/*- * Copyright 2014 James Lovejoy * Copyright 2014 phm * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "config.h" #include "miner.h" #include #include #include static const uint32_t sha256_h[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; static const uint32_t sha256_k[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; void sha256_init(uint32_t *state) { memcpy(state, sha256_h, 32); } /* Elementary functions used by SHA256 */ #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define ROTR(x, n) ((x >> n) | (x << (32 - n))) #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3)) #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10)) /* SHA256 round function */ #define RND(a, b, c, d, e, f, g, h, k) \ do { \ t0 = h + S1(e) + Ch(e, f, g) + k; \ t1 = S0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; \ } while (0) /* Adjusted round function for rotating state */ #define RNDr(S, W, i) \ RND(S[(64 - i) % 8], S[(65 - i) % 8], \ S[(66 - i) % 8], S[(67 - i) % 8], \ S[(68 - i) % 8], S[(69 - i) % 8], \ S[(70 - i) % 8], S[(71 - i) % 8], \ W[i] + sha256_k[i]) /* * SHA256 block compression function. The 256-bit state is transformed via * the 512-bit input block to produce a new state. */ void sha256_transform(uint32_t *state, const uint32_t *block, int swap) { uint32_t W[64]; uint32_t S[8]; uint32_t t0, t1; int i; /* 1. Prepare message schedule W. */ if (swap) { for (i = 0; i < 16; i++) W[i] = swab32(block[i]); } else memcpy(W, block, 64); for (i = 16; i < 64; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i + 1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } /* 2. Initialize working variables. */ memcpy(S, state, 32); /* 3. Mix. */ RNDr(S, W, 0); RNDr(S, W, 1); RNDr(S, W, 2); RNDr(S, W, 3); RNDr(S, W, 4); RNDr(S, W, 5); RNDr(S, W, 6); RNDr(S, W, 7); RNDr(S, W, 8); RNDr(S, W, 9); RNDr(S, W, 10); RNDr(S, W, 11); RNDr(S, W, 12); RNDr(S, W, 13); RNDr(S, W, 14); RNDr(S, W, 15); RNDr(S, W, 16); RNDr(S, W, 17); RNDr(S, W, 18); RNDr(S, W, 19); RNDr(S, W, 20); RNDr(S, W, 21); RNDr(S, W, 22); RNDr(S, W, 23); RNDr(S, W, 24); RNDr(S, W, 25); RNDr(S, W, 26); RNDr(S, W, 27); RNDr(S, W, 28); RNDr(S, W, 29); RNDr(S, W, 30); RNDr(S, W, 31); RNDr(S, W, 32); RNDr(S, W, 33); RNDr(S, W, 34); RNDr(S, W, 35); RNDr(S, W, 36); RNDr(S, W, 37); RNDr(S, W, 38); RNDr(S, W, 39); RNDr(S, W, 40); RNDr(S, W, 41); RNDr(S, W, 42); RNDr(S, W, 43); RNDr(S, W, 44); RNDr(S, W, 45); RNDr(S, W, 46); RNDr(S, W, 47); RNDr(S, W, 48); RNDr(S, W, 49); RNDr(S, W, 50); RNDr(S, W, 51); RNDr(S, W, 52); RNDr(S, W, 53); RNDr(S, W, 54); RNDr(S, W, 55); RNDr(S, W, 56); RNDr(S, W, 57); RNDr(S, W, 58); RNDr(S, W, 59); RNDr(S, W, 60); RNDr(S, W, 61); RNDr(S, W, 62); RNDr(S, W, 63); /* 4. Mix local working variables into global state */ for (i = 0; i < 8; i++) state[i] += S[i]; } /* * Encode a length len/4 vector of (uint32_t) into a length len vector of * (unsigned char) in big-endian form. Assumes len is a multiple of 4. */ static inline void be32enc_vect(uint32_t *dst, const uint32_t *src, uint32_t len) { uint32_t i; for (i = 0; i < len; i++) dst[i] = htobe32(src[i]); } static inline void be32enc(void *pp, uint32_t x) { uint8_t *p = (uint8_t *)pp; p[3] = x & 0xff; p[2] = (x >> 8) & 0xff; p[1] = (x >> 16) & 0xff; p[0] = (x >> 24) & 0xff; } static inline uint32_t be32dec(const void *pp) { const uint8_t *p = (uint8_t const *)pp; return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) + ((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24)); } #define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) //note, this is 64 bytes static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16]) { #define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) uint32_t x00, x01, x02, x03, x04, x05, x06, x07, x08, x09, x10, x11, x12, x13, x14, x15; int i; x00 = (B[0] ^= Bx[0]); x01 = (B[1] ^= Bx[1]); x02 = (B[2] ^= Bx[2]); x03 = (B[3] ^= Bx[3]); x04 = (B[4] ^= Bx[4]); x05 = (B[5] ^= Bx[5]); x06 = (B[6] ^= Bx[6]); x07 = (B[7] ^= Bx[7]); x08 = (B[8] ^= Bx[8]); x09 = (B[9] ^= Bx[9]); x10 = (B[10] ^= Bx[10]); x11 = (B[11] ^= Bx[11]); x12 = (B[12] ^= Bx[12]); x13 = (B[13] ^= Bx[13]); x14 = (B[14] ^= Bx[14]); x15 = (B[15] ^= Bx[15]); for (i = 0; i < 8; i += 2) { /* Operate on columns. */ x04 ^= ROTL(x00 + x12, 7); x09 ^= ROTL(x05 + x01, 7); x14 ^= ROTL(x10 + x06, 7); x03 ^= ROTL(x15 + x11, 7); x08 ^= ROTL(x04 + x00, 9); x13 ^= ROTL(x09 + x05, 9); x02 ^= ROTL(x14 + x10, 9); x07 ^= ROTL(x03 + x15, 9); x12 ^= ROTL(x08 + x04, 13); x01 ^= ROTL(x13 + x09, 13); x06 ^= ROTL(x02 + x14, 13); x11 ^= ROTL(x07 + x03, 13); x00 ^= ROTL(x12 + x08, 18); x05 ^= ROTL(x01 + x13, 18); x10 ^= ROTL(x06 + x02, 18); x15 ^= ROTL(x11 + x07, 18); /* Operate on rows. */ x01 ^= ROTL(x00 + x03, 7); x06 ^= ROTL(x05 + x04, 7); x11 ^= ROTL(x10 + x09, 7); x12 ^= ROTL(x15 + x14, 7); x02 ^= ROTL(x01 + x00, 9); x07 ^= ROTL(x06 + x05, 9); x08 ^= ROTL(x11 + x10, 9); x13 ^= ROTL(x12 + x15, 9); x03 ^= ROTL(x02 + x01, 13); x04 ^= ROTL(x07 + x06, 13); x09 ^= ROTL(x08 + x11, 13); x14 ^= ROTL(x13 + x12, 13); x00 ^= ROTL(x03 + x02, 18); x05 ^= ROTL(x04 + x07, 18); x10 ^= ROTL(x09 + x08, 18); x15 ^= ROTL(x14 + x13, 18); } B[0] += x00; B[1] += x01; B[2] += x02; B[3] += x03; B[4] += x04; B[5] += x05; B[6] += x06; B[7] += x07; B[8] += x08; B[9] += x09; B[10] += x10; B[11] += x11; B[12] += x12; B[13] += x13; B[14] += x14; B[15] += x15; #undef ROTL } void sha256_hash(unsigned char *hash, const unsigned char *data, int len) { uint32_t S[16], T[16]; int i, r; sha256_init(S); for (r = len; r > -9; r -= 64) { if (r < 64) memset(T, 0, 64); memcpy(T, data + len - r, r > 64 ? 64 : (r < 0 ? 0 : r)); if (r >= 0 && r < 64) ((unsigned char *)T)[r] = 0x80; for (i = 0; i < 16; i++) T[i] = be32dec(T + i); if (r < 56) T[15] = 8 * len; sha256_transform(S, T, 0); } for (i = 0; i < 8; i++) be32enc((uint32_t *)hash + i, S[i]); } void sha256_hash512(unsigned char *hash, const unsigned char *data) { uint32_t S[16], T[16]; int i; sha256_init(S); memcpy(T, data, 64); for (i = 0; i < 16; i++) T[i] = be32dec(T + i); sha256_transform(S, T, 0); memset(T, 0, 64); //memcpy(T, data + 64, 0); ((unsigned char *)T)[0] = 0x80; for (i = 0; i < 16; i++) T[i] = be32dec(T + i); T[15] = 8 * 64; sha256_transform(S, T, 0); for (i = 0; i < 8; i++) be32enc((uint32_t *)hash + i, S[i]); } inline void pluckrehash(void *state, const void *input) { int i,j; uint32_t data[20]; const int HASH_MEMORY = 128 * 1024; uint8_t * scratchbuf = (uint8_t*)malloc(HASH_MEMORY); memcpy(data,input,80); uint8_t hashbuffer[128*1024]; //don't allocate this on stack, since it's huge.. int size = HASH_MEMORY; memset(hashbuffer, 0, 64); sha256_hash(&hashbuffer[0], (uint8_t*)data, 80); for (i = 64; i < size - 32; i += 32) { int randmax = i - 4; //we could use size here, but then it's probable to use 0 as the value in most cases uint32_t joint[16]; uint32_t randbuffer[16]; uint32_t randseed[16]; memcpy(randseed, &hashbuffer[i - 64], 64); if (i>128) { memcpy(randbuffer, &hashbuffer[i - 128], 64); } else { memset(&randbuffer, 0, 64); } xor_salsa8(randbuffer, randseed); memcpy(joint, &hashbuffer[i - 32], 32); //use the last hash value as the seed for (j = 32; j < 64; j += 4) { uint32_t rand = randbuffer[(j - 32) / 4] % (randmax - 32); joint[j / 4] = *((uint32_t*)&hashbuffer[rand]); } sha256_hash512(&hashbuffer[i], (uint8_t*)joint); memcpy(randseed, &hashbuffer[i - 32], 64); if (i>128) { memcpy(randbuffer, &hashbuffer[i - 128], 64); } else { memset(randbuffer, 0, 64); } xor_salsa8(randbuffer, randseed); for (j = 0; j < 32; j += 2) { uint32_t rand = randbuffer[j / 2] % randmax; *((uint32_t*)&hashbuffer[rand]) = *((uint32_t*)&hashbuffer[j + i - 4]); } } //printf("cpu hashbuffer %08x nonce %08x\n", ((uint32_t*)hashbuffer)[7],data[19]); memcpy(state, hashbuffer, 32); } static const uint32_t diff1targ = 0x0000ffff; /* Used externally as confirmation of correct OCL code */ int pluck_test(unsigned char *pdata, const unsigned char *ptarget, uint32_t nonce) { uint32_t tmp_hash7, Htarg = le32toh(((const uint32_t *)ptarget)[7]); uint32_t data[20], ohash[8]; be32enc_vect(data, (const uint32_t *)pdata, 19); data[19] = htobe32(nonce); pluckrehash(ohash, data); tmp_hash7 = be32toh(ohash[7]); applog(LOG_DEBUG, "htarget %08lx diff1 %08lx hash %08lx", (long unsigned int)Htarg, (long unsigned int)diff1targ, (long unsigned int)tmp_hash7); if (tmp_hash7 > diff1targ) return -1; if (tmp_hash7 > Htarg) return 0; return 1; } void pluck_regenhash(struct work *work) { uint32_t data[20]; uint32_t *nonce = (uint32_t *)(work->data + 76); uint32_t *ohash = (uint32_t *)(work->hash); be32enc_vect(data, (const uint32_t *)work->data, 19); data[19] = htobe32(*nonce); pluckrehash(ohash, data); } bool scanhash_pluck(struct thr_info *thr, const unsigned char __maybe_unused *pmidstate, unsigned char *pdata, unsigned char __maybe_unused *phash1, unsigned char __maybe_unused *phash, const unsigned char *ptarget, uint32_t max_nonce, uint32_t *last_nonce, uint32_t n) { uint32_t *nonce = (uint32_t *)(pdata + 76); uint32_t data[20]; uint32_t tmp_hash7; uint32_t Htarg = le32toh(((const uint32_t *)ptarget)[7]); bool ret = false; be32enc_vect(data, (const uint32_t *)pdata, 19); while (1) { uint32_t ostate[8]; *nonce = ++n; data[19] = (n); pluckrehash(ostate, data); tmp_hash7 = (ostate[7]); applog(LOG_INFO, "data7 %08lx", (long unsigned int)data[7]); if (unlikely(tmp_hash7 <= Htarg)) { ((uint32_t *)pdata)[19] = htobe32(n); *last_nonce = n; ret = true; break; } if (unlikely((n >= max_nonce) || thr->work_restart)) { *last_nonce = n; break; } } return ret; }