/* * Copyright 2013 Con Kolivas * Copyright 2013 Hashfast Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) * any later version. See COPYING for more details. */ #include "config.h" #include #include "usbutils.h" #include "driver-hashfast.h" //////////////////////////////////////////////////////////////////////////////// // Support for the CRC's used in header (CRC-8) and packet body (CRC-32) //////////////////////////////////////////////////////////////////////////////// #define GP8 0x107 /* x^8 + x^2 + x + 1 */ #define DI8 0x07 static unsigned char crc8_table[256]; /* CRC-8 table */ static void hfa_init_crc8(void) { int i,j; unsigned char crc; for (i = 0; i < 256; i++) { crc = i; for (j = 0; j < 8; j++) crc = (crc << 1) ^ ((crc & 0x80) ? DI8 : 0); crc8_table[i] = crc & 0xFF; } } static unsigned char hfa_crc8(unsigned char *h) { int i; unsigned char crc; h++; // Preamble not included for (i = 1, crc = 0xff; i < 7; i++) crc = crc8_table[crc ^ *h++]; return crc; } struct hfa_cmd { int cmd; char *cmd_name; enum usb_cmds usb_cmd; }; /* Entries in this array need to align with the actual op values specified * in hf_protocol.h */ #define C_NULL C_MAX static const struct hfa_cmd hfa_cmds[] = { {OP_NULL, "OP_NULL", C_NULL}, // 0 {OP_ROOT, "OP_ROOT", C_NULL}, {OP_RESET, "OP_RESET", C_HF_RESET}, {OP_PLL_CONFIG, "OP_PLL_CONFIG", C_HF_PLL_CONFIG}, {OP_ADDRESS, "OP_ADDRESS", C_HF_ADDRESS}, {OP_READDRESS, "OP_READDRESS", C_NULL}, {OP_HIGHEST, "OP_HIGHEST", C_NULL}, {OP_BAUD, "OP_BAUD", C_HF_BAUD}, {OP_UNROOT, "OP_UNROOT", C_NULL}, // 8 {OP_HASH, "OP_HASH", C_HF_HASH}, {OP_NONCE, "OP_NONCE", C_HF_NONCE}, {OP_ABORT, "OP_ABORT", C_HF_ABORT}, {OP_STATUS, "OP_STATUS", C_HF_STATUS}, {OP_GPIO, "OP_GPIO", C_NULL}, {OP_CONFIG, "OP_CONFIG", C_HF_CONFIG}, {OP_STATISTICS, "OP_STATISTICS", C_HF_STATISTICS}, {OP_GROUP, "OP_GROUP", C_NULL}, // 16 {OP_CLOCKGATE, "OP_CLOCKGATE", C_HF_CLOCKGATE}, {OP_USB_INIT, "OP_USB_INIT", C_HF_USB_INIT}, // 18 {OP_GET_TRACE, "OP_GET_TRACE", C_NULL}, {OP_LOOPBACK_USB, "OP_LOOPBACK_USB", C_NULL}, {OP_LOOPBACK_UART, "OP_LOOPBACK_UART", C_NULL}, {OP_DFU, "OP_DFU", C_NULL}, {OP_USB_SHUTDOWN, "OP_USB_SHUTDOWN", C_NULL}, {OP_DIE_STATUS, "OP_DIE_STATUS", C_HF_DIE_STATUS}, // 24 {OP_GWQ_STATUS, "OP_GWQ_STATUS", C_HF_GWQ_STATUS}, {OP_WORK_RESTART, "OP_WORK_RESTART", C_HF_WORK_RESTART}, {OP_USB_STATS1, "OP_USB_STATS1", C_NULL}, {OP_USB_GWQSTATS, "OP_USB_GWQSTATS", C_HF_GWQSTATS} }; #define HF_USB_CMD_OFFSET (128 - 18) #define HF_USB_CMD(X) (X - HF_USB_CMD_OFFSET) /* Send an arbitrary frame, consisting of an 8 byte header and an optional * packet body. */ static bool hfa_send_frame(struct cgpu_info *hashfast, uint8_t opcode, uint16_t hdata, uint8_t *data, int len) { int tx_length, ret, amount, id = hashfast->device_id; uint8_t packet[256]; struct hf_header *p = (struct hf_header *)packet; p->preamble = HF_PREAMBLE; p->operation_code = opcode; p->chip_address = HF_GWQ_ADDRESS; p->core_address = 0; p->hdata = htole16(hdata); p->data_length = len / 4; p->crc8 = hfa_crc8(packet); if (len) memcpy(&packet[sizeof(struct hf_header)], data, len); tx_length = sizeof(struct hf_header) + len; ret = usb_write(hashfast, (char *)packet, tx_length, &amount, hfa_cmds[opcode].usb_cmd); if (unlikely(ret < 0 || amount != tx_length)) { applog(LOG_ERR, "HFA %d: hfa_send_frame: USB Send error, ret %d amount %d vs. tx_length %d", id, ret, amount, tx_length); return false; } return true; } static bool hfa_send_header(struct cgpu_info *hashfast, struct hf_header *h, int cmd) { int amount, ret, len; len = sizeof(*h); ret = usb_write(hashfast, (char *)h, len, &amount, hfa_cmds[cmd].usb_cmd); if (ret < 0 || amount != len) { applog(LOG_WARNING, "HFA%d: send_header: %s USB Send error, ret %d amount %d vs. length %d", hashfast->device_id, hfa_cmds[cmd].cmd_name, ret, amount, len); return false; } return true; } static bool hfa_get_header(struct cgpu_info *hashfast, struct hf_header *h, uint8_t *computed_crc) { int amount, ret, orig_len, len, ofs = 0, reads = 0; char buf[512]; char *header; /* Read for up to 200ms till we find the first occurrence of HF_PREAMBLE * though it should be the first byte unless we get woefully out of * sync. */ orig_len = len = sizeof(*h); do { if (++reads > 20) return false; ret = usb_read_timeout(hashfast, buf + ofs, len, &amount, 10, C_HF_GETHEADER); if (unlikely(ret && ret != LIBUSB_ERROR_TIMEOUT)) return false; ofs += amount; header = memchr(buf, HF_PREAMBLE, ofs); if (header) len -= ofs - (header - buf); } while (len); memcpy(h, header, orig_len); *computed_crc = hfa_crc8((uint8_t *)h); return true; } static bool hfa_get_data(struct cgpu_info *hashfast, char *buf, int len4) { int amount, ret, len = len4 * 4; ret = usb_read(hashfast, buf, len, &amount, C_HF_GETDATA); if (ret) return false; if (amount != len) { applog(LOG_WARNING, "HFA %d: get_data: Strange amount returned %d vs. expected %d", hashfast->device_id, amount, len); return false; } return true; } static bool hfa_reset(struct cgpu_info *hashfast, struct hashfast_info *info) { struct hf_usb_init_header usb_init, *hu = &usb_init; struct hf_usb_init_base *db; char buf[1024]; struct hf_header *h = (struct hf_header *)buf; uint8_t hcrc; bool ret; int i; info->hash_clock_rate = 550; // Hash clock rate in Mhz // Assemble the USB_INIT request memset(hu, 0, sizeof(*hu)); hu->preamble = HF_PREAMBLE; hu->operation_code = OP_USB_INIT; hu->protocol = PROTOCOL_GLOBAL_WORK_QUEUE; // Protocol to use hu->hash_clock = info->hash_clock_rate; // Hash clock rate in Mhz hu->crc8 = hfa_crc8((uint8_t *)hu); applog(LOG_WARNING, "HFA%d: Sending OP_USB_INIT with GWQ protocol specified", hashfast->device_id); if (!hfa_send_header(hashfast, (struct hf_header *)hu, HF_USB_CMD(OP_USB_INIT))) return false; // Check for the correct response. // We extend the normal timeout - a complete device initialization, including // bringing power supplies up from standby, etc., can take over a second. for (i = 0; i < 30; i++) { ret = hfa_get_header(hashfast, h, &hcrc); if (ret) break; } if (!ret) { applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed!", hashfast->device_id); return false; } if (h->crc8 != hcrc) { applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! CRC mismatch", hashfast->device_id); return false; } if (h->operation_code != OP_USB_INIT) { applog(LOG_WARNING, "HFA %d: OP_USB_INIT: Tossing packet, valid but unexpected type", hashfast->device_id); hfa_get_data(hashfast, buf, h->data_length); return false; } applog(LOG_DEBUG, "HFA %d: Good reply to OP_USB_INIT", hashfast->device_id); applog(LOG_DEBUG, "HFA %d: OP_USB_INIT: %d die in chain, %d cores, device_type %d, refclk %d Mhz", hashfast->device_id, h->chip_address, h->core_address, h->hdata & 0xff, (h->hdata >> 8) & 0xff); // Save device configuration info->asic_count = h->chip_address; info->core_count = h->core_address; info->device_type = (uint8_t)h->hdata; info->ref_frequency = (uint8_t)(h->hdata>>8); info->hash_sequence = 0; info->hash_sequence_tail = 0; info->device_sequence_tail = 0; // Size in bytes of the core bitmap in bytes info->core_bitmap_size = (((info->asic_count * info->core_count) + 31) / 32) * 4; // Get the usb_init_base structure if (!hfa_get_data(hashfast, (char *)&info->usb_init_base, U32SIZE(info->usb_init_base))) { applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! Failure to get usb_init_base data", hashfast->device_id); return false; } db = &info->usb_init_base; applog(LOG_INFO, "HFA %d: firmware_rev: %d.%d", hashfast->device_id, (db->firmware_rev >> 8) & 0xff, db->firmware_rev & 0xff); applog(LOG_INFO, "HFA %d: hardware_rev: %d.%d", hashfast->device_id, (db->hardware_rev >> 8) & 0xff, db->hardware_rev & 0xff); applog(LOG_INFO, "HFA %d: serial number: %d", hashfast->device_id, db->serial_number); applog(LOG_INFO, "HFA %d: hash clockrate: %d Mhz", hashfast->device_id, db->hash_clockrate); applog(LOG_INFO, "HFA %d: inflight_target: %d", hashfast->device_id, db->inflight_target); applog(LOG_INFO, "HFA %d: sequence_modulus: %d", hashfast->device_id, db->sequence_modulus); info->num_sequence = db->sequence_modulus; // Now a copy of the config data used if (!hfa_get_data(hashfast, (char *)&info->config_data, U32SIZE(info->config_data))) { applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! Failure to get config_data", hashfast->device_id); return false; } // Now the core bitmap info->core_bitmap = malloc(info->core_bitmap_size); if (!info->core_bitmap) quit(1, "Failed to malloc info core bitmap in hfa_reset"); if (!hfa_get_data(hashfast, (char *)info->core_bitmap, info->core_bitmap_size / 4)) { applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! Failure to get core_bitmap", hashfast->device_id); return false; } return true; } static bool hfa_detect_common(struct cgpu_info *hashfast) { struct hashfast_info *info; bool ret; info = calloc(sizeof(struct hashfast_info), 1); if (!info) quit(1, "Failed to calloc hashfast_info in hfa_detect_common"); hashfast->device_data = info; /* hashfast_reset should fill in details for info */ ret = hfa_reset(hashfast, info); if (!ret) { free(info); hashfast->device_data = NULL; return false; } // The per-die status array info->die_status = calloc(info->asic_count, sizeof(struct hf_g1_die_data)); if (unlikely(!(info->die_status))) quit(1, "Failed to calloc die_status"); // The per-die statistics array info->die_statistics = calloc(info->asic_count, sizeof(struct hf_long_statistics)); if (unlikely(!(info->die_statistics))) quit(1, "Failed to calloc die_statistics"); info->works = calloc(sizeof(struct work *), info->num_sequence); if (!info->works) quit(1, "Failed to calloc info works in hfa_detect_common"); return true; } static void hfa_initialise(struct cgpu_info *hashfast) { if (hashfast->usbinfo.nodev) return; // FIXME Do necessary initialising here } static bool hfa_detect_one_usb(libusb_device *dev, struct usb_find_devices *found) { struct cgpu_info *hashfast; hashfast = usb_alloc_cgpu(&hashfast_drv, HASHFAST_MINER_THREADS); if (!hashfast) quit(1, "Failed to usb_alloc_cgpu hashfast"); if (!usb_init(hashfast, dev, found)) { hashfast = usb_free_cgpu(hashfast); return false; } hashfast->usbdev->usb_type = USB_TYPE_STD; hfa_initialise(hashfast); add_cgpu(hashfast); return hfa_detect_common(hashfast); } static void hfa_detect(bool hotplug) { /* Set up the CRC tables only once. */ if (!hotplug) hfa_init_crc8(); usb_detect(&hashfast_drv, hfa_detect_one_usb); } static bool hfa_get_packet(struct cgpu_info *hashfast, struct hf_header *h) { uint8_t hcrc; bool ret; ret = hfa_get_header(hashfast, h, &hcrc); if (unlikely(!ret)) goto out; if (unlikely(h->crc8 != hcrc)) { applog(LOG_WARNING, "HFA %d: Bad CRC %d vs %d, attempting to process anyway", hashfast->device_id, h->crc8, hcrc); } if (h->data_length > 0) ret = hfa_get_data(hashfast, (char *)(h + 1), h->data_length); if (unlikely(!ret)) { applog(LOG_WARNING, "HFA %d: Failed to get data associated with header", hashfast->device_id); } out: return ret; } static void hfa_parse_gwq_status(struct cgpu_info *hashfast, struct hashfast_info *info, struct hf_header *h) { struct hf_gwq_data *g = (struct hf_gwq_data *)(h + 1); struct work *work; applog(LOG_DEBUG, "HFA %d: OP_GWQ_STATUS, device_head %4d tail %4d my tail %4d shed %3d inflight %4d", hashfast->device_id, g->sequence_head, g->sequence_tail, info->hash_sequence_tail, g->shed_count, SEQUENCE_DISTANCE(info->hash_sequence_head,g->sequence_tail)); mutex_lock(&info->lock); info->hash_count += g->hash_count; info->device_sequence_head = g->sequence_head; info->device_sequence_tail = g->sequence_tail; info->shed_count = g->shed_count; /* Free any work that is no longer required */ while (info->device_sequence_tail != info->hash_sequence_tail) { if (++info->hash_sequence_tail >= info->num_sequence) info->hash_sequence_tail = 0; if (unlikely(!(work = info->works[info->hash_sequence_tail]))) { applog(LOG_ERR, "HFA %d: Bad work sequence tail", hashfast->device_id); hashfast->shutdown = true; break; } applog(LOG_DEBUG, "HFA %d: Completing work on hash_sequence_tail %d", hashfast->device_id, info->hash_sequence_tail); free_work(work); info->works[info->hash_sequence_tail] = NULL; } mutex_unlock(&info->lock); } static void hfa_update_die_status(struct cgpu_info *hashfast, struct hashfast_info *info, struct hf_header *h) { struct hf_g1_die_data *d = (struct hf_g1_die_data *)(h + 1), *ds; int num_included = (h->data_length * 4) / sizeof(struct hf_g1_die_data); int i, j; float die_temperature; float core_voltage[6]; if (info->device_type == HFD_G1) { // Copy in the data. They're numbered sequentially from the starting point ds = info->die_status + h->chip_address; for (i = 0; i < num_included; i++) memcpy(ds++, d++, sizeof(struct hf_g1_die_data)); for (i = 0, d = &info->die_status[h->chip_address]; i < num_included; i++, d++) { die_temperature = GN_DIE_TEMPERATURE(d->die.die_temperature); for (j = 0; j < 6; j++) core_voltage[j] = GN_CORE_VOLTAGE(d->die.core_voltage[j]); applog(LOG_DEBUG, "HFA %d: die %2d: OP_DIE_STATUS Die temp %.2fC vdd's %.2f %.2f %.2f %.2f %.2f %.2f", hashfast->device_id, h->chip_address + i, die_temperature, core_voltage[0], core_voltage[1], core_voltage[2], core_voltage[3], core_voltage[4], core_voltage[5]); // XXX Convert board phase currents, voltage, temperature } } } static void search_for_extra_nonce(struct thr_info *thr, struct work *work, struct hf_candidate_nonce *n) { uint32_t nonce = n->nonce; int i; /* No function to test with ntime offsets yet */ if (n->ntime) return; for (i = 0; i < 128; i++, nonce++) { /* We could break out of this early if nonce wraps or if we * find one correct nonce since the chance of more is extremely * low but this function will be hit so infrequently we may as * well test the entire range with the least code. */ if (test_nonce(work, nonce)) submit_tested_work(thr, work); } } static void hfa_parse_nonce(struct thr_info *thr, struct cgpu_info *hashfast, struct hashfast_info *info, struct hf_header *h) { struct hf_candidate_nonce *n = (struct hf_candidate_nonce *)(h + 1); int i, num_nonces = h->data_length / U32SIZE(sizeof(struct hf_candidate_nonce)); applog(LOG_DEBUG, "HFA %d: OP_NONCE: %2d:, num_nonces %d hdata 0x%04x", hashfast->device_id, h->chip_address, num_nonces, h->hdata); for (i = 0; i < num_nonces; i++, n++) { struct work *work; applog(LOG_DEBUG, "HFA %d: OP_NONCE: %2d: %2d: search %1d ntime %2d sequence %4d nonce 0x%08x", hashfast->device_id, h->chip_address, i, n->search, n->ntime, n->sequence, n->nonce); // Find the job from the sequence number mutex_lock(&info->lock); work = info->works[n->sequence]; mutex_unlock(&info->lock); if (unlikely(!work)) { info->no_matching_work++; applog(LOG_INFO, "HFA %d: No matching work!", hashfast->device_id); } else { applog(LOG_DEBUG, "HFA %d: OP_NONCE: sequence %d: submitting nonce 0x%08x ntime %d", hashfast->device_id, n->sequence, n->nonce, n->ntime); if ((n->nonce & 0xffff0000) == 0x42420000) // XXX REMOVE THIS break; // XXX PHONEY EMULATOR NONCE submit_noffset_nonce(thr, work, n->nonce, n->ntime); // XXX Return value from submit_nonce is error if set if (unlikely(n->search)) { /* This tells us there is another share in the * next 128 nonces */ applog(LOG_DEBUG, "HFA %d: OP_NONCE: SEARCH PROXIMITY EVENT FOUND", hashfast->device_id); search_for_extra_nonce(thr, work, n); } } } } static void hfa_update_die_statistics(struct hashfast_info *info, struct hf_header *h) { struct hf_statistics *s = (struct hf_statistics *)(h + 1); struct hf_long_statistics *l; // Accumulate the data l = info->die_statistics + h->chip_address; l->rx_header_crc += s->rx_header_crc; l->rx_body_crc += s->rx_body_crc; l->rx_header_timeouts += s->rx_header_timeouts; l->rx_body_timeouts += s->rx_body_timeouts; l->core_nonce_fifo_full += s->core_nonce_fifo_full; l->array_nonce_fifo_full += s->array_nonce_fifo_full; l->stats_overrun += s->stats_overrun; } static void hfa_update_stats1(struct cgpu_info *hashfast, struct hashfast_info *info, struct hf_header *h) { struct hf_long_usb_stats1 *s1 = &info->stats1; struct hf_usb_stats1 *sd = (struct hf_usb_stats1 *)(h + 1); s1->usb_rx_preambles += sd->usb_rx_preambles; s1->usb_rx_receive_byte_errors += sd->usb_rx_receive_byte_errors; s1->usb_rx_bad_hcrc += sd->usb_rx_bad_hcrc; s1->usb_tx_attempts += sd->usb_tx_attempts; s1->usb_tx_packets += sd->usb_tx_packets; s1->usb_tx_timeouts += sd->usb_tx_timeouts; s1->usb_tx_incompletes += sd->usb_tx_incompletes; s1->usb_tx_endpointstalled += sd->usb_tx_endpointstalled; s1->usb_tx_disconnected += sd->usb_tx_disconnected; s1->usb_tx_suspended += sd->usb_tx_suspended; #if 0 /* We don't care about UART stats so they're not in our struct */ s1->uart_tx_queue_dma += sd->uart_tx_queue_dma; s1->uart_tx_interrupts += sd->uart_tx_interrupts; s1->uart_rx_preamble_ints += sd->uart_rx_preamble_ints; s1->uart_rx_missed_preamble_ints += sd->uart_rx_missed_preamble_ints; s1->uart_rx_header_done += sd->uart_rx_header_done; s1->uart_rx_data_done += sd->uart_rx_data_done; s1->uart_rx_bad_hcrc += sd->uart_rx_bad_hcrc; s1->uart_rx_bad_dma += sd->uart_rx_bad_dma; s1->uart_rx_short_dma += sd->uart_rx_short_dma; s1->uart_rx_buffers_full += sd->uart_rx_buffers_full; #endif if (sd->max_tx_buffers > s1->max_tx_buffers) s1->max_tx_buffers = sd->max_tx_buffers; if (sd->max_rx_buffers > s1->max_rx_buffers) s1->max_rx_buffers = sd->max_rx_buffers; applog(LOG_DEBUG, "HFA %d: OP_USB_STATS1:", hashfast->device_id); applog(LOG_DEBUG, " usb_rx_preambles: %6d", sd->usb_rx_preambles); applog(LOG_DEBUG, " usb_rx_receive_byte_errors: %6d", sd->usb_rx_receive_byte_errors); applog(LOG_DEBUG, " usb_rx_bad_hcrc: %6d", sd->usb_rx_bad_hcrc); applog(LOG_DEBUG, " usb_tx_attempts: %6d", sd->usb_tx_attempts); applog(LOG_DEBUG, " usb_tx_packets: %6d", sd->usb_tx_packets); applog(LOG_DEBUG, " usb_tx_timeouts: %6d", sd->usb_tx_timeouts); applog(LOG_DEBUG, " usb_tx_incompletes: %6d", sd->usb_tx_incompletes); applog(LOG_DEBUG, " usb_tx_endpointstalled: %6d", sd->usb_tx_endpointstalled); applog(LOG_DEBUG, " usb_tx_disconnected: %6d", sd->usb_tx_disconnected); applog(LOG_DEBUG, " usb_tx_suspended: %6d", sd->usb_tx_suspended); #if 0 applog(LOG_DEBUG, " uart_tx_queue_dma: %6d", sd->uart_tx_queue_dma); applog(LOG_DEBUG, " uart_tx_interrupts: %6d", sd->uart_tx_interrupts); applog(LOG_DEBUG, " uart_rx_preamble_ints: %6d", sd->uart_rx_preamble_ints); applog(LOG_DEBUG, " uart_rx_missed_preamble_ints: %6d", sd->uart_rx_missed_preamble_ints); applog(LOG_DEBUG, " uart_rx_header_done: %6d", sd->uart_rx_header_done); applog(LOG_DEBUG, " uart_rx_data_done: %6d", sd->uart_rx_data_done); applog(LOG_DEBUG, " uart_rx_bad_hcrc: %6d", sd->uart_rx_bad_hcrc); applog(LOG_DEBUG, " uart_rx_bad_dma: %6d", sd->uart_rx_bad_dma); applog(LOG_DEBUG, " uart_rx_short_dma: %6d", sd->uart_rx_short_dma); applog(LOG_DEBUG, " uart_rx_buffers_full: %6d", sd->uart_rx_buffers_full); #endif applog(LOG_DEBUG, " max_tx_buffers: %6d", sd->max_tx_buffers); applog(LOG_DEBUG, " max_rx_buffers: %6d", sd->max_rx_buffers); } static void *hfa_read(void *arg) { struct thr_info *thr = (struct thr_info *)arg; struct cgpu_info *hashfast = thr->cgpu; struct hashfast_info *info = hashfast->device_data; char threadname[24]; snprintf(threadname, 24, "hfa_read/%d", hashfast->device_id); RenameThread(threadname); while (likely(!hashfast->shutdown)) { char buf[512]; struct hf_header *h = (struct hf_header *)buf; bool ret = hfa_get_packet(hashfast, h); if (unlikely(!ret)) continue; switch (h->operation_code) { case OP_GWQ_STATUS: hfa_parse_gwq_status(hashfast, info, h); break; case OP_DIE_STATUS: hfa_update_die_status(hashfast, info, h); break; case OP_NONCE: hfa_parse_nonce(thr, hashfast, info, h); break; case OP_STATISTICS: hfa_update_die_statistics(info, h); break; case OP_USB_STATS1: hfa_update_stats1(hashfast, info, h); break; default: applog(LOG_WARNING, "HFA %d: Unhandled operation code %d", hashfast->device_id, h->operation_code); break; } } return NULL; } static bool hfa_prepare(struct thr_info *thr) { struct cgpu_info *hashfast = thr->cgpu; struct hashfast_info *info = hashfast->device_data; struct timeval now; mutex_init(&info->lock); if (pthread_create(&info->read_thr, NULL, hfa_read, (void *)thr)) quit(1, "Failed to pthread_create read thr in hfa_prepare"); cgtime(&now); get_datestamp(hashfast->init, sizeof(hashfast->init), &now); return true; } /* Figure out how many jobs to send. */ static int __hfa_jobs(struct hashfast_info *info) { return info->usb_init_base.inflight_target - HF_SEQUENCE_DISTANCE(info->hash_sequence, info->device_sequence_tail); } static int hfa_jobs(struct hashfast_info *info) { int ret; mutex_lock(&info->lock); ret = __hfa_jobs(info); mutex_unlock(&info->lock); return ret; } static int64_t hfa_scanwork(struct thr_info *thr) { struct cgpu_info *hashfast = thr->cgpu; struct hashfast_info *info = hashfast->device_data; int64_t hashes; int jobs, ret; if (unlikely(thr->work_restart)) { restart: ret = hfa_send_frame(hashfast, OP_WORK_RESTART, 0, (uint8_t *)NULL, 0); if (unlikely(!ret)) { ret = hfa_reset(hashfast, info); if (unlikely(!ret)) { applog(LOG_ERR, "HFA %d: Failed to reset after write failure, disabling", hashfast->device_id); return -1; } } } jobs = hfa_jobs(info); if (!jobs) { ret = restart_wait(thr, 100); if (unlikely(!ret)) goto restart; jobs = hfa_jobs(info); } while (jobs > 0) { struct hf_hash_usb op_hash_data; struct work *work; uint64_t intdiff; int i, sequence; uint32_t *p; /* This is a blocking function if there's no work */ work = get_work(thr, thr->id); /* Assemble the data frame and send the OP_HASH packet */ memcpy(op_hash_data.midstate, work->midstate, sizeof(op_hash_data.midstate)); memcpy(op_hash_data.merkle_residual, work->data + 64, 4); p = (uint32_t *)(work->data + 64 + 4); op_hash_data.timestamp = *p++; op_hash_data.bits = *p++; op_hash_data.nonce_loops = 0; /* Set the number of leading zeroes to look for based on diff. * Diff 1 = 32, Diff 2 = 33, Diff 4 = 34 etc. */ intdiff = (uint64_t)work->device_diff; for (i = 31; intdiff; i++, intdiff >>= 1); op_hash_data.search_difficulty = i; if ((sequence = info->hash_sequence + 1) >= info->num_sequence) sequence = 0; ret = hfa_send_frame(hashfast, OP_HASH, sequence, (uint8_t *)&op_hash_data, sizeof(op_hash_data)); if (unlikely(!ret)) { ret = hfa_reset(hashfast, info); if (unlikely(!ret)) { applog(LOG_ERR, "HFA %d: Failed to reset after write failure, disabling", hashfast->device_id); return -1; } } mutex_lock(&info->lock); info->hash_sequence = sequence; *(info->works + info->hash_sequence) = work; jobs = __hfa_jobs(info); mutex_unlock(&info->lock); applog(LOG_DEBUG, "HFA %d: OP_HASH sequence %d search_difficulty %d work_difficulty %g", hashfast->device_id, info->hash_sequence, op_hash_data.search_difficulty, work->work_difficulty); } mutex_lock(&info->lock); hashes = info->hash_count; info->hash_count = 0; mutex_unlock(&info->lock); return hashes; } static struct api_data *hfa_api_stats(struct cgpu_info *cgpu) { struct hashfast_info *info = cgpu->device_data; struct hf_long_usb_stats1 *s1; struct api_data *root = NULL; struct hf_usb_init_base *db; int varint, i; char buf[64]; root = api_add_int(root, "asic count", &info->asic_count, false); root = api_add_int(root, "core count", &info->core_count, false); db = &info->usb_init_base; sprintf(buf, "%d.%d", (db->firmware_rev >> 8) & 0xff, db->firmware_rev & 0xff); root = api_add_string(root, "firmware rev", buf, true); sprintf(buf, "%d.%d", (db->hardware_rev >> 8) & 0xff, db->hardware_rev & 0xff); root = api_add_string(root, "hardware rev", buf, true); varint = db->serial_number; root = api_add_int(root, "serial number", &varint, true); varint = db->hash_clockrate; root = api_add_int(root, "hash clockrate", &varint, true); varint = db->inflight_target; root = api_add_int(root, "inflight target", &varint, true); varint = db->sequence_modulus; root = api_add_int(root, "sequence modules", &varint, true); s1 = &info->stats1; root = api_add_uint64(root, "rx preambles", &s1->usb_rx_preambles, false); root = api_add_uint64(root, "rx rcv byte err", &s1->usb_rx_receive_byte_errors, false); root = api_add_uint64(root, "rx bad hcrc", &s1->usb_rx_bad_hcrc, false); root = api_add_uint64(root, "tx attempts", &s1->usb_tx_attempts, false); root = api_add_uint64(root, "tx packets", &s1->usb_tx_packets, false); root = api_add_uint64(root, "tx incompletes", &s1->usb_tx_incompletes, false); root = api_add_uint64(root, "tx ep stalled", &s1->usb_tx_endpointstalled, false); root = api_add_uint64(root, "tx disconnect", &s1->usb_tx_disconnected, false); root = api_add_uint64(root, "tx suspend", &s1->usb_tx_suspended, false); varint = s1->max_tx_buffers; root = api_add_int(root, "max tx buf", &varint, true); varint = s1->max_rx_buffers; root = api_add_int(root, "max rx buf", &varint, true); for (i = 0; i < info->asic_count; i++) { struct hf_long_statistics *l = &info->die_statistics[i]; struct hf_g1_die_data *d = &info->die_status[i]; double die_temp, core_voltage; int j; root = api_add_int(root, "Core", &i, true); die_temp = GN_DIE_TEMPERATURE(d->die.die_temperature); root = api_add_double(root, "die temperature", &die_temp, true); for (j = 0; j < 6; j++) { core_voltage = GN_CORE_VOLTAGE(d->die.core_voltage[j]); sprintf(buf, "%d: %.2f", j, core_voltage); root = api_add_string(root, "core voltage", buf, true); } root = api_add_uint64(root, "rx header crc", &l->rx_header_crc, false); root = api_add_uint64(root, "rx body crc", &l->rx_body_crc, false); root = api_add_uint64(root, "rx header to", &l->rx_header_timeouts, false); root = api_add_uint64(root, "rx body to", &l->rx_body_timeouts, false); root = api_add_uint64(root, "cn fifo full", &l->core_nonce_fifo_full, false); root = api_add_uint64(root, "an fifo full", &l->array_nonce_fifo_full, false); root = api_add_uint64(root, "stats overrun", &l->stats_overrun, false); } return root; } static void hfa_init(struct cgpu_info *hashfast) { usb_buffer_enable(hashfast); } static void hfa_free_all_work(struct hashfast_info *info) { while (info->device_sequence_tail != info->hash_sequence_head) { struct work *work; if (++info->hash_sequence_tail >= info->num_sequence) info->hash_sequence_tail = 0; if (unlikely(!(work = info->works[info->hash_sequence_tail]))) break; free_work(work); info->works[info->hash_sequence_tail] = NULL; } } static void hfa_shutdown(struct thr_info *thr) { struct cgpu_info *hashfast = thr->cgpu; struct hashfast_info *info = hashfast->device_data; hfa_send_frame(hashfast, HF_USB_CMD(OP_USB_SHUTDOWN), 0, NULL, 0); pthread_join(info->read_thr, NULL); hfa_free_all_work(info); } struct device_drv hashfast_drv = { .drv_id = DRIVER_hashfast, .dname = "Hashfast", .name = "HFA", .max_diff = 256.0, // Limit max diff to get some nonces back regardless .drv_detect = hfa_detect, .thread_prepare = hfa_prepare, .hash_work = &hash_driver_work, .scanwork = hfa_scanwork, .get_api_stats = hfa_api_stats, .reinit_device = hfa_init, .thread_shutdown = hfa_shutdown, };