double)(usbdev->cps);
cgtimer_time(&now);
cgtimer_sub(&now, &usbdev->cgt_last_write, &already_done);
sleep_estimate = write_time - cgtimer_to_ms(&already_done);
if (sleep_estimate > 0.0) {
cgsleep_ms_r(&usbdev->cgt_last_write, write_time * 1000.0);
cgpu->usbinfo.read_delay_count++;
cgpu->usbinfo.total_read_delay += sleep_estimate;
}
}
STATS_TIMEVAL(&tv_start);
cg_rlock(&cgusb_fd_lock);
err = libusb_control_transfer(usbdev->handle, request_type,
bRequest, wValue, wIndex,
(unsigned char *)buf, (uint16_t)bufsiz, timeout);
cg_runlock(&cgusb_fd_lock);
STATS_TIMEVAL(&tv_finish);
USB_STATS(cgpu, &tv_start, &tv_finish, err, MODE_CTRL_READ, cmd, SEQ0, timeout);
USBDEBUG("USB debug: @_usb_transfer_read(%s (nodev=%s)) amt/err=%d%s%s%s", cgpu->drv->name, bool_str(cgpu->usbinfo.nodev), err, isnodev(err), err > 0 ? " = " : BLANK, err > 0 ? bin2hex((unsigned char *)buf, (size_t)err) : BLANK);
IOERR_CHECK(cgpu, err);
if (err > 0) {
*amount = err;
err = 0;
} else if (NOCONTROLDEV(err))
release_cgpu(cgpu);
out_unlock:
DEVUNLOCK(cgpu, pstate);
return err;
}
#define FTDI_STATUS_B0_MASK (FTDI_RS0_CTS | FTDI_RS0_DSR | FTDI_RS0_RI | FTDI_RS0_RLSD)
#define FTDI_RS0_CTS (1 << 4)
#define FTDI_RS0_DSR (1 << 5)
#define FTDI_RS0_RI (1 << 6)
#define FTDI_RS0_RLSD (1 << 7)
/* Clear to send for FTDI */
int usb_ftdi_cts(struct cgpu_info *cgpu)
{
char buf[2], ret;
int err, amount;
err = _usb_transfer_read(cgpu, (uint8_t)FTDI_TYPE_IN, (uint8_t)5,
(uint16_t)0, (uint16_t)0, buf, 2,
&amount, DEVTIMEOUT, C_FTDI_STATUS);
/* We return true in case drivers are waiting indefinitely to try and
* write to something that's not there. */
if (err)
return true;
ret = buf[0] & FTDI_STATUS_B0_MASK;
return (ret & FTDI_RS0_CTS);
}
int usb_ftdi_set_latency(struct cgpu_info *cgpu)
{
int err = 0;
int pstate;
DEVLOCK(cgpu, pstate);
if (cgpu->usbdev) {
if (cgpu->usbdev->usb_type != USB_TYPE_FTDI) {
applog(LOG_ERR, "%s: cgid %d latency request on non-FTDI device",
cgpu->drv->name, cgpu->cgminer_id);
err = LIBUSB_ERROR_NOT_SUPPORTED;
} else if (cgpu->usbdev->found->latency == LATENCY_UNUSED) {
applog(LOG_ERR, "%s: cgid %d invalid latency (UNUSED)",
cgpu->drv->name, cgpu->cgminer_id);
err = LIBUSB_ERROR_NOT_SUPPORTED;
}
if (!err)
err = __usb_transfer(cgpu, FTDI_TYPE_OUT, FTDI_REQUEST_LATENCY,
cgpu->usbdev->found->latency,
cgpu->usbdev->found->interface,
NULL, 0, DEVTIMEOUT, C_LATENCY);
}
DEVUNLOCK(cgpu, pstate);
applog(LOG_DEBUG, "%s: cgid %d %s got err %d",
cgpu->drv->name, cgpu->cgminer_id,
usb_cmdname(C_LATENCY), err);
return err;
}
void usb_buffer_enable(struct cgpu_info *cgpu)
{
struct cg_usb_device *cgusb;
int pstate;
DEVLOCK(cgpu, pstate);
cgusb = cgpu->usbdev;
if (cgusb && !cgusb->buffer) {
cgusb->bufamt = 0;
cgusb->buffer = malloc(USB_MAX_READ+1);
if (!cgusb->buffer)
quit(1, "Failed to malloc buffer for USB %s%i",
cgpu->drv->name, cgpu->device_id);
cgusb->bufsiz = USB_MAX_READ;
}
DEVUNLOCK(cgpu, pstate);
}
void usb_buffer_disable(struct cgpu_info *cgpu)
{
struct cg_usb_device *cgusb;
int pstate;
DEVLOCK(cgpu, pstate);
cgusb = cgpu->usbdev;
if (cgusb && cgusb->buffer) {
cgusb->bufamt = 0;
cgusb->bufsiz = 0;
free(cgusb->buffer);
cgusb->buffer = NULL;
}
DEVUNLOCK(cgpu, pstate);
}
void usb_buffer_clear(struct cgpu_info *cgpu)
{
int pstate;
DEVLOCK(cgpu, pstate);
if (cgpu->usbdev)
cgpu->usbdev->bufamt = 0;
DEVUNLOCK(cgpu, pstate);
}
uint32_t usb_buffer_size(struct cgpu_info *cgpu)
{
uint32_t ret = 0;
int pstate;
DEVLOCK(cgpu, pstate);
if (cgpu->usbdev)
ret = cgpu->usbdev->bufamt;
DEVUNLOCK(cgpu, pstate);
return ret;
}
void usb_set_cps(struct cgpu_info *cgpu, int cps)
{
int pstate;
DEVLOCK(cgpu, pstate);
if (cgpu->usbdev)
cgpu->usbdev->cps = cps;
DEVUNLOCK(cgpu, pstate);
}
void usb_enable_cps(struct cgpu_info *cgpu)
{
int pstate;
DEVLOCK(cgpu, pstate);
if (cgpu->usbdev)
cgpu->usbdev->usecps = true;
DEVUNLOCK(cgpu, pstate);
}
void usb_disable_cps(struct cgpu_info *cgpu)
{
int pstate;
DEVLOCK(cgpu, pstate);
if (cgpu->usbdev)
cgpu->usbdev->usecps = false;
DEVUNLOCK(cgpu, pstate);
}
/*
* The value returned (0) when usbdev is NULL
* doesn't matter since it also means the next call to
* any usbutils function will fail with a nodev
*/
int usb_interface(struct cgpu_info *cgpu)
{
int interface = 0;
int pstate;
DEVLOCK(cgpu, pstate);
if (cgpu->usbdev)
interface = cgpu->usbdev->found->interface;
DEVUNLOCK(cgpu, pstate);
return interface;
}
enum sub_ident usb_ident(struct cgpu_info *cgpu)
{
enum sub_ident ident = IDENT_UNK;
int pstate;
DEVLOCK(cgpu, pstate);
if (cgpu->usbdev)
ident = cgpu->usbdev->ident;
DEVUNLOCK(cgpu, pstate);
return ident;
}
void usb_set_pps(struct cgpu_info *cgpu, uint16_t PrefPacketSize)
{
int pstate;
DEVLOCK(cgpu, pstate);
if (cgpu->usbdev)
cgpu->usbdev->PrefPacketSize = PrefPacketSize;
DEVUNLOCK(cgpu, pstate);
}
// Need to set all devices with matching usbdev
void usb_set_dev_start(struct cgpu_info *cgpu)
{
struct cg_usb_device *cgusb;
struct cgpu_info *cgpu2;
struct timeval now;
int pstate;
DEVLOCK(cgpu, pstate);
cgusb = cgpu->usbdev;
// If the device wasn't dropped
if (cgusb != NULL) {
int i;
cgtime(&now);
for (i = 0; i < total_devices; i++) {
cgpu2 = get_devices(i);
if (cgpu2->usbdev == cgusb)
copy_time(&(cgpu2->dev_start_tv), &now);
}
}
DEVUNLOCK(cgpu, pstate);
}
void usb_cleanup()
{
struct cgpu_info *cgpu;
int count;
int i;
hotplug_time = 0;
cgsleep_ms(10);
count = 0;
for (i = 0; i < total_devices; i++) {
cgpu = devices[i];
switch (cgpu->drv->drv_id) {
case DRIVER_BFLSC:
case DRIVER_BITFORCE:
case DRIVER_MODMINER:
case DRIVER_ICARUS:
case DRIVER_AVALON:
wr_lock(cgpu->usbinfo.devlock);
release_cgpu(cgpu);
wr_unlock(cgpu->usbinfo.devlock);
count++;
break;
default:
break;
}
}
/*
* Must attempt to wait for the resource thread to release coz
* during a restart it won't automatically release them in linux
*/
if (count) {
struct timeval start, now;
cgtime(&start);
while (42) {
cgsleep_ms(50);
mutex_lock(&cgusbres_lock);
if (!res_work_head)
break;
cgtime(&now);
if (tdiff(&now, &start) > 0.366) {
applog(LOG_WARNING,
"usb_cleanup gave up waiting for resource thread");
break;
}
mutex_unlock(&cgusbres_lock);
}
mutex_unlock(&cgusbres_lock);
}
cgsem_destroy(&usb_resource_sem);
}
void usb_initialise()
{
char *fre, *ptr, *comma, *colon;
int bus, dev, lim, i;
bool found;
for (i = 0; i < DRIVER_MAX; i++) {
drv_count[i].count = 0;
drv_count[i].limit = 999999;
}
cgusb_check_init();
if (opt_usb_select && *opt_usb_select) {
// Absolute device limit
if (*opt_usb_select == ':') {
total_limit = atoi(opt_usb_select+1);
if (total_limit < 0)
quit(1, "Invalid --usb total limit");
// Comma list of bus:dev devices to match
} else if (isdigit(*opt_usb_select)) {
fre = ptr = strdup(opt_usb_select);
do {
comma = strchr(ptr, ',');
if (comma)
*(comma++) = '\0';
colon = strchr(ptr, ':');
if (!colon)
quit(1, "Invalid --usb bus:dev missing ':'");
*(colon++) = '\0';
if (!isdigit(*ptr))
quit(1, "Invalid --usb bus:dev - bus must be a number");
if (!isdigit(*colon) && *colon != '*')
quit(1, "Invalid --usb bus:dev - dev must be a number or '*'");
bus = atoi(ptr);
if (bus <= 0)
quit(1, "Invalid --usb bus:dev - bus must be > 0");
if (*colon == '*')
dev = -1;
else {
dev = atoi(colon);
if (dev <= 0)
quit(1, "Invalid --usb bus:dev - dev must be > 0 or '*'");
}
busdev = realloc(busdev, sizeof(*busdev) * (++busdev_count));
if (unlikely(!busdev))
quit(1, "USB failed to realloc busdev");
busdev[busdev_count-1].bus_number = bus;
busdev[busdev_count-1].device_address = dev;
ptr = comma;
} while (ptr);
free(fre);
// Comma list of DRV:limit
} else {
fre = ptr = strdup(opt_usb_select);
do {
comma = strchr(ptr, ',');
if (comma)
*(comma++) = '\0';
colon = strchr(ptr, ':');
if (!colon)
quit(1, "Invalid --usb DRV:limit missing ':'");
*(colon++) = '\0';
if (!isdigit(*colon))
quit(1, "Invalid --usb DRV:limit - limit must be a number");
lim = atoi(colon);
if (lim < 0)
quit(1, "Invalid --usb DRV:limit - limit must be >= 0");
found = false;
#ifdef USE_BFLSC
if (strcasecmp(ptr, bflsc_drv.name) == 0) {
drv_count[bflsc_drv.drv_id].limit = lim;
found = true;
}
#endif
#ifdef USE_BITFORCE
if (!found && strcasecmp(ptr, bitforce_drv.name) == 0) {
drv_count[bitforce_drv.drv_id].limit = lim;
found = true;
}
#endif
#ifdef USE_MODMINER
if (!found && strcasecmp(ptr, modminer_drv.name) == 0) {
drv_count[modminer_drv.drv_id].limit = lim;
found = true;
}
#endif
#ifdef USE_ICARUS
if (!found && strcasecmp(ptr, icarus_drv.name) == 0) {
drv_count[icarus_drv.drv_id].limit = lim;
found = true;
}
#endif
#ifdef USE_AVALON
if (!found && strcasecmp(ptr, avalon_drv.name) == 0) {
drv_count[avalon_drv.drv_id].limit = lim;
found = true;
}
#endif
if (!found)
quit(1, "Invalid --usb DRV:limit - unknown DRV='%s'", ptr);
ptr = comma;
} while (ptr);
free(fre);
}
}
}
#ifndef WIN32
#include <errno.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <fcntl.h>
#ifndef __APPLE__
union semun {
int val;
struct semid_ds *buf;
unsigned short *array;
struct seminfo *__buf;
};
#endif
#else
static LPSECURITY_ATTRIBUTES unsec(LPSECURITY_ATTRIBUTES sec)
{
FreeSid(((PSECURITY_DESCRIPTOR)(sec->lpSecurityDescriptor))->Group);
free(sec->lpSecurityDescriptor);
free(sec);
return NULL;
}
static LPSECURITY_ATTRIBUTES mksec(const char *dname, uint8_t bus_number, uint8_t device_address)
{
SID_IDENTIFIER_AUTHORITY SIDAuthWorld = {SECURITY_WORLD_SID_AUTHORITY};
PSID gsid = NULL;
LPSECURITY_ATTRIBUTES sec_att = NULL;
PSECURITY_DESCRIPTOR sec_des = NULL;
sec_des = malloc(sizeof(*sec_des));
if (unlikely(!sec_des))
quit(1, "MTX: Failed to malloc LPSECURITY_DESCRIPTOR");
if (!InitializeSecurityDescriptor(sec_des, SECURITY_DESCRIPTOR_REVISION)) {
applog(LOG_ERR,
"MTX: %s (%d:%d) USB failed to init secdes err (%d)",
dname, (int)bus_number, (int)device_address,
(int)GetLastError());
free(sec_des);
return NULL;
}
if (!SetSecurityDescriptorDacl(sec_des, TRUE, NULL, FALSE)) {
applog(LOG_ERR,
"MTX: %s (%d:%d) USB failed to secdes dacl err (%d)",
dname, (int)bus_number, (int)device_address,
(int)GetLastError());
free(sec_des);
return NULL;
}
if(!AllocateAndInitializeSid(&SIDAuthWorld, 1, SECURITY_WORLD_RID, 0, 0, 0, 0, 0, 0, 0, &gsid)) {
applog(LOG_ERR,
"MTX: %s (%d:%d) USB failed to create gsid err (%d)",
dname, (int)bus_number, (int)device_address,
(int)GetLastError());
free(sec_des);
return NULL;
}
if (!SetSecurityDescriptorGroup(sec_des, gsid, FALSE)) {
applog(LOG_ERR,
"MTX: %s (%d:%d) USB failed to secdes grp err (%d)",
dname, (int)bus_number, (int)device_address,
(int)GetLastError());
FreeSid(gsid);
free(sec_des);
return NULL;
}
sec_att = malloc(sizeof(*sec_att));
if (unlikely(!sec_att))
quit(1, "MTX: Failed to malloc LPSECURITY_ATTRIBUTES");
sec_att->nLength = sizeof(*sec_att);
sec_att->lpSecurityDescriptor = sec_des;
sec_att->bInheritHandle = FALSE;
return sec_att;
}
#endif
// Any errors should always be printed since they will rarely if ever occur
// and thus it is best to always display them
static bool resource_lock(const char *dname, uint8_t bus_number, uint8_t device_address)
{
applog(LOG_DEBUG, "USB res lock %s %d-%d", dname, (int)bus_number, (int)device_address);
#ifdef WIN32
struct cgpu_info *cgpu;
LPSECURITY_ATTRIBUTES sec;
HANDLE usbMutex;
char name[64];
DWORD res;
int i;
if (is_in_use_bd(bus_number, device_address))
return false;
snprintf(name, sizeof(name), "cg-usb-%d-%d", (int)bus_number, (int)device_address);
sec = mksec(dname, bus_number, device_address);
if (!sec)
return false;
usbMutex = CreateMutex(sec, FALSE, name);
if (usbMutex == NULL) {
applog(LOG_ERR,
"MTX: %s USB failed to get '%s' err (%d)",
dname, name, (int)GetLastError());
sec = unsec(sec);
return false;
}
res = WaitForSingleObject(usbMutex, 0);
switch(res) {
case WAIT_OBJECT_0:
case WAIT_ABANDONED:
// Am I using it already?
for (i = 0; i < total_devices; i++) {
cgpu = get_devices(i);
if (cgpu->usbinfo.bus_number == bus_number &&
cgpu->usbinfo.device_address == device_address &&
cgpu->usbinfo.nodev == false) {
if (ReleaseMutex(usbMutex)) {
applog(LOG_WARNING,
"MTX: %s USB can't get '%s' - device in use",
dname, name);
goto fail;
}
applog(LOG_ERR,
"MTX: %s USB can't get '%s' - device in use - failure (%d)",
dname, name, (int)GetLastError());
goto fail;
}
}
break;
case WAIT_TIMEOUT:
if (!hotplug_mode)
applog(LOG_WARNING,
"MTX: %s USB failed to get '%s' - device in use",
dname, name);
goto fail;
case WAIT_FAILED:
applog(LOG_ERR,
"MTX: %s USB failed to get '%s' err (%d)",
dname, name, (int)GetLastError());
goto fail;
default:
applog(LOG_ERR,
"MTX: %s USB failed to get '%s' unknown reply (%d)",
dname, name, (int)res);
goto fail;
}
add_in_use(bus_number, device_address);
in_use_store_ress(bus_number, device_address, (void *)usbMutex, (void *)sec);
return true;
fail:
CloseHandle(usbMutex);
sec = unsec(sec);
return false;
#else
struct semid_ds seminfo;
union semun opt;
char name[64];
key_t *key;
int *sem;
int fd, count;
if (is_in_use_bd(bus_number, device_address))
return false;
snprintf(name, sizeof(name), "/tmp/cgminer-usb-%d-%d", (int)bus_number, (int)device_address);
fd = open(name, O_CREAT|O_RDONLY, S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH);
if (fd == -1) {
applog(LOG_ERR,
"SEM: %s USB open failed '%s' err (%d) %s",
dname, name, errno, strerror(errno));
goto _out;
}
close(fd);
key = malloc(sizeof(*key));
if (unlikely(!key))
quit(1, "SEM: Failed to malloc key");
sem = malloc(sizeof(*sem));
if (unlikely(!sem))
quit(1, "SEM: Failed to malloc sem");
*key = ftok(name, 'K');
*sem = semget(*key, 1, IPC_CREAT | IPC_EXCL | 438);
if (*sem < 0) {
if (errno != EEXIST) {
applog(LOG_ERR,
"SEM: %s USB failed to get '%s' err (%d) %s",
dname, name, errno, strerror(errno));
goto free_out;
}
*sem = semget(*key, 1, 0);
if (*sem < 0) {
applog(LOG_ERR,
"SEM: %s USB failed to access '%s' err (%d) %s",
dname, name, errno, strerror(errno));
goto free_out;
}
opt.buf = &seminfo;
count = 0;
while (++count) {
// Should NEVER take 100ms
if (count > 99) {
applog(LOG_ERR,
"SEM: %s USB timeout waiting for (%d) '%s'",
dname, *sem, name);
goto free_out;
}
if (semctl(*sem, 0, IPC_STAT, opt) == -1) {
applog(LOG_ERR,
"SEM: %s USB failed to wait for (%d) '%s' count %d err (%d) %s",
dname, *sem, name, count, errno, strerror(errno));
goto free_out;
}
if (opt.buf->sem_otime != 0)
break;
cgsleep_ms(1);
}
}
struct sembuf sops[] = {
{ 0, 0, IPC_NOWAIT | SEM_UNDO },
{ 0, 1, IPC_NOWAIT | SEM_UNDO }
};
if (semop(*sem, sops, 2)) {
if (errno == EAGAIN) {
if (!hotplug_mode)
applog(LOG_WARNING,
"SEM: %s USB failed to get (%d) '%s' - device in use",
dname, *sem, name);
} else {
applog(LOG_DEBUG,
"SEM: %s USB failed to get (%d) '%s' err (%d) %s",
dname, *sem, name, errno, strerror(errno));
}
goto free_out;
}
add_in_use(bus_number, device_address);
in_use_store_ress(bus_number, device_address, (void *)key, (void *)sem);
return true;
free_out:
free(sem);
free(key);
_out:
return false;
#endif
}
// Any errors should always be printed since they will rarely if ever occur
// and thus it is best to always display them
static void resource_unlock(const char *dname, uint8_t bus_number, uint8_t device_address)
{
applog(LOG_DEBUG, "USB res unlock %s %d-%d", dname, (int)bus_number, (int)device_address);
#ifdef WIN32
LPSECURITY_ATTRIBUTES sec = NULL;
HANDLE usbMutex = NULL;
char name[64];
snprintf(name, sizeof(name), "cg-usb-%d-%d", (int)bus_number, (int)device_address);
in_use_get_ress(bus_number, device_address, (void **)(&usbMutex), (void **)(&sec));
if (!usbMutex || !sec)
goto fila;
if (!ReleaseMutex(usbMutex))
applog(LOG_ERR,
"MTX: %s USB failed to release '%s' err (%d)",
dname, name, (int)GetLastError());
fila:
if (usbMutex)
CloseHandle(usbMutex);
if (sec)
unsec(sec);
remove_in_use(bus_number, device_address);
return;
#else
char name[64];
key_t *key = NULL;
int *sem = NULL;
snprintf(name, sizeof(name), "/tmp/cgminer-usb-%d-%d", (int)bus_number, (int)device_address);
in_use_get_ress(bus_number, device_address, (void **)(&key), (void **)(&sem));
if (!key || !sem)
goto fila;
struct sembuf sops[] = {
{ 0, -1, SEM_UNDO }
};
// Allow a 10ms timeout
// exceeding this timeout means it would probably never succeed anyway
struct timespec timeout = { 0, 10000000 };
if (semtimedop(*sem, sops, 1, &timeout)) {
applog(LOG_ERR,
"SEM: %s USB failed to release '%s' err (%d) %s",
dname, name, errno, strerror(errno));
}
if (semctl(*sem, 0, IPC_RMID)) {
applog(LOG_WARNING,
"SEM: %s USB failed to remove SEM '%s' err (%d) %s",
dname, name, errno, strerror(errno));
}
fila:
free(sem);
free(key);
remove_in_use(bus_number, device_address);
return;
#endif
}
static void resource_process()
{
struct resource_work *res_work = NULL;
struct resource_reply *res_reply = NULL;
bool ok;
applog(LOG_DEBUG, "RES: %s (%d:%d) lock=%d",
res_work_head->dname,
(int)res_work_head->bus_number,
(int)res_work_head->device_address,
res_work_head->lock);
if (res_work_head->lock) {
ok = resource_lock(res_work_head->dname,
res_work_head->bus_number,
res_work_head->device_address);
applog(LOG_DEBUG, "RES: %s (%d:%d) lock ok=%d",
res_work_head->dname,
(int)res_work_head->bus_number,
(int)res_work_head->device_address,
ok);
res_reply = calloc(1, sizeof(*res_reply));
if (unlikely(!res_reply))
quit(1, "USB failed to calloc res_reply");
res_reply->bus_number = res_work_head->bus_number;
res_reply->device_address = res_work_head->device_address;
res_reply->got = ok;
res_reply->next = res_reply_head;
res_reply_head = res_reply;
}
else
resource_unlock(res_work_head->dname,
res_work_head->bus_number,
res_work_head->device_address);
res_work = res_work_head;
res_work_head = res_work_head->next;
free(res_work);
}
void *usb_resource_thread(void __maybe_unused *userdata)
{
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
RenameThread("usbresource");
applog(LOG_DEBUG, "RES: thread starting");
while (42) {
/* Wait to be told we have work to do */
cgsem_wait(&usb_resource_sem);
mutex_lock(&cgusbres_lock);
while (res_work_head)
resource_process();
mutex_unlock(&cgusbres_lock);
}
return NULL;
}