mirror of https://github.com/GOSTSec/sgminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1315 lines
33 KiB
1315 lines
33 KiB
/* |
|
* Copyright 2013 Con Kolivas <kernel@kolivas.org> |
|
* Copyright 2012-2013 Xiangfu <xiangfu@openmobilefree.com> |
|
* Copyright 2012 Luke Dashjr |
|
* Copyright 2012 Andrew Smith |
|
* |
|
* This program is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the Free |
|
* Software Foundation; either version 3 of the License, or (at your option) |
|
* any later version. See COPYING for more details. |
|
*/ |
|
|
|
#include "config.h" |
|
|
|
#include <limits.h> |
|
#include <pthread.h> |
|
#include <stdio.h> |
|
#include <sys/time.h> |
|
#include <sys/types.h> |
|
#include <dirent.h> |
|
#include <unistd.h> |
|
#ifndef WIN32 |
|
#include <sys/select.h> |
|
#include <termios.h> |
|
#include <sys/stat.h> |
|
#include <fcntl.h> |
|
#ifndef O_CLOEXEC |
|
#define O_CLOEXEC 0 |
|
#endif |
|
#else |
|
#include "compat.h" |
|
#include <windows.h> |
|
#include <io.h> |
|
#endif |
|
|
|
#include "elist.h" |
|
#include "miner.h" |
|
#include "usbutils.h" |
|
#include "driver-avalon.h" |
|
#include "hexdump.c" |
|
#include "util.h" |
|
|
|
int opt_avalon_temp = AVALON_TEMP_TARGET; |
|
int opt_avalon_overheat = AVALON_TEMP_OVERHEAT; |
|
int opt_avalon_fan_min = AVALON_DEFAULT_FAN_MIN_PWM; |
|
int opt_avalon_fan_max = AVALON_DEFAULT_FAN_MAX_PWM; |
|
int opt_avalon_freq_min = AVALON_MIN_FREQUENCY; |
|
int opt_avalon_freq_max = AVALON_MAX_FREQUENCY; |
|
bool opt_avalon_auto; |
|
|
|
static int option_offset = -1; |
|
struct device_drv avalon_drv; |
|
|
|
static int avalon_init_task(struct avalon_task *at, |
|
uint8_t reset, uint8_t ff, uint8_t fan, |
|
uint8_t timeout, uint8_t asic_num, |
|
uint8_t miner_num, uint8_t nonce_elf, |
|
uint8_t gate_miner, int frequency) |
|
{ |
|
uint16_t *lefreq16; |
|
uint8_t *buf; |
|
static bool first = true; |
|
|
|
if (unlikely(!at)) |
|
return -1; |
|
|
|
if (unlikely(timeout <= 0 || asic_num <= 0 || miner_num <= 0)) |
|
return -1; |
|
|
|
memset(at, 0, sizeof(struct avalon_task)); |
|
|
|
if (unlikely(reset)) { |
|
at->reset = 1; |
|
at->fan_eft = 1; |
|
at->timer_eft = 1; |
|
first = true; |
|
} |
|
|
|
at->flush_fifo = (ff ? 1 : 0); |
|
at->fan_eft = (fan ? 1 : 0); |
|
|
|
if (unlikely(first && !at->reset)) { |
|
at->fan_eft = 1; |
|
at->timer_eft = 1; |
|
first = false; |
|
} |
|
|
|
at->fan_pwm_data = (fan ? fan : AVALON_DEFAULT_FAN_MAX_PWM); |
|
at->timeout_data = timeout; |
|
at->asic_num = asic_num; |
|
at->miner_num = miner_num; |
|
at->nonce_elf = nonce_elf; |
|
|
|
at->gate_miner_elf = 1; |
|
at->asic_pll = 1; |
|
|
|
if (unlikely(gate_miner)) { |
|
at-> gate_miner = 1; |
|
at->asic_pll = 0; |
|
} |
|
|
|
buf = (uint8_t *)at; |
|
buf[5] = 0x00; |
|
buf[8] = 0x74; |
|
buf[9] = 0x01; |
|
buf[10] = 0x00; |
|
buf[11] = 0x00; |
|
lefreq16 = (uint16_t *)&buf[6]; |
|
*lefreq16 = htole16(frequency * 8); |
|
|
|
return 0; |
|
} |
|
|
|
static inline void avalon_create_task(struct avalon_task *at, |
|
struct work *work) |
|
{ |
|
memcpy(at->midstate, work->midstate, 32); |
|
memcpy(at->data, work->data + 64, 12); |
|
} |
|
|
|
static int avalon_write(struct cgpu_info *avalon, char *buf, ssize_t len, int ep) |
|
{ |
|
int err, amount; |
|
|
|
err = usb_write(avalon, buf, len, &amount, ep); |
|
applog(LOG_DEBUG, "%s%i: usb_write got err %d", avalon->drv->name, |
|
avalon->device_id, err); |
|
|
|
if (unlikely(err != 0)) { |
|
applog(LOG_WARNING, "usb_write error on avalon_write"); |
|
return AVA_SEND_ERROR; |
|
} |
|
if (amount != len) { |
|
applog(LOG_WARNING, "usb_write length mismatch on avalon_write"); |
|
return AVA_SEND_ERROR; |
|
} |
|
|
|
return AVA_SEND_OK; |
|
} |
|
|
|
static int avalon_send_task(const struct avalon_task *at, struct cgpu_info *avalon) |
|
|
|
{ |
|
uint8_t buf[AVALON_WRITE_SIZE + 4 * AVALON_DEFAULT_ASIC_NUM]; |
|
int delay, ret, i, ep = C_AVALON_TASK; |
|
struct avalon_info *info; |
|
uint32_t nonce_range; |
|
size_t nr_len; |
|
|
|
if (at->nonce_elf) |
|
nr_len = AVALON_WRITE_SIZE + 4 * at->asic_num; |
|
else |
|
nr_len = AVALON_WRITE_SIZE; |
|
|
|
memcpy(buf, at, AVALON_WRITE_SIZE); |
|
|
|
if (at->nonce_elf) { |
|
nonce_range = (uint32_t)0xffffffff / at->asic_num; |
|
for (i = 0; i < at->asic_num; i++) { |
|
buf[AVALON_WRITE_SIZE + (i * 4) + 3] = |
|
(i * nonce_range & 0xff000000) >> 24; |
|
buf[AVALON_WRITE_SIZE + (i * 4) + 2] = |
|
(i * nonce_range & 0x00ff0000) >> 16; |
|
buf[AVALON_WRITE_SIZE + (i * 4) + 1] = |
|
(i * nonce_range & 0x0000ff00) >> 8; |
|
buf[AVALON_WRITE_SIZE + (i * 4) + 0] = |
|
(i * nonce_range & 0x000000ff) >> 0; |
|
} |
|
} |
|
#if defined(__BIG_ENDIAN__) || defined(MIPSEB) |
|
uint8_t tt = 0; |
|
|
|
tt = (buf[0] & 0x0f) << 4; |
|
tt |= ((buf[0] & 0x10) ? (1 << 3) : 0); |
|
tt |= ((buf[0] & 0x20) ? (1 << 2) : 0); |
|
tt |= ((buf[0] & 0x40) ? (1 << 1) : 0); |
|
tt |= ((buf[0] & 0x80) ? (1 << 0) : 0); |
|
buf[0] = tt; |
|
|
|
tt = (buf[4] & 0x0f) << 4; |
|
tt |= ((buf[4] & 0x10) ? (1 << 3) : 0); |
|
tt |= ((buf[4] & 0x20) ? (1 << 2) : 0); |
|
tt |= ((buf[4] & 0x40) ? (1 << 1) : 0); |
|
tt |= ((buf[4] & 0x80) ? (1 << 0) : 0); |
|
buf[4] = tt; |
|
#endif |
|
info = avalon->device_data; |
|
delay = nr_len * 10 * 1000000; |
|
delay = delay / info->baud; |
|
|
|
if (at->reset) { |
|
ep = C_AVALON_RESET; |
|
nr_len = 1; |
|
} |
|
if (opt_debug) { |
|
applog(LOG_DEBUG, "Avalon: Sent(%u):", (unsigned int)nr_len); |
|
hexdump(buf, nr_len); |
|
} |
|
ret = avalon_write(avalon, (char *)buf, nr_len, ep); |
|
|
|
delay += 4000; |
|
nusleep(delay); |
|
applog(LOG_DEBUG, "Avalon: Sent: Buffer delay: %dus", delay); |
|
|
|
return ret; |
|
} |
|
|
|
static bool avalon_decode_nonce(struct thr_info *thr, struct cgpu_info *avalon, |
|
struct avalon_info *info, struct avalon_result *ar, |
|
struct work *work) |
|
{ |
|
uint32_t nonce; |
|
|
|
info = avalon->device_data; |
|
info->matching_work[work->subid]++; |
|
nonce = htole32(ar->nonce); |
|
applog(LOG_DEBUG, "Avalon: nonce = %0x08x", nonce); |
|
return submit_nonce(thr, work, nonce); |
|
} |
|
|
|
/* Wait until the ftdi chip returns a CTS saying we can send more data. */ |
|
static void wait_avalon_ready(struct cgpu_info *avalon) |
|
{ |
|
while (avalon_buffer_full(avalon)) { |
|
nmsleep(40); |
|
} |
|
} |
|
|
|
#define AVALON_CTS (1 << 4) |
|
|
|
static inline bool avalon_cts(char c) |
|
{ |
|
return (c & AVALON_CTS); |
|
} |
|
|
|
static int avalon_read(struct cgpu_info *avalon, unsigned char *buf, |
|
size_t bufsize, int timeout, int ep) |
|
{ |
|
struct avalon_info *info = avalon->device_data; |
|
size_t total = 0, readsize = bufsize + 2; |
|
char readbuf[AVALON_READBUF_SIZE]; |
|
int err, amount, ofs = 2, cp; |
|
|
|
err = usb_read_once_timeout(avalon, readbuf, readsize, &amount, timeout, ep); |
|
applog(LOG_DEBUG, "%s%i: Get avalon read got err %d", |
|
avalon->drv->name, avalon->device_id, err); |
|
|
|
if (amount < 2) |
|
goto out; |
|
|
|
/* Use the fact that we're reading the status with the buffer to tell |
|
* the write thread it should send more work without needing to call |
|
* avalon_buffer_full directly. */ |
|
if (avalon_cts(buf[0])) |
|
cgsem_post(&info->write_sem); |
|
|
|
/* The first 2 of every 64 bytes are status on FTDIRL */ |
|
while (amount > 2) { |
|
cp = amount - 2; |
|
if (cp > 62) |
|
cp = 62; |
|
memcpy(&buf[total], &readbuf[ofs], cp); |
|
total += cp; |
|
amount -= cp + 2; |
|
ofs += 64; |
|
} |
|
out: |
|
return total; |
|
} |
|
|
|
static int avalon_reset(struct cgpu_info *avalon, bool initial) |
|
{ |
|
struct avalon_result ar; |
|
int ret, i, spare; |
|
struct avalon_task at; |
|
uint8_t *buf, *tmp; |
|
struct timespec p; |
|
|
|
/* Send reset, then check for result */ |
|
avalon_init_task(&at, 1, 0, |
|
AVALON_DEFAULT_FAN_MAX_PWM, |
|
AVALON_DEFAULT_TIMEOUT, |
|
AVALON_DEFAULT_ASIC_NUM, |
|
AVALON_DEFAULT_MINER_NUM, |
|
0, 0, |
|
AVALON_DEFAULT_FREQUENCY); |
|
|
|
wait_avalon_ready(avalon); |
|
ret = avalon_send_task(&at, avalon); |
|
if (unlikely(ret == AVA_SEND_ERROR)) |
|
return -1; |
|
|
|
if (!initial) { |
|
applog(LOG_ERR, "AVA%d reset sequence sent", avalon->device_id); |
|
return 0; |
|
} |
|
|
|
ret = avalon_read(avalon, (unsigned char *)&ar, AVALON_READ_SIZE, |
|
AVALON_RESET_TIMEOUT, C_GET_AVALON_RESET); |
|
|
|
/* What do these sleeps do?? */ |
|
p.tv_sec = 0; |
|
p.tv_nsec = AVALON_RESET_PITCH; |
|
nanosleep(&p, NULL); |
|
|
|
/* Look for the first occurrence of 0xAA, the reset response should be: |
|
* AA 55 AA 55 00 00 00 00 00 00 */ |
|
spare = ret - 10; |
|
buf = tmp = (uint8_t *)&ar; |
|
if (opt_debug) { |
|
applog(LOG_DEBUG, "AVA%d reset: get:", avalon->device_id); |
|
hexdump(tmp, AVALON_READ_SIZE); |
|
} |
|
|
|
for (i = 0; i <= spare; i++) { |
|
buf = &tmp[i]; |
|
if (buf[0] == 0xAA) |
|
break; |
|
} |
|
i = 0; |
|
|
|
if (buf[0] == 0xAA && buf[1] == 0x55 && |
|
buf[2] == 0xAA && buf[3] == 0x55) { |
|
for (i = 4; i < 11; i++) |
|
if (buf[i] != 0) |
|
break; |
|
} |
|
|
|
if (i != 11) { |
|
applog(LOG_ERR, "AVA%d: Reset failed! not an Avalon?" |
|
" (%d: %02x %02x %02x %02x)", avalon->device_id, |
|
i, buf[0], buf[1], buf[2], buf[3]); |
|
/* FIXME: return 1; */ |
|
} else |
|
applog(LOG_WARNING, "AVA%d: Reset succeeded", |
|
avalon->device_id); |
|
|
|
return 0; |
|
} |
|
|
|
static bool get_options(int this_option_offset, int *baud, int *miner_count, |
|
int *asic_count, int *timeout, int *frequency) |
|
{ |
|
char buf[BUFSIZ+1]; |
|
char *ptr, *comma, *colon, *colon2, *colon3, *colon4; |
|
size_t max; |
|
int i, tmp; |
|
|
|
if (opt_avalon_options == NULL) |
|
buf[0] = '\0'; |
|
else { |
|
ptr = opt_avalon_options; |
|
for (i = 0; i < this_option_offset; i++) { |
|
comma = strchr(ptr, ','); |
|
if (comma == NULL) |
|
break; |
|
ptr = comma + 1; |
|
} |
|
|
|
comma = strchr(ptr, ','); |
|
if (comma == NULL) |
|
max = strlen(ptr); |
|
else |
|
max = comma - ptr; |
|
|
|
if (max > BUFSIZ) |
|
max = BUFSIZ; |
|
strncpy(buf, ptr, max); |
|
buf[max] = '\0'; |
|
} |
|
|
|
if (!(*buf)) |
|
return false; |
|
|
|
colon = strchr(buf, ':'); |
|
if (colon) |
|
*(colon++) = '\0'; |
|
|
|
tmp = atoi(buf); |
|
switch (tmp) { |
|
case 115200: |
|
*baud = 115200; |
|
break; |
|
case 57600: |
|
*baud = 57600; |
|
break; |
|
case 38400: |
|
*baud = 38400; |
|
break; |
|
case 19200: |
|
*baud = 19200; |
|
break; |
|
default: |
|
quit(1, "Invalid avalon-options for baud (%s) " |
|
"must be 115200, 57600, 38400 or 19200", buf); |
|
} |
|
|
|
if (colon && *colon) { |
|
colon2 = strchr(colon, ':'); |
|
if (colon2) |
|
*(colon2++) = '\0'; |
|
|
|
if (*colon) { |
|
tmp = atoi(colon); |
|
if (tmp > 0 && tmp <= AVALON_DEFAULT_MINER_NUM) { |
|
*miner_count = tmp; |
|
} else { |
|
quit(1, "Invalid avalon-options for " |
|
"miner_count (%s) must be 1 ~ %d", |
|
colon, AVALON_DEFAULT_MINER_NUM); |
|
} |
|
} |
|
|
|
if (colon2 && *colon2) { |
|
colon3 = strchr(colon2, ':'); |
|
if (colon3) |
|
*(colon3++) = '\0'; |
|
|
|
tmp = atoi(colon2); |
|
if (tmp > 0 && tmp <= AVALON_DEFAULT_ASIC_NUM) |
|
*asic_count = tmp; |
|
else { |
|
quit(1, "Invalid avalon-options for " |
|
"asic_count (%s) must be 1 ~ %d", |
|
colon2, AVALON_DEFAULT_ASIC_NUM); |
|
} |
|
|
|
if (colon3 && *colon3) { |
|
colon4 = strchr(colon3, ':'); |
|
if (colon4) |
|
*(colon4++) = '\0'; |
|
|
|
tmp = atoi(colon3); |
|
if (tmp > 0 && tmp <= 0xff) |
|
*timeout = tmp; |
|
else { |
|
quit(1, "Invalid avalon-options for " |
|
"timeout (%s) must be 1 ~ %d", |
|
colon3, 0xff); |
|
} |
|
if (colon4 && *colon4) { |
|
tmp = atoi(colon4); |
|
if (tmp < AVALON_MIN_FREQUENCY || tmp > AVALON_MAX_FREQUENCY) { |
|
quit(1, "Invalid avalon-options for frequency, must be %d <= frequency <= %d", |
|
AVALON_MIN_FREQUENCY, AVALON_MAX_FREQUENCY); |
|
} |
|
*frequency = tmp; |
|
} |
|
} |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
char *set_avalon_fan(char *arg) |
|
{ |
|
int val1, val2, ret; |
|
|
|
ret = sscanf(arg, "%d-%d", &val1, &val2); |
|
if (ret < 1) |
|
return "No values passed to avalon-fan"; |
|
if (ret == 1) |
|
val2 = val1; |
|
|
|
if (val1 < 0 || val1 > 100 || val2 < 0 || val2 > 100 || val2 < val1) |
|
return "Invalid value passed to avalon-fan"; |
|
|
|
opt_avalon_fan_min = val1 * AVALON_PWM_MAX / 100; |
|
opt_avalon_fan_max = val2 * AVALON_PWM_MAX / 100; |
|
|
|
return NULL; |
|
} |
|
|
|
char *set_avalon_freq(char *arg) |
|
{ |
|
int val1, val2, ret; |
|
|
|
ret = sscanf(arg, "%d-%d", &val1, &val2); |
|
if (ret < 1) |
|
return "No values passed to avalon-freq"; |
|
if (ret == 1) |
|
val2 = val1; |
|
|
|
if (val1 < AVALON_MIN_FREQUENCY || val1 > AVALON_MAX_FREQUENCY || |
|
val2 < AVALON_MIN_FREQUENCY || val2 > AVALON_MAX_FREQUENCY || |
|
val2 < val1) |
|
return "Invalid value passed to avalon-freq"; |
|
|
|
opt_avalon_freq_min = val1; |
|
opt_avalon_freq_max = val2; |
|
|
|
return NULL; |
|
} |
|
|
|
static void avalon_idle(struct cgpu_info *avalon, struct avalon_info *info) |
|
{ |
|
int i; |
|
|
|
info->idle = true; |
|
wait_avalon_ready(avalon); |
|
/* Send idle to all miners */ |
|
for (i = 0; i < info->miner_count; i++) { |
|
struct avalon_task at; |
|
|
|
if (unlikely(avalon_buffer_full(avalon))) |
|
break; |
|
avalon_init_task(&at, 0, 0, info->fan_pwm, info->timeout, |
|
info->asic_count, info->miner_count, 1, 1, |
|
info->frequency); |
|
avalon_send_task(&at, avalon); |
|
} |
|
applog(LOG_WARNING, "AVA%i: Idling %d miners", avalon->device_id, i); |
|
wait_avalon_ready(avalon); |
|
} |
|
|
|
static void avalon_initialise(struct cgpu_info *avalon) |
|
{ |
|
int err, interface; |
|
|
|
if (avalon->usbinfo.nodev) |
|
return; |
|
|
|
interface = avalon->usbdev->found->interface; |
|
// Reset |
|
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_RESET, |
|
FTDI_VALUE_RESET, interface, C_RESET); |
|
|
|
applog(LOG_DEBUG, "%s%i: reset got err %d", |
|
avalon->drv->name, avalon->device_id, err); |
|
|
|
if (avalon->usbinfo.nodev) |
|
return; |
|
|
|
// Set latency |
|
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_LATENCY, |
|
AVALON_LATENCY, interface, C_LATENCY); |
|
|
|
applog(LOG_DEBUG, "%s%i: latency got err %d", |
|
avalon->drv->name, avalon->device_id, err); |
|
|
|
if (avalon->usbinfo.nodev) |
|
return; |
|
|
|
// Set data |
|
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_DATA, |
|
FTDI_VALUE_DATA_AVA, interface, C_SETDATA); |
|
|
|
applog(LOG_DEBUG, "%s%i: data got err %d", |
|
avalon->drv->name, avalon->device_id, err); |
|
|
|
if (avalon->usbinfo.nodev) |
|
return; |
|
|
|
// Set the baud |
|
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_BAUD, FTDI_VALUE_BAUD_AVA, |
|
(FTDI_INDEX_BAUD_AVA & 0xff00) | interface, |
|
C_SETBAUD); |
|
|
|
applog(LOG_DEBUG, "%s%i: setbaud got err %d", |
|
avalon->drv->name, avalon->device_id, err); |
|
|
|
if (avalon->usbinfo.nodev) |
|
return; |
|
|
|
// Set Modem Control |
|
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_MODEM, |
|
FTDI_VALUE_MODEM, interface, C_SETMODEM); |
|
|
|
applog(LOG_DEBUG, "%s%i: setmodemctrl got err %d", |
|
avalon->drv->name, avalon->device_id, err); |
|
|
|
if (avalon->usbinfo.nodev) |
|
return; |
|
|
|
// Set Flow Control |
|
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_FLOW, |
|
FTDI_VALUE_FLOW, interface, C_SETFLOW); |
|
|
|
applog(LOG_DEBUG, "%s%i: setflowctrl got err %d", |
|
avalon->drv->name, avalon->device_id, err); |
|
|
|
if (avalon->usbinfo.nodev) |
|
return; |
|
|
|
/* Avalon repeats the following */ |
|
// Set Modem Control |
|
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_MODEM, |
|
FTDI_VALUE_MODEM, interface, C_SETMODEM); |
|
|
|
applog(LOG_DEBUG, "%s%i: setmodemctrl 2 got err %d", |
|
avalon->drv->name, avalon->device_id, err); |
|
|
|
if (avalon->usbinfo.nodev) |
|
return; |
|
|
|
// Set Flow Control |
|
err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_FLOW, |
|
FTDI_VALUE_FLOW, interface, C_SETFLOW); |
|
|
|
applog(LOG_DEBUG, "%s%i: setflowctrl 2 got err %d", |
|
avalon->drv->name, avalon->device_id, err); |
|
} |
|
|
|
static bool avalon_detect_one(libusb_device *dev, struct usb_find_devices *found) |
|
{ |
|
int baud, miner_count, asic_count, timeout, frequency = 0; |
|
int this_option_offset = ++option_offset; |
|
struct avalon_info *info; |
|
struct cgpu_info *avalon; |
|
bool configured; |
|
int ret; |
|
|
|
avalon = usb_alloc_cgpu(&avalon_drv, AVALON_MINER_THREADS); |
|
|
|
configured = get_options(this_option_offset, &baud, &miner_count, |
|
&asic_count, &timeout, &frequency); |
|
|
|
if (!usb_init(avalon, dev, found)) |
|
goto shin; |
|
|
|
/* Even though this is an FTDI type chip, we want to do the parsing |
|
* all ourselves so set it to std usb type */ |
|
avalon->usbdev->usb_type = USB_TYPE_STD; |
|
avalon->usbdev->PrefPacketSize = AVALON_USB_PACKETSIZE; |
|
|
|
/* We have a real Avalon! */ |
|
avalon_initialise(avalon); |
|
|
|
avalon->device_data = calloc(sizeof(struct avalon_info), 1); |
|
if (unlikely(!(avalon->device_data))) |
|
quit(1, "Failed to calloc avalon_info data"); |
|
info = avalon->device_data; |
|
|
|
if (configured) { |
|
info->baud = baud; |
|
info->miner_count = miner_count; |
|
info->asic_count = asic_count; |
|
info->timeout = timeout; |
|
info->frequency = frequency; |
|
} else { |
|
info->baud = AVALON_IO_SPEED; |
|
info->miner_count = AVALON_DEFAULT_MINER_NUM; |
|
info->asic_count = AVALON_DEFAULT_ASIC_NUM; |
|
info->timeout = AVALON_DEFAULT_TIMEOUT; |
|
info->frequency = AVALON_DEFAULT_FREQUENCY; |
|
} |
|
|
|
info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM; |
|
info->temp_max = 0; |
|
/* This is for check the temp/fan every 3~4s */ |
|
info->temp_history_count = (4 / (float)((float)info->timeout * ((float)1.67/0x32))) + 1; |
|
if (info->temp_history_count <= 0) |
|
info->temp_history_count = 1; |
|
|
|
info->temp_history_index = 0; |
|
info->temp_sum = 0; |
|
info->temp_old = 0; |
|
|
|
if (!add_cgpu(avalon)) |
|
goto unshin; |
|
|
|
ret = avalon_reset(avalon, true); |
|
if (ret && !configured) |
|
goto unshin; |
|
|
|
update_usb_stats(avalon); |
|
|
|
avalon_idle(avalon, info); |
|
|
|
applog(LOG_DEBUG, "Avalon Detected: %s " |
|
"(miner_count=%d asic_count=%d timeout=%d frequency=%d)", |
|
avalon->device_path, info->miner_count, info->asic_count, info->timeout, |
|
info->frequency); |
|
|
|
return true; |
|
|
|
unshin: |
|
|
|
usb_uninit(avalon); |
|
|
|
shin: |
|
|
|
free(avalon->device_data); |
|
avalon->device_data = NULL; |
|
|
|
avalon = usb_free_cgpu(avalon); |
|
|
|
return false; |
|
} |
|
|
|
static void avalon_detect(void) |
|
{ |
|
usb_detect(&avalon_drv, avalon_detect_one); |
|
} |
|
|
|
static void avalon_init(struct cgpu_info *avalon) |
|
{ |
|
applog(LOG_INFO, "Avalon: Opened on %s", avalon->device_path); |
|
} |
|
|
|
static struct work *avalon_valid_result(struct cgpu_info *avalon, struct avalon_result *ar) |
|
{ |
|
return find_queued_work_bymidstate(avalon, (char *)ar->midstate, 32, |
|
(char *)ar->data, 64, 12); |
|
} |
|
|
|
static void avalon_update_temps(struct cgpu_info *avalon, struct avalon_info *info, |
|
struct avalon_result *ar); |
|
|
|
static void avalon_inc_nvw(struct avalon_info *info, struct thr_info *thr) |
|
{ |
|
if (unlikely(info->idle)) |
|
return; |
|
|
|
applog(LOG_INFO, "%s%d: No matching work - HW error", |
|
thr->cgpu->drv->name, thr->cgpu->device_id); |
|
|
|
inc_hw_errors(thr); |
|
info->no_matching_work++; |
|
} |
|
|
|
static void avalon_parse_results(struct cgpu_info *avalon, struct avalon_info *info, |
|
struct thr_info *thr, char *buf, int *offset) |
|
{ |
|
int i, spare = *offset - AVALON_READ_SIZE; |
|
bool found = false; |
|
|
|
for (i = 0; i <= spare; i++) { |
|
struct avalon_result *ar; |
|
struct work *work; |
|
|
|
ar = (struct avalon_result *)&buf[i]; |
|
work = avalon_valid_result(avalon, ar); |
|
if (work) { |
|
bool gettemp = false; |
|
|
|
found = true; |
|
|
|
if (avalon_decode_nonce(thr, avalon, info, ar, work)) { |
|
mutex_lock(&info->lock); |
|
if (!info->nonces++) |
|
gettemp = true; |
|
info->auto_nonces++; |
|
mutex_unlock(&info->lock); |
|
} else if (opt_avalon_auto) { |
|
mutex_lock(&info->lock); |
|
info->auto_hw++; |
|
mutex_unlock(&info->lock); |
|
} |
|
|
|
if (gettemp) |
|
avalon_update_temps(avalon, info, ar); |
|
break; |
|
} |
|
} |
|
|
|
if (!found) { |
|
spare = *offset - AVALON_READ_SIZE; |
|
/* We are buffering and haven't accumulated one more corrupt |
|
* work result. */ |
|
if (spare < (int)AVALON_READ_SIZE) |
|
return; |
|
avalon_inc_nvw(info, thr); |
|
} else { |
|
spare = AVALON_READ_SIZE + i; |
|
if (i) { |
|
if (i >= (int)AVALON_READ_SIZE) |
|
avalon_inc_nvw(info, thr); |
|
else |
|
applog(LOG_WARNING, "Avalon: Discarding %d bytes from buffer", i); |
|
} |
|
} |
|
|
|
*offset -= spare; |
|
memmove(buf, buf + spare, *offset); |
|
} |
|
|
|
static void avalon_running_reset(struct cgpu_info *avalon, |
|
struct avalon_info *info) |
|
{ |
|
avalon_reset(avalon, false); |
|
avalon_idle(avalon, info); |
|
avalon->results = 0; |
|
info->reset = false; |
|
} |
|
|
|
static void *avalon_get_results(void *userdata) |
|
{ |
|
struct cgpu_info *avalon = (struct cgpu_info *)userdata; |
|
struct avalon_info *info = avalon->device_data; |
|
int offset = 0, read_delay = 0, ret = 0; |
|
const int rsize = AVALON_FTDI_READSIZE; |
|
char readbuf[AVALON_READBUF_SIZE]; |
|
struct thr_info *thr = info->thr; |
|
struct timeval tv_start, tv_end; |
|
char threadname[24]; |
|
|
|
snprintf(threadname, 24, "ava_recv/%d", avalon->device_id); |
|
RenameThread(threadname); |
|
|
|
while (likely(!avalon->shutdown)) { |
|
unsigned char buf[rsize]; |
|
struct timeval tv_diff; |
|
int us_diff; |
|
|
|
if (offset >= (int)AVALON_READ_SIZE) |
|
avalon_parse_results(avalon, info, thr, readbuf, &offset); |
|
|
|
if (unlikely(offset + rsize >= AVALON_READBUF_SIZE)) { |
|
/* This should never happen */ |
|
applog(LOG_ERR, "Avalon readbuf overflow, resetting buffer"); |
|
offset = 0; |
|
} |
|
|
|
if (unlikely(info->reset)) { |
|
avalon_running_reset(avalon, info); |
|
/* Discard anything in the buffer */ |
|
offset = 0; |
|
} |
|
|
|
/* As the usb read returns after just 1ms, sleep long enough |
|
* to leave the interface idle for writes to occur, but do not |
|
* sleep if we have been receiving data as more may be coming. */ |
|
if (ret < 1) { |
|
cgtime(&tv_end); |
|
timersub(&tv_end, &tv_start, &tv_diff); |
|
/* Assume it has not been > 1 second so ignore tv_sec */ |
|
us_diff = tv_diff.tv_usec; |
|
read_delay = AVALON_READ_TIMEOUT * 1000 - us_diff; |
|
if (likely(read_delay >= 1000)) |
|
nusleep(read_delay); |
|
} |
|
|
|
cgtime(&tv_start); |
|
ret = avalon_read(avalon, buf, rsize, AVALON_READ_TIMEOUT, |
|
C_AVALON_READ); |
|
|
|
if (ret < 1) |
|
continue; |
|
|
|
if (opt_debug) { |
|
applog(LOG_DEBUG, "Avalon: get:"); |
|
hexdump((uint8_t *)buf, ret); |
|
} |
|
|
|
memcpy(&readbuf[offset], &buf, ret); |
|
offset += ret; |
|
} |
|
return NULL; |
|
} |
|
|
|
static void avalon_rotate_array(struct cgpu_info *avalon) |
|
{ |
|
avalon->queued = 0; |
|
if (++avalon->work_array >= AVALON_ARRAY_SIZE) |
|
avalon->work_array = 0; |
|
} |
|
|
|
static void avalon_set_timeout(struct avalon_info *info) |
|
{ |
|
info->timeout = AVALON_TIMEOUT_FACTOR / info->frequency; |
|
} |
|
|
|
static void avalon_inc_freq(struct avalon_info *info) |
|
{ |
|
info->frequency += 2; |
|
if (info->frequency > opt_avalon_freq_max) |
|
info->frequency = opt_avalon_freq_max; |
|
avalon_set_timeout(info); |
|
applog(LOG_NOTICE, "Avalon increasing frequency to %d, timeout %d", |
|
info->frequency, info->timeout); |
|
} |
|
|
|
static void avalon_dec_freq(struct avalon_info *info) |
|
{ |
|
info->frequency -= 1; |
|
if (info->frequency < opt_avalon_freq_min) |
|
info->frequency = opt_avalon_freq_min; |
|
avalon_set_timeout(info); |
|
applog(LOG_NOTICE, "Avalon decreasing frequency to %d, timeout %d", |
|
info->frequency, info->timeout); |
|
} |
|
|
|
static void avalon_reset_auto(struct avalon_info *info) |
|
{ |
|
info->auto_queued = |
|
info->auto_nonces = |
|
info->auto_hw = 0; |
|
} |
|
|
|
static void *avalon_send_tasks(void *userdata) |
|
{ |
|
struct cgpu_info *avalon = (struct cgpu_info *)userdata; |
|
struct avalon_info *info = avalon->device_data; |
|
const int avalon_get_work_count = info->miner_count; |
|
char threadname[24]; |
|
|
|
snprintf(threadname, 24, "ava_send/%d", avalon->device_id); |
|
RenameThread(threadname); |
|
|
|
while (likely(!avalon->shutdown)) { |
|
int start_count, end_count, i, j, ret; |
|
struct avalon_task at; |
|
int idled = 0; |
|
|
|
while (avalon_buffer_full(avalon)) |
|
cgsem_wait(&info->write_sem); |
|
|
|
if (opt_avalon_auto && info->auto_queued >= AVALON_AUTO_CYCLE) { |
|
mutex_lock(&info->lock); |
|
if (!info->optimal) { |
|
if (info->fan_pwm >= opt_avalon_fan_max) { |
|
applog(LOG_WARNING, |
|
"AVA%i: Above optimal temperature, throttling", |
|
avalon->device_id); |
|
avalon_dec_freq(info); |
|
} |
|
} else if (info->auto_nonces >= (AVALON_AUTO_CYCLE * 19 / 20) && |
|
info->auto_nonces <= (AVALON_AUTO_CYCLE * 21 / 20)) { |
|
int total = info->auto_nonces + info->auto_hw; |
|
|
|
/* Try to keep hw errors < 2% */ |
|
if (info->auto_hw * 100 < total) |
|
avalon_inc_freq(info); |
|
else if (info->auto_hw * 66 > total) |
|
avalon_dec_freq(info); |
|
} |
|
avalon_reset_auto(info); |
|
mutex_unlock(&info->lock); |
|
} |
|
|
|
mutex_lock(&info->qlock); |
|
start_count = avalon->work_array * avalon_get_work_count; |
|
end_count = start_count + avalon_get_work_count; |
|
for (i = start_count, j = 0; i < end_count; i++, j++) { |
|
if (avalon_buffer_full(avalon)) { |
|
applog(LOG_INFO, |
|
"AVA%i: Buffer full after only %d of %d work queued", |
|
avalon->device_id, j, avalon_get_work_count); |
|
break; |
|
} |
|
|
|
if (likely(j < avalon->queued && !info->overheat)) { |
|
info->idle = false; |
|
avalon_init_task(&at, 0, 0, info->fan_pwm, |
|
info->timeout, info->asic_count, |
|
info->miner_count, 1, 0, info->frequency); |
|
avalon_create_task(&at, avalon->works[i]); |
|
info->auto_queued++; |
|
} else { |
|
int idle_freq = info->frequency; |
|
|
|
idled++; |
|
if (unlikely(info->overheat && opt_avalon_auto)) |
|
idle_freq = AVALON_MIN_FREQUENCY; |
|
avalon_init_task(&at, 0, 0, info->fan_pwm, |
|
info->timeout, info->asic_count, |
|
info->miner_count, 1, 1, idle_freq); |
|
/* Reset the auto_queued count if we end up |
|
* idling any miners. */ |
|
avalon_reset_auto(info); |
|
} |
|
|
|
ret = avalon_send_task(&at, avalon); |
|
|
|
if (unlikely(ret == AVA_SEND_ERROR)) { |
|
applog(LOG_ERR, "AVA%i: Comms error(buffer)", |
|
avalon->device_id); |
|
dev_error(avalon, REASON_DEV_COMMS_ERROR); |
|
info->reset = true; |
|
break; |
|
} |
|
} |
|
|
|
avalon_rotate_array(avalon); |
|
pthread_cond_signal(&info->qcond); |
|
mutex_unlock(&info->qlock); |
|
|
|
if (unlikely(idled && !info->idle)) { |
|
info->idle = true; |
|
applog(LOG_WARNING, "AVA%i: Idled %d miners", |
|
avalon->device_id, idled); |
|
} |
|
} |
|
return NULL; |
|
} |
|
|
|
static bool avalon_prepare(struct thr_info *thr) |
|
{ |
|
struct cgpu_info *avalon = thr->cgpu; |
|
struct avalon_info *info = avalon->device_data; |
|
struct timeval now; |
|
|
|
free(avalon->works); |
|
avalon->works = calloc(info->miner_count * sizeof(struct work *), |
|
AVALON_ARRAY_SIZE); |
|
if (!avalon->works) |
|
quit(1, "Failed to calloc avalon works in avalon_prepare"); |
|
|
|
info->thr = thr; |
|
mutex_init(&info->lock); |
|
mutex_init(&info->qlock); |
|
if (unlikely(pthread_cond_init(&info->qcond, NULL))) |
|
quit(1, "Failed to pthread_cond_init avalon qcond"); |
|
cgsem_init(&info->write_sem); |
|
|
|
if (pthread_create(&info->read_thr, NULL, avalon_get_results, (void *)avalon)) |
|
quit(1, "Failed to create avalon read_thr"); |
|
|
|
if (pthread_create(&info->write_thr, NULL, avalon_send_tasks, (void *)avalon)) |
|
quit(1, "Failed to create avalon write_thr"); |
|
|
|
avalon_init(avalon); |
|
|
|
cgtime(&now); |
|
get_datestamp(avalon->init, &now); |
|
return true; |
|
} |
|
|
|
static void do_avalon_close(struct thr_info *thr) |
|
{ |
|
struct cgpu_info *avalon = thr->cgpu; |
|
struct avalon_info *info = avalon->device_data; |
|
|
|
pthread_join(info->read_thr, NULL); |
|
pthread_join(info->write_thr, NULL); |
|
avalon_running_reset(avalon, info); |
|
|
|
info->no_matching_work = 0; |
|
|
|
cgsem_destroy(&info->write_sem); |
|
} |
|
|
|
static inline void record_temp_fan(struct avalon_info *info, struct avalon_result *ar, float *temp_avg) |
|
{ |
|
info->fan0 = ar->fan0 * AVALON_FAN_FACTOR; |
|
info->fan1 = ar->fan1 * AVALON_FAN_FACTOR; |
|
info->fan2 = ar->fan2 * AVALON_FAN_FACTOR; |
|
|
|
info->temp0 = ar->temp0; |
|
info->temp1 = ar->temp1; |
|
info->temp2 = ar->temp2; |
|
if (ar->temp0 & 0x80) { |
|
ar->temp0 &= 0x7f; |
|
info->temp0 = 0 - ((~ar->temp0 & 0x7f) + 1); |
|
} |
|
if (ar->temp1 & 0x80) { |
|
ar->temp1 &= 0x7f; |
|
info->temp1 = 0 - ((~ar->temp1 & 0x7f) + 1); |
|
} |
|
if (ar->temp2 & 0x80) { |
|
ar->temp2 &= 0x7f; |
|
info->temp2 = 0 - ((~ar->temp2 & 0x7f) + 1); |
|
} |
|
|
|
*temp_avg = info->temp2 > info->temp1 ? info->temp2 : info->temp1; |
|
|
|
if (info->temp0 > info->temp_max) |
|
info->temp_max = info->temp0; |
|
if (info->temp1 > info->temp_max) |
|
info->temp_max = info->temp1; |
|
if (info->temp2 > info->temp_max) |
|
info->temp_max = info->temp2; |
|
} |
|
|
|
static void temp_rise(struct avalon_info *info, int temp) |
|
{ |
|
if (temp >= opt_avalon_temp + AVALON_TEMP_HYSTERESIS * 3) { |
|
info->fan_pwm = AVALON_PWM_MAX; |
|
return; |
|
} |
|
if (temp >= opt_avalon_temp + AVALON_TEMP_HYSTERESIS * 2) |
|
info->fan_pwm += 10; |
|
else if (temp > opt_avalon_temp) |
|
info->fan_pwm += 5; |
|
else if (temp >= opt_avalon_temp - AVALON_TEMP_HYSTERESIS) |
|
info->fan_pwm += 1; |
|
else |
|
return; |
|
|
|
if (info->fan_pwm > opt_avalon_fan_max) |
|
info->fan_pwm = opt_avalon_fan_max; |
|
} |
|
|
|
static void temp_drop(struct avalon_info *info, int temp) |
|
{ |
|
if (temp <= opt_avalon_temp - AVALON_TEMP_HYSTERESIS * 3) { |
|
info->fan_pwm = opt_avalon_fan_min; |
|
return; |
|
} |
|
if (temp <= opt_avalon_temp - AVALON_TEMP_HYSTERESIS * 2) |
|
info->fan_pwm -= 10; |
|
else if (temp <= opt_avalon_temp - AVALON_TEMP_HYSTERESIS) |
|
info->fan_pwm -= 5; |
|
else if (temp < opt_avalon_temp) |
|
info->fan_pwm -= 1; |
|
|
|
if (info->fan_pwm < opt_avalon_fan_min) |
|
info->fan_pwm = opt_avalon_fan_min; |
|
} |
|
|
|
static inline void adjust_fan(struct avalon_info *info) |
|
{ |
|
int temp_new; |
|
|
|
temp_new = info->temp_sum / info->temp_history_count; |
|
|
|
if (temp_new > info->temp_old) |
|
temp_rise(info, temp_new); |
|
else if (temp_new < info->temp_old) |
|
temp_drop(info, temp_new); |
|
else { |
|
/* temp_new == info->temp_old */ |
|
if (temp_new > opt_avalon_temp) |
|
temp_rise(info, temp_new); |
|
else if (temp_new < opt_avalon_temp - AVALON_TEMP_HYSTERESIS) |
|
temp_drop(info, temp_new); |
|
} |
|
info->temp_old = temp_new; |
|
if (info->temp_old <= opt_avalon_temp) |
|
info->optimal = true; |
|
else |
|
info->optimal = false; |
|
} |
|
|
|
static void avalon_update_temps(struct cgpu_info *avalon, struct avalon_info *info, |
|
struct avalon_result *ar) |
|
{ |
|
record_temp_fan(info, ar, &(avalon->temp)); |
|
applog(LOG_INFO, |
|
"Avalon: Fan1: %d/m, Fan2: %d/m, Fan3: %d/m\t" |
|
"Temp1: %dC, Temp2: %dC, Temp3: %dC, TempMAX: %dC", |
|
info->fan0, info->fan1, info->fan2, |
|
info->temp0, info->temp1, info->temp2, info->temp_max); |
|
info->temp_history_index++; |
|
info->temp_sum += avalon->temp; |
|
applog(LOG_DEBUG, "Avalon: temp_index: %d, temp_count: %d, temp_old: %d", |
|
info->temp_history_index, info->temp_history_count, info->temp_old); |
|
if (info->temp_history_index == info->temp_history_count) { |
|
adjust_fan(info); |
|
info->temp_history_index = 0; |
|
info->temp_sum = 0; |
|
} |
|
if (unlikely(info->temp_old >= opt_avalon_overheat)) { |
|
applog(LOG_WARNING, "AVA%d overheat! Idling", avalon->device_id); |
|
info->overheat = true; |
|
} else if (info->overheat && info->temp_old <= opt_avalon_temp) { |
|
applog(LOG_WARNING, "AVA%d cooled, restarting", avalon->device_id); |
|
info->overheat = false; |
|
} |
|
} |
|
|
|
static void get_avalon_statline_before(char *buf, struct cgpu_info *avalon) |
|
{ |
|
struct avalon_info *info = avalon->device_data; |
|
int lowfan = 10000; |
|
|
|
/* Find the lowest fan speed of the ASIC cooling fans. */ |
|
if (info->fan1 >= 0 && info->fan1 < lowfan) |
|
lowfan = info->fan1; |
|
if (info->fan2 >= 0 && info->fan2 < lowfan) |
|
lowfan = info->fan2; |
|
|
|
tailsprintf(buf, "%2d/%3dC %04dR | ", info->temp0, info->temp2, lowfan); |
|
} |
|
|
|
/* We use a replacement algorithm to only remove references to work done from |
|
* the buffer when we need the extra space for new work. */ |
|
static bool avalon_fill(struct cgpu_info *avalon) |
|
{ |
|
struct avalon_info *info = avalon->device_data; |
|
int subid, slot, mc; |
|
struct work *work; |
|
bool ret = true; |
|
|
|
mc = info->miner_count; |
|
mutex_lock(&info->qlock); |
|
if (avalon->queued >= mc) |
|
goto out_unlock; |
|
work = get_queued(avalon); |
|
if (unlikely(!work)) { |
|
ret = false; |
|
goto out_unlock; |
|
} |
|
subid = avalon->queued++; |
|
work->subid = subid; |
|
slot = avalon->work_array * mc + subid; |
|
if (likely(avalon->works[slot])) |
|
work_completed(avalon, avalon->works[slot]); |
|
avalon->works[slot] = work; |
|
if (avalon->queued < mc) |
|
ret = false; |
|
out_unlock: |
|
mutex_unlock(&info->qlock); |
|
|
|
return ret; |
|
} |
|
|
|
static int64_t avalon_scanhash(struct thr_info *thr) |
|
{ |
|
struct cgpu_info *avalon = thr->cgpu; |
|
struct avalon_info *info = avalon->device_data; |
|
const int miner_count = info->miner_count; |
|
struct timeval now, then, tdiff; |
|
int64_t hash_count, us_timeout; |
|
struct timespec abstime; |
|
|
|
/* Half nonce range */ |
|
us_timeout = 0x80000000ll / info->asic_count / info->frequency; |
|
tdiff.tv_sec = us_timeout / 1000000; |
|
tdiff.tv_usec = us_timeout - (tdiff.tv_sec * 1000000); |
|
cgtime(&now); |
|
timeradd(&now, &tdiff, &then); |
|
abstime.tv_sec = then.tv_sec; |
|
abstime.tv_nsec = then.tv_usec * 1000; |
|
|
|
/* Wait until avalon_send_tasks signals us that it has completed |
|
* sending its work or a full nonce range timeout has occurred */ |
|
mutex_lock(&info->qlock); |
|
pthread_cond_timedwait(&info->qcond, &info->qlock, &abstime); |
|
mutex_unlock(&info->qlock); |
|
|
|
mutex_lock(&info->lock); |
|
hash_count = 0xffffffffull * (uint64_t)info->nonces; |
|
avalon->results += info->nonces; |
|
if (avalon->results > miner_count) |
|
avalon->results = miner_count; |
|
if (!info->idle && !info->reset) |
|
avalon->results -= miner_count / 3; |
|
else |
|
avalon->results = miner_count; |
|
info->nonces = 0; |
|
mutex_unlock(&info->lock); |
|
|
|
/* Check for nothing but consecutive bad results or consistently less |
|
* results than we should be getting and reset the FPGA if necessary */ |
|
if (avalon->results < -miner_count && !info->reset) { |
|
applog(LOG_ERR, "AVA%d: Result return rate low, resetting!", |
|
avalon->device_id); |
|
info->reset = true; |
|
} |
|
|
|
if (unlikely(avalon->usbinfo.nodev)) { |
|
applog(LOG_ERR, "AVA%d: Device disappeared, shutting down thread", |
|
avalon->device_id); |
|
avalon->shutdown = true; |
|
} |
|
|
|
/* This hashmeter is just a utility counter based on returned shares */ |
|
return hash_count; |
|
} |
|
|
|
static void avalon_flush_work(struct cgpu_info *avalon) |
|
{ |
|
struct avalon_info *info = avalon->device_data; |
|
|
|
mutex_lock(&info->qlock); |
|
/* Will overwrite any work queued */ |
|
avalon->queued = 0; |
|
pthread_cond_signal(&info->qcond); |
|
mutex_unlock(&info->qlock); |
|
} |
|
|
|
static struct api_data *avalon_api_stats(struct cgpu_info *cgpu) |
|
{ |
|
struct api_data *root = NULL; |
|
struct avalon_info *info = cgpu->device_data; |
|
int i; |
|
|
|
root = api_add_int(root, "baud", &(info->baud), false); |
|
root = api_add_int(root, "miner_count", &(info->miner_count),false); |
|
root = api_add_int(root, "asic_count", &(info->asic_count), false); |
|
root = api_add_int(root, "timeout", &(info->timeout), false); |
|
root = api_add_int(root, "frequency", &(info->frequency), false); |
|
|
|
root = api_add_int(root, "fan1", &(info->fan0), false); |
|
root = api_add_int(root, "fan2", &(info->fan1), false); |
|
root = api_add_int(root, "fan3", &(info->fan2), false); |
|
|
|
root = api_add_int(root, "temp1", &(info->temp0), false); |
|
root = api_add_int(root, "temp2", &(info->temp1), false); |
|
root = api_add_int(root, "temp3", &(info->temp2), false); |
|
root = api_add_int(root, "temp_max", &(info->temp_max), false); |
|
|
|
root = api_add_int(root, "no_matching_work", &(info->no_matching_work), false); |
|
for (i = 0; i < info->miner_count; i++) { |
|
char mcw[24]; |
|
|
|
sprintf(mcw, "match_work_count%d", i + 1); |
|
root = api_add_int(root, mcw, &(info->matching_work[i]), false); |
|
} |
|
|
|
return root; |
|
} |
|
|
|
static void avalon_shutdown(struct thr_info *thr) |
|
{ |
|
do_avalon_close(thr); |
|
} |
|
|
|
struct device_drv avalon_drv = { |
|
.drv_id = DRIVER_AVALON, |
|
.dname = "avalon", |
|
.name = "AVA", |
|
.drv_detect = avalon_detect, |
|
.thread_prepare = avalon_prepare, |
|
.hash_work = hash_queued_work, |
|
.queue_full = avalon_fill, |
|
.scanwork = avalon_scanhash, |
|
.flush_work = avalon_flush_work, |
|
.get_api_stats = avalon_api_stats, |
|
.get_statline_before = get_avalon_statline_before, |
|
.reinit_device = avalon_init, |
|
.thread_shutdown = avalon_shutdown, |
|
};
|
|
|