/* * Copyright 2011-2013 Con Kolivas * Copyright 2010 Jeff Garzik * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) * any later version. See COPYING for more details. */ #include "config.h" #include #include #include #include #include #include #ifdef HAVE_LIBCURL #include #endif #include #include #include #include #ifndef WIN32 #include # ifdef __linux # include # endif # include # include # include # include #else # include # include # include # include #endif #include "miner.h" #include "elist.h" #include "compat.h" #include "util.h" #define DEFAULT_SOCKWAIT 60 bool successful_connect = false; static void keep_sockalive(SOCKETTYPE fd) { const int tcp_one = 1; #ifndef WIN32 const int tcp_keepidle = 45; const int tcp_keepintvl = 30; int flags = fcntl(fd, F_GETFL, 0); fcntl(fd, F_SETFL, O_NONBLOCK | flags); #else u_long flags = 1; ioctlsocket(fd, FIONBIO, &flags); #endif setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (const char *)&tcp_one, sizeof(tcp_one)); if (!opt_delaynet) #ifndef __linux setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (const char *)&tcp_one, sizeof(tcp_one)); #else /* __linux */ setsockopt(fd, SOL_TCP, TCP_NODELAY, (const void *)&tcp_one, sizeof(tcp_one)); setsockopt(fd, SOL_TCP, TCP_KEEPCNT, &tcp_one, sizeof(tcp_one)); setsockopt(fd, SOL_TCP, TCP_KEEPIDLE, &tcp_keepidle, sizeof(tcp_keepidle)); setsockopt(fd, SOL_TCP, TCP_KEEPINTVL, &tcp_keepintvl, sizeof(tcp_keepintvl)); #endif /* __linux */ #ifdef __APPLE_CC__ setsockopt(fd, IPPROTO_TCP, TCP_KEEPALIVE, &tcp_keepintvl, sizeof(tcp_keepintvl)); #endif /* __APPLE_CC__ */ } struct tq_ent { void *data; struct list_head q_node; }; #ifdef HAVE_LIBCURL struct timeval nettime; struct data_buffer { void *buf; size_t len; }; struct upload_buffer { const void *buf; size_t len; }; struct header_info { char *lp_path; int rolltime; char *reason; char *stratum_url; bool hadrolltime; bool canroll; bool hadexpire; }; static void databuf_free(struct data_buffer *db) { if (!db) return; free(db->buf); memset(db, 0, sizeof(*db)); } static size_t all_data_cb(const void *ptr, size_t size, size_t nmemb, void *user_data) { struct data_buffer *db = (struct data_buffer *)user_data; size_t len = size * nmemb; size_t oldlen, newlen; void *newmem; static const unsigned char zero = 0; oldlen = db->len; newlen = oldlen + len; newmem = realloc(db->buf, newlen + 1); if (!newmem) return 0; db->buf = newmem; db->len = newlen; memcpy((uint8_t*)db->buf + oldlen, ptr, len); memcpy((uint8_t*)db->buf + newlen, &zero, 1); /* null terminate */ return len; } static size_t upload_data_cb(void *ptr, size_t size, size_t nmemb, void *user_data) { struct upload_buffer *ub = (struct upload_buffer *)user_data; unsigned int len = size * nmemb; if (len > ub->len) len = ub->len; if (len) { memcpy(ptr, ub->buf, len); ub->buf = (uint8_t*)ub->buf + len; ub->len -= len; } return len; } static size_t resp_hdr_cb(void *ptr, size_t size, size_t nmemb, void *user_data) { struct header_info *hi = (struct header_info *)user_data; size_t remlen, slen, ptrlen = size * nmemb; char *rem, *val = NULL, *key = NULL; void *tmp; val = (char *)calloc(1, ptrlen); key = (char *)calloc(1, ptrlen); if (!key || !val) goto out; tmp = memchr(ptr, ':', ptrlen); if (!tmp || (tmp == ptr)) /* skip empty keys / blanks */ goto out; slen = (uint8_t*)tmp - (uint8_t*)ptr; if ((slen + 1) == ptrlen) /* skip key w/ no value */ goto out; memcpy(key, ptr, slen); /* store & nul term key */ key[slen] = 0; rem = (char*)ptr + slen + 1; /* trim value's leading whitespace */ remlen = ptrlen - slen - 1; while ((remlen > 0) && (isspace(*rem))) { remlen--; rem++; } memcpy(val, rem, remlen); /* store value, trim trailing ws */ val[remlen] = 0; while ((*val) && (isspace(val[strlen(val) - 1]))) val[strlen(val) - 1] = 0; if (!*val) /* skip blank value */ goto out; if (opt_protocol) applog(LOG_DEBUG, "HTTP hdr(%s): %s", key, val); if (!strcasecmp("X-Roll-Ntime", key)) { hi->hadrolltime = true; if (!strncasecmp("N", val, 1)) applog(LOG_DEBUG, "X-Roll-Ntime: N found"); else { hi->canroll = true; /* Check to see if expire= is supported and if not, set * the rolltime to the default scantime */ if (strlen(val) > 7 && !strncasecmp("expire=", val, 7)) { sscanf(val + 7, "%d", &hi->rolltime); hi->hadexpire = true; } else hi->rolltime = opt_scantime; applog(LOG_DEBUG, "X-Roll-Ntime expiry set to %d", hi->rolltime); } } if (!strcasecmp("X-Long-Polling", key)) { hi->lp_path = val; /* steal memory reference */ val = NULL; } if (!strcasecmp("X-Reject-Reason", key)) { hi->reason = val; /* steal memory reference */ val = NULL; } if (!strcasecmp("X-Stratum", key)) { hi->stratum_url = val; val = NULL; } out: free(key); free(val); return ptrlen; } static void last_nettime(struct timeval *last) { rd_lock(&netacc_lock); last->tv_sec = nettime.tv_sec; last->tv_usec = nettime.tv_usec; rd_unlock(&netacc_lock); } static void set_nettime(void) { wr_lock(&netacc_lock); cgtime(&nettime); wr_unlock(&netacc_lock); } #if CURL_HAS_KEEPALIVE static void keep_curlalive(CURL *curl) { const long int keepalive = 1; curl_easy_setopt(curl, CURLOPT_TCP_KEEPALIVE, keepalive); curl_easy_setopt(curl, CURLOPT_TCP_KEEPIDLE, opt_tcp_keepalive); curl_easy_setopt(curl, CURLOPT_TCP_KEEPINTVL, opt_tcp_keepalive); } #else static void keep_curlalive(CURL *curl) { SOCKETTYPE sock; curl_easy_getinfo(curl, CURLINFO_LASTSOCKET, (long *)&sock); keep_sockalive(sock); } #endif static int curl_debug_cb(__maybe_unused CURL *handle, curl_infotype type, __maybe_unused char *data, size_t size, void *userdata) { struct pool *pool = (struct pool *)userdata; switch(type) { case CURLINFO_HEADER_IN: case CURLINFO_DATA_IN: case CURLINFO_SSL_DATA_IN: pool->sgminer_pool_stats.net_bytes_received += size; break; case CURLINFO_HEADER_OUT: case CURLINFO_DATA_OUT: case CURLINFO_SSL_DATA_OUT: pool->sgminer_pool_stats.net_bytes_sent += size; break; case CURLINFO_TEXT: default: break; } return 0; } json_t *json_rpc_call(CURL *curl, const char *url, const char *userpass, const char *rpc_req, bool probe, bool longpoll, int *rolltime, struct pool *pool, bool share) { long timeout = longpoll ? (60 * 60) : 60; struct data_buffer all_data = {NULL, 0}; struct header_info hi = {NULL, 0, NULL, NULL, false, false, false}; char len_hdr[64], user_agent_hdr[128]; char curl_err_str[CURL_ERROR_SIZE]; struct curl_slist *headers = NULL; struct upload_buffer upload_data; json_t *val, *err_val, *res_val; bool probing = false; double byte_count; json_error_t err; int rc; memset(&err, 0, sizeof(err)); /* it is assumed that 'curl' is freshly [re]initialized at this pt */ if (probe) probing = !pool->probed; curl_easy_setopt(curl, CURLOPT_TIMEOUT, timeout); // CURLOPT_VERBOSE won't write to stderr if we use CURLOPT_DEBUGFUNCTION curl_easy_setopt(curl, CURLOPT_DEBUGFUNCTION, curl_debug_cb); curl_easy_setopt(curl, CURLOPT_DEBUGDATA, (void *)pool); curl_easy_setopt(curl, CURLOPT_VERBOSE, 1); curl_easy_setopt(curl, CURLOPT_NOSIGNAL, 1); curl_easy_setopt(curl, CURLOPT_URL, url); curl_easy_setopt(curl, CURLOPT_ENCODING, ""); curl_easy_setopt(curl, CURLOPT_FAILONERROR, 1); /* Shares are staggered already and delays in submission can be costly * so do not delay them */ if (!opt_delaynet || share) curl_easy_setopt(curl, CURLOPT_TCP_NODELAY, 1); curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, all_data_cb); curl_easy_setopt(curl, CURLOPT_WRITEDATA, &all_data); curl_easy_setopt(curl, CURLOPT_READFUNCTION, upload_data_cb); curl_easy_setopt(curl, CURLOPT_READDATA, &upload_data); curl_easy_setopt(curl, CURLOPT_ERRORBUFFER, curl_err_str); curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1); curl_easy_setopt(curl, CURLOPT_HEADERFUNCTION, resp_hdr_cb); curl_easy_setopt(curl, CURLOPT_HEADERDATA, &hi); curl_easy_setopt(curl, CURLOPT_USE_SSL, CURLUSESSL_TRY); if (pool->rpc_proxy) { curl_easy_setopt(curl, CURLOPT_PROXY, pool->rpc_proxy); curl_easy_setopt(curl, CURLOPT_PROXYTYPE, pool->rpc_proxytype); } else if (opt_socks_proxy) { curl_easy_setopt(curl, CURLOPT_PROXY, opt_socks_proxy); curl_easy_setopt(curl, CURLOPT_PROXYTYPE, CURLPROXY_SOCKS4); } if (userpass) { curl_easy_setopt(curl, CURLOPT_USERPWD, userpass); curl_easy_setopt(curl, CURLOPT_HTTPAUTH, CURLAUTH_BASIC); } if (longpoll) keep_curlalive(curl); curl_easy_setopt(curl, CURLOPT_POST, 1); if (opt_protocol) applog(LOG_DEBUG, "JSON protocol request:\n%s", rpc_req); upload_data.buf = rpc_req; upload_data.len = strlen(rpc_req); sprintf(len_hdr, "Content-Length: %lu", (unsigned long) upload_data.len); sprintf(user_agent_hdr, "User-Agent: %s", PACKAGE_STRING); headers = curl_slist_append(headers, "Content-type: application/json"); headers = curl_slist_append(headers, "X-Mining-Extensions: longpoll midstate rollntime submitold"); if (likely(global_hashrate)) { char ghashrate[255]; sprintf(ghashrate, "X-Mining-Hashrate: %llu", global_hashrate); headers = curl_slist_append(headers, ghashrate); } headers = curl_slist_append(headers, len_hdr); headers = curl_slist_append(headers, user_agent_hdr); headers = curl_slist_append(headers, "Expect:"); /* disable Expect hdr*/ curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headers); if (opt_delaynet) { /* Don't delay share submission, but still track the nettime */ if (!share) { long long now_msecs, last_msecs; struct timeval now, last; cgtime(&now); last_nettime(&last); now_msecs = (long long)now.tv_sec * 1000; now_msecs += now.tv_usec / 1000; last_msecs = (long long)last.tv_sec * 1000; last_msecs += last.tv_usec / 1000; if (now_msecs > last_msecs && now_msecs - last_msecs < 250) { struct timespec rgtp; rgtp.tv_sec = 0; rgtp.tv_nsec = (250 - (now_msecs - last_msecs)) * 1000000; nanosleep(&rgtp, NULL); } } set_nettime(); } rc = curl_easy_perform(curl); if (rc) { applog(LOG_INFO, "HTTP request failed: %s", curl_err_str); goto err_out; } if (!all_data.buf) { applog(LOG_DEBUG, "Empty data received in json_rpc_call."); goto err_out; } pool->sgminer_pool_stats.times_sent++; if (curl_easy_getinfo(curl, CURLINFO_SIZE_UPLOAD, &byte_count) == CURLE_OK) pool->sgminer_pool_stats.bytes_sent += byte_count; pool->sgminer_pool_stats.times_received++; if (curl_easy_getinfo(curl, CURLINFO_SIZE_DOWNLOAD, &byte_count) == CURLE_OK) pool->sgminer_pool_stats.bytes_received += byte_count; if (probing) { pool->probed = true; /* If X-Long-Polling was found, activate long polling */ if (hi.lp_path) { if (pool->hdr_path != NULL) free(pool->hdr_path); pool->hdr_path = hi.lp_path; } else pool->hdr_path = NULL; if (hi.stratum_url) { pool->stratum_url = hi.stratum_url; hi.stratum_url = NULL; } } else { if (hi.lp_path) { free(hi.lp_path); hi.lp_path = NULL; } if (hi.stratum_url) { free(hi.stratum_url); hi.stratum_url = NULL; } } *rolltime = hi.rolltime; pool->sgminer_pool_stats.rolltime = hi.rolltime; pool->sgminer_pool_stats.hadrolltime = hi.hadrolltime; pool->sgminer_pool_stats.canroll = hi.canroll; pool->sgminer_pool_stats.hadexpire = hi.hadexpire; val = JSON_LOADS((const char *)all_data.buf, &err); if (!val) { applog(LOG_INFO, "JSON decode failed(%d): %s", err.line, err.text); if (opt_protocol) applog(LOG_DEBUG, "JSON protocol response:\n%s", (char *)(all_data.buf)); goto err_out; } if (opt_protocol) { char *s = json_dumps(val, JSON_INDENT(3)); applog(LOG_DEBUG, "JSON protocol response:\n%s", s); free(s); } /* JSON-RPC valid response returns a non-null 'result', * and a null 'error'. */ res_val = json_object_get(val, "result"); err_val = json_object_get(val, "error"); if (!res_val ||(err_val && !json_is_null(err_val))) { char *s; if (err_val) s = json_dumps(err_val, JSON_INDENT(3)); else s = strdup("(unknown reason)"); applog(LOG_INFO, "JSON-RPC call failed: %s", s); free(s); goto err_out; } if (hi.reason) { json_object_set_new(val, "reject-reason", json_string(hi.reason)); free(hi.reason); hi.reason = NULL; } successful_connect = true; databuf_free(&all_data); curl_slist_free_all(headers); curl_easy_reset(curl); return val; err_out: databuf_free(&all_data); curl_slist_free_all(headers); curl_easy_reset(curl); if (!successful_connect) applog(LOG_DEBUG, "Failed to connect in json_rpc_call"); curl_easy_setopt(curl, CURLOPT_FRESH_CONNECT, 1); return NULL; } #define PROXY_HTTP CURLPROXY_HTTP #define PROXY_HTTP_1_0 CURLPROXY_HTTP_1_0 #define PROXY_SOCKS4 CURLPROXY_SOCKS4 #define PROXY_SOCKS5 CURLPROXY_SOCKS5 #define PROXY_SOCKS4A CURLPROXY_SOCKS4A #define PROXY_SOCKS5H CURLPROXY_SOCKS5_HOSTNAME #else /* HAVE_LIBCURL */ #define PROXY_HTTP 0 #define PROXY_HTTP_1_0 1 #define PROXY_SOCKS4 2 #define PROXY_SOCKS5 3 #define PROXY_SOCKS4A 4 #define PROXY_SOCKS5H 5 #endif /* HAVE_LIBCURL */ static struct { const char *name; proxytypes_t proxytype; } proxynames[] = { { "http:", PROXY_HTTP }, { "http0:", PROXY_HTTP_1_0 }, { "socks4:", PROXY_SOCKS4 }, { "socks5:", PROXY_SOCKS5 }, { "socks4a:", PROXY_SOCKS4A }, { "socks5h:", PROXY_SOCKS5H }, { NULL, (proxytypes_t)NULL } }; const char *proxytype(proxytypes_t proxytype) { int i; for (i = 0; proxynames[i].name; i++) if (proxynames[i].proxytype == proxytype) return proxynames[i].name; return "invalid"; } char *get_proxy(char *url, struct pool *pool) { pool->rpc_proxy = NULL; char *split; int plen, len, i; for (i = 0; proxynames[i].name; i++) { plen = strlen(proxynames[i].name); if (strncmp(url, proxynames[i].name, plen) == 0) { if (!(split = strchr(url, '|'))) return url; *split = '\0'; len = split - url; pool->rpc_proxy = (char *)malloc(1 + len - plen); if (!(pool->rpc_proxy)) quithere(1, "Failed to malloc rpc_proxy"); strcpy(pool->rpc_proxy, url + plen); extract_sockaddr(pool->rpc_proxy, &pool->sockaddr_proxy_url, &pool->sockaddr_proxy_port); pool->rpc_proxytype = proxynames[i].proxytype; url = split + 1; break; } } return url; } /* Adequate size s==len*2 + 1 must be alloced to use this variant */ void __bin2hex(char *s, const unsigned char *p, size_t len) { int i; static const char hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'}; for (i = 0; i < (int)len; i++) { *s++ = hex[p[i] >> 4]; *s++ = hex[p[i] & 0xF]; } *s++ = '\0'; } /* Returns a malloced array string of a binary value of arbitrary length. The * array is rounded up to a 4 byte size to appease architectures that need * aligned array sizes */ char *bin2hex(const unsigned char *p, size_t len) { ssize_t slen; char *s; slen = len * 2 + 1; if (slen % 4) slen += 4 - (slen % 4); s = (char *)calloc(slen, 1); if (unlikely(!s)) quithere(1, "Failed to calloc"); __bin2hex(s, p, len); return s; } /* Does the reverse of bin2hex but does not allocate any ram */ static const int hex2bin_tbl[256] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, }; bool hex2bin(unsigned char *p, const char *hexstr, size_t len) { int nibble1, nibble2; unsigned char idx; bool ret = false; while (*hexstr && len) { if (unlikely(!hexstr[1])) { applog(LOG_ERR, "hex2bin str truncated"); return ret; } idx = *hexstr++; nibble1 = hex2bin_tbl[idx]; idx = *hexstr++; nibble2 = hex2bin_tbl[idx]; if (unlikely((nibble1 < 0) || (nibble2 < 0))) { applog(LOG_ERR, "hex2bin scan failed"); return ret; } *p++ = (((unsigned char)nibble1) << 4) | ((unsigned char)nibble2); --len; } if (likely(len == 0 && *hexstr == 0)) ret = true; return ret; } bool fulltest(const unsigned char *hash, const unsigned char *target) { uint32_t *hash32 = (uint32_t *)hash; uint32_t *target32 = (uint32_t *)target; bool rc = true; int i; for (i = 28 / 4; i >= 0; i--) { uint32_t h32tmp = le32toh(hash32[i]); uint32_t t32tmp = le32toh(target32[i]); if (h32tmp > t32tmp) { rc = false; break; } if (h32tmp < t32tmp) { rc = true; break; } } if (opt_debug) { unsigned char hash_swap[32], target_swap[32]; char *hash_str, *target_str; swab256(hash_swap, hash); swab256(target_swap, target); hash_str = bin2hex(hash_swap, 32); target_str = bin2hex(target_swap, 32); applog(LOG_DEBUG, " Proof: %s\nTarget: %s\nTrgVal? %s", hash_str, target_str, rc ? "YES (hash <= target)" : "no (false positive; hash > target)"); free(hash_str); free(target_str); } return rc; } struct thread_q *tq_new(void) { struct thread_q *tq; tq = (struct thread_q *)calloc(1, sizeof(*tq)); if (!tq) return NULL; INIT_LIST_HEAD(&tq->q); pthread_mutex_init(&tq->mutex, NULL); pthread_cond_init(&tq->cond, NULL); return tq; } void tq_free(struct thread_q *tq) { struct tq_ent *ent, *iter; if (!tq) return; list_for_each_entry_safe(ent, iter, &tq->q, q_node) { list_del(&ent->q_node); free(ent); } pthread_cond_destroy(&tq->cond); pthread_mutex_destroy(&tq->mutex); memset(tq, 0, sizeof(*tq)); /* poison */ free(tq); } static void tq_freezethaw(struct thread_q *tq, bool frozen) { mutex_lock(&tq->mutex); tq->frozen = frozen; pthread_cond_signal(&tq->cond); mutex_unlock(&tq->mutex); } void tq_freeze(struct thread_q *tq) { tq_freezethaw(tq, true); } void tq_thaw(struct thread_q *tq) { tq_freezethaw(tq, false); } bool tq_push(struct thread_q *tq, void *data) { struct tq_ent *ent; bool rc = true; ent = (struct tq_ent *)calloc(1, sizeof(*ent)); if (!ent) return false; ent->data = data; INIT_LIST_HEAD(&ent->q_node); mutex_lock(&tq->mutex); if (!tq->frozen) { list_add_tail(&ent->q_node, &tq->q); } else { free(ent); rc = false; } pthread_cond_signal(&tq->cond); mutex_unlock(&tq->mutex); return rc; } void *tq_pop(struct thread_q *tq, const struct timespec *abstime) { struct tq_ent *ent; void *rval = NULL; int rc; mutex_lock(&tq->mutex); if (!list_empty(&tq->q)) goto pop; if (abstime) rc = pthread_cond_timedwait(&tq->cond, &tq->mutex, abstime); else rc = pthread_cond_wait(&tq->cond, &tq->mutex); if (rc) goto out; if (list_empty(&tq->q)) goto out; pop: ent = list_entry(tq->q.next, struct tq_ent*, q_node); rval = ent->data; list_del(&ent->q_node); free(ent); out: mutex_unlock(&tq->mutex); return rval; } int thr_info_create(struct thr_info *thr, pthread_attr_t *attr, void *(*start) (void *), void *arg) { cgsem_init(&thr->sem); return pthread_create(&thr->pth, attr, start, arg); } void thr_info_cancel(struct thr_info *thr) { if (!thr) return; if (PTH(thr) != 0L) { pthread_cancel(thr->pth); PTH(thr) = 0L; } cgsem_destroy(&thr->sem); } void subtime(struct timeval *a, struct timeval *b) { timersub(a, b, b); } void addtime(struct timeval *a, struct timeval *b) { timeradd(a, b, b); } bool time_more(struct timeval *a, struct timeval *b) { return timercmp(a, b, >); } bool time_less(struct timeval *a, struct timeval *b) { return timercmp(a, b, <); } void copy_time(struct timeval *dest, const struct timeval *src) { memcpy(dest, src, sizeof(struct timeval)); } void timespec_to_val(struct timeval *val, const struct timespec *spec) { val->tv_sec = spec->tv_sec; val->tv_usec = spec->tv_nsec / 1000; } void timeval_to_spec(struct timespec *spec, const struct timeval *val) { spec->tv_sec = val->tv_sec; spec->tv_nsec = val->tv_usec * 1000; } void us_to_timeval(struct timeval *val, int64_t us) { lldiv_t tvdiv = lldiv(us, 1000000); val->tv_sec = tvdiv.quot; val->tv_usec = tvdiv.rem; } void us_to_timespec(struct timespec *spec, int64_t us) { lldiv_t tvdiv = lldiv(us, 1000000); spec->tv_sec = tvdiv.quot; spec->tv_nsec = tvdiv.rem * 1000; } void ms_to_timespec(struct timespec *spec, int64_t ms) { lldiv_t tvdiv = lldiv(ms, 1000); spec->tv_sec = tvdiv.quot; spec->tv_nsec = tvdiv.rem * 1000000; } void ms_to_timeval(struct timeval *val, int64_t ms) { lldiv_t tvdiv = lldiv(ms, 1000); val->tv_sec = tvdiv.quot; val->tv_usec = tvdiv.rem * 1000; } void timeraddspec(struct timespec *a, const struct timespec *b) { a->tv_sec += b->tv_sec; a->tv_nsec += b->tv_nsec; if (a->tv_nsec >= 1000000000) { a->tv_nsec -= 1000000000; a->tv_sec++; } } static int __maybe_unused timespec_to_ms(struct timespec *ts) { return ts->tv_sec * 1000 + ts->tv_nsec / 1000000; } /* Subtract b from a */ static void __maybe_unused timersubspec(struct timespec *a, const struct timespec *b) { a->tv_sec -= b->tv_sec; a->tv_nsec -= b->tv_nsec; if (a->tv_nsec < 0) { a->tv_nsec += 1000000000; a->tv_sec--; } } /* These are sgminer specific sleep functions that use an absolute nanosecond * resolution timer to avoid poor usleep accuracy and overruns. */ #ifdef WIN32 /* Windows start time is since 1601 LOL so convert it to unix epoch 1970. */ #define EPOCHFILETIME (116444736000000000LL) /* Return the system time as an lldiv_t in decimicroseconds. */ static void decius_time(lldiv_t *lidiv) { FILETIME ft; LARGE_INTEGER li; GetSystemTimeAsFileTime(&ft); li.LowPart = ft.dwLowDateTime; li.HighPart = ft.dwHighDateTime; li.QuadPart -= EPOCHFILETIME; /* SystemTime is in decimicroseconds so divide by an unusual number */ *lidiv = lldiv(li.QuadPart, 10000000); } /* This is a sgminer gettimeofday wrapper. Since we always call gettimeofday * with tz set to NULL, and windows' default resolution is only 15ms, this * gives us higher resolution times on windows. */ void cgtime(struct timeval *tv) { lldiv_t lidiv; decius_time(&lidiv); tv->tv_sec = lidiv.quot; tv->tv_usec = lidiv.rem / 10; } #else /* WIN32 */ void cgtime(struct timeval *tv) { gettimeofday(tv, NULL); } int cgtimer_to_ms(cgtimer_t *cgt) { return timespec_to_ms(cgt); } /* Subtracts b from a and stores it in res. */ void cgtimer_sub(cgtimer_t *a, cgtimer_t *b, cgtimer_t *res) { res->tv_sec = a->tv_sec - b->tv_sec; res->tv_nsec = a->tv_nsec - b->tv_nsec; if (res->tv_nsec < 0) { res->tv_nsec += 1000000000; res->tv_sec--; } } #endif /* WIN32 */ #ifdef CLOCK_MONOTONIC /* Essentially just linux */ void cgtimer_time(cgtimer_t *ts_start) { clock_gettime(CLOCK_MONOTONIC, ts_start); } static void nanosleep_abstime(struct timespec *ts_end) { int ret; do { ret = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, ts_end, NULL); } while (ret == EINTR); } /* Reentrant version of cgsleep functions allow start time to be set separately * from the beginning of the actual sleep, allowing scheduling delays to be * counted in the sleep. */ void cgsleep_ms_r(cgtimer_t *ts_start, int ms) { struct timespec ts_end; ms_to_timespec(&ts_end, ms); timeraddspec(&ts_end, ts_start); nanosleep_abstime(&ts_end); } void cgsleep_us_r(cgtimer_t *ts_start, int64_t us) { struct timespec ts_end; us_to_timespec(&ts_end, us); timeraddspec(&ts_end, ts_start); nanosleep_abstime(&ts_end); } #else /* CLOCK_MONOTONIC */ #ifdef __MACH__ #include #include void cgtimer_time(cgtimer_t *ts_start) { clock_serv_t cclock; mach_timespec_t mts; host_get_clock_service(mach_host_self(), SYSTEM_CLOCK, &cclock); clock_get_time(cclock, &mts); mach_port_deallocate(mach_task_self(), cclock); ts_start->tv_sec = mts.tv_sec; ts_start->tv_nsec = mts.tv_nsec; } #elif !defined(WIN32) /* __MACH__ - Everything not linux/macosx/win32 */ void cgtimer_time(cgtimer_t *ts_start) { struct timeval tv; cgtime(&tv); ts_start->tv_sec = tv->tv_sec; ts_start->tv_nsec = tv->tv_usec * 1000; } #endif /* __MACH__ */ #ifdef WIN32 /* For windows we use the SystemTime stored as a LARGE_INTEGER as the cgtimer_t * typedef, allowing us to have sub-microsecond resolution for times, do simple * arithmetic for timer calculations, and use windows' own hTimers to get * accurate absolute timeouts. */ int cgtimer_to_ms(cgtimer_t *cgt) { return (int)(cgt->QuadPart / 10000LL); } /* Subtracts b from a and stores it in res. */ void cgtimer_sub(cgtimer_t *a, cgtimer_t *b, cgtimer_t *res) { res->QuadPart = a->QuadPart - b->QuadPart; } /* Note that cgtimer time is NOT offset by the unix epoch since we use absolute * timeouts with hTimers. */ void cgtimer_time(cgtimer_t *ts_start) { FILETIME ft; GetSystemTimeAsFileTime(&ft); ts_start->LowPart = ft.dwLowDateTime; ts_start->HighPart = ft.dwHighDateTime; } static void liSleep(LARGE_INTEGER *li, int timeout) { HANDLE hTimer; DWORD ret; if (unlikely(timeout <= 0)) return; hTimer = CreateWaitableTimer(NULL, TRUE, NULL); if (unlikely(!hTimer)) quit(1, "Failed to create hTimer in liSleep"); ret = SetWaitableTimer(hTimer, li, 0, NULL, NULL, 0); if (unlikely(!ret)) quit(1, "Failed to SetWaitableTimer in liSleep"); /* We still use a timeout as a sanity check in case the system time * is changed while we're running */ ret = WaitForSingleObject(hTimer, timeout); if (unlikely(ret != WAIT_OBJECT_0 && ret != WAIT_TIMEOUT)) quit(1, "Failed to WaitForSingleObject in liSleep"); CloseHandle(hTimer); } void cgsleep_ms_r(cgtimer_t *ts_start, int ms) { LARGE_INTEGER li; li.QuadPart = ts_start->QuadPart + (int64_t)ms * 10000LL; liSleep(&li, ms); } void cgsleep_us_r(cgtimer_t *ts_start, int64_t us) { LARGE_INTEGER li; int ms; li.QuadPart = ts_start->QuadPart + us * 10LL; ms = us / 1000; if (!ms) ms = 1; liSleep(&li, ms); } #else /* WIN32 */ static void cgsleep_spec(struct timespec *ts_diff, const struct timespec *ts_start) { struct timespec now; timeraddspec(ts_diff, ts_start); cgtimer_time(&now); timersubspec(ts_diff, &now); if (unlikely(ts_diff->tv_sec < 0)) return; nanosleep(ts_diff, NULL); } void cgsleep_ms_r(cgtimer_t *ts_start, int ms) { struct timespec ts_diff; ms_to_timespec(&ts_diff, ms); cgsleep_spec(&ts_diff, ts_start); } void cgsleep_us_r(cgtimer_t *ts_start, int64_t us) { struct timespec ts_diff; us_to_timespec(&ts_diff, us); cgsleep_spec(&ts_diff, ts_start); } #endif /* WIN32 */ #endif /* CLOCK_MONOTONIC */ void cgsleep_ms(int ms) { cgtimer_t ts_start; cgsleep_prepare_r(&ts_start); cgsleep_ms_r(&ts_start, ms); } void cgsleep_us(int64_t us) { cgtimer_t ts_start; cgsleep_prepare_r(&ts_start); cgsleep_us_r(&ts_start, us); } /* Returns the microseconds difference between end and start times as a double */ double us_tdiff(struct timeval *end, struct timeval *start) { /* Sanity check. We should only be using this for small differences so * limit the max to 60 seconds. */ if (unlikely(end->tv_sec - start->tv_sec > 60)) return 60000000; return (end->tv_sec - start->tv_sec) * 1000000 + (end->tv_usec - start->tv_usec); } /* Returns the milliseconds difference between end and start times */ int ms_tdiff(struct timeval *end, struct timeval *start) { /* Like us_tdiff, limit to 1 hour. */ if (unlikely(end->tv_sec - start->tv_sec > 3600)) return 3600000; return (end->tv_sec - start->tv_sec) * 1000 + (end->tv_usec - start->tv_usec) / 1000; } /* Returns the seconds difference between end and start times as a double */ double tdiff(struct timeval *end, struct timeval *start) { return end->tv_sec - start->tv_sec + (end->tv_usec - start->tv_usec) / 1000000.0; } bool extract_sockaddr(char *url, char **sockaddr_url, char **sockaddr_port) { char *url_begin, *url_end, *ipv6_begin, *ipv6_end, *port_start = NULL; char url_address[256], port[6]; int url_len, port_len = 0; *sockaddr_url = url; url_begin = strstr(url, "//"); if (!url_begin) url_begin = url; else url_begin += 2; /* Look for numeric ipv6 entries */ ipv6_begin = strstr(url_begin, "["); ipv6_end = strstr(url_begin, "]"); if (ipv6_begin && ipv6_end && ipv6_end > ipv6_begin) url_end = strstr(ipv6_end, ":"); else url_end = strstr(url_begin, ":"); if (url_end) { url_len = url_end - url_begin; port_len = strlen(url_begin) - url_len - 1; if (port_len < 1) return false; port_start = url_end + 1; } else url_len = strlen(url_begin); if (url_len < 1) return false; sprintf(url_address, "%.*s", url_len, url_begin); if (port_len) { char *slash; snprintf(port, 6, "%.*s", port_len, port_start); slash = strchr(port, '/'); if (slash) *slash = '\0'; } else strcpy(port, "80"); *sockaddr_port = strdup(port); *sockaddr_url = strdup(url_address); return true; } enum send_ret { SEND_OK, SEND_SELECTFAIL, SEND_SENDFAIL, SEND_INACTIVE }; /* Send a single command across a socket, appending \n to it. This should all * be done under stratum lock except when first establishing the socket */ static enum send_ret __stratum_send(struct pool *pool, char *s, ssize_t len) { SOCKETTYPE sock = pool->sock; ssize_t ssent = 0; strcat(s, "\n"); len++; while (len > 0 ) { struct timeval timeout = {1, 0}; ssize_t sent; fd_set wd; FD_ZERO(&wd); FD_SET(sock, &wd); if (select(sock + 1, NULL, &wd, NULL, &timeout) < 1) return SEND_SELECTFAIL; #ifdef __APPLE__ sent = send(pool->sock, s + ssent, len, SO_NOSIGPIPE); #elif WIN32 sent = send(pool->sock, s + ssent, len, 0); #else sent = send(pool->sock, s + ssent, len, MSG_NOSIGNAL); #endif if (sent < 0) { if (!sock_blocks()) return SEND_SENDFAIL; sent = 0; } ssent += sent; len -= sent; } pool->sgminer_pool_stats.times_sent++; pool->sgminer_pool_stats.bytes_sent += ssent; pool->sgminer_pool_stats.net_bytes_sent += ssent; return SEND_OK; } bool stratum_send(struct pool *pool, char *s, ssize_t len) { enum send_ret ret = SEND_INACTIVE; if (opt_protocol) applog(LOG_DEBUG, "SEND: %s", s); mutex_lock(&pool->stratum_lock); if (pool->stratum_active) ret = __stratum_send(pool, s, len); mutex_unlock(&pool->stratum_lock); /* This is to avoid doing applog under stratum_lock */ switch (ret) { default: case SEND_OK: break; case SEND_SELECTFAIL: applog(LOG_DEBUG, "Write select failed on %s sock", pool->poolname); suspend_stratum(pool); break; case SEND_SENDFAIL: applog(LOG_DEBUG, "Failed to send in stratum_send"); suspend_stratum(pool); break; case SEND_INACTIVE: applog(LOG_DEBUG, "Stratum send failed due to no pool stratum_active"); break; } return (ret == SEND_OK); } static bool socket_full(struct pool *pool, int wait) { SOCKETTYPE sock = pool->sock; struct timeval timeout; fd_set rd; if (unlikely(wait < 0)) wait = 0; FD_ZERO(&rd); FD_SET(sock, &rd); timeout.tv_usec = 0; timeout.tv_sec = wait; if (select(sock + 1, &rd, NULL, NULL, &timeout) > 0) return true; return false; } /* Check to see if Santa's been good to you */ bool sock_full(struct pool *pool) { if (strlen(pool->sockbuf)) return true; return (socket_full(pool, 0)); } static void clear_sockbuf(struct pool *pool) { strcpy(pool->sockbuf, ""); } static void clear_sock(struct pool *pool) { ssize_t n; mutex_lock(&pool->stratum_lock); do { if (pool->sock) n = recv(pool->sock, pool->sockbuf, RECVSIZE, 0); else n = 0; } while (n > 0); mutex_unlock(&pool->stratum_lock); clear_sockbuf(pool); } /* Make sure the pool sockbuf is large enough to cope with any coinbase size * by reallocing it to a large enough size rounded up to a multiple of RBUFSIZE * and zeroing the new memory */ static void recalloc_sock(struct pool *pool, size_t len) { size_t old, newlen; old = strlen(pool->sockbuf); newlen = old + len + 1; if (newlen < pool->sockbuf_size) return; newlen = newlen + (RBUFSIZE - (newlen % RBUFSIZE)); // Avoid potentially recursive locking // applog(LOG_DEBUG, "Recallocing pool sockbuf to %d", new); pool->sockbuf = (char *)realloc(pool->sockbuf, newlen); if (!pool->sockbuf) quithere(1, "Failed to realloc pool sockbuf"); memset(pool->sockbuf + old, 0, newlen - old); pool->sockbuf_size = newlen; } /* Peeks at a socket to find the first end of line and then reads just that * from the socket and returns that as a malloced char */ char *recv_line(struct pool *pool) { char *tok, *sret = NULL; ssize_t len, buflen; int waited = 0; if (!strstr(pool->sockbuf, "\n")) { struct timeval rstart, now; cgtime(&rstart); if (!socket_full(pool, DEFAULT_SOCKWAIT)) { applog(LOG_DEBUG, "Timed out waiting for data on socket_full"); goto out; } do { char s[RBUFSIZE]; size_t slen; ssize_t n; memset(s, 0, RBUFSIZE); n = recv(pool->sock, s, RECVSIZE, 0); if (!n) { applog(LOG_DEBUG, "Socket closed waiting in recv_line"); suspend_stratum(pool); break; } cgtime(&now); waited = tdiff(&now, &rstart); if (n < 0) { if (!sock_blocks() || !socket_full(pool, DEFAULT_SOCKWAIT - waited)) { applog(LOG_DEBUG, "Failed to recv sock in recv_line"); suspend_stratum(pool); break; } } else { slen = strlen(s); recalloc_sock(pool, slen); strcat(pool->sockbuf, s); } } while (waited < DEFAULT_SOCKWAIT && !strstr(pool->sockbuf, "\n")); } buflen = strlen(pool->sockbuf); tok = strtok(pool->sockbuf, "\n"); if (!tok) { applog(LOG_DEBUG, "Failed to parse a \\n terminated string in recv_line"); goto out; } sret = strdup(tok); len = strlen(sret); /* Copy what's left in the buffer after the \n, including the * terminating \0 */ if (buflen > len + 1) memmove(pool->sockbuf, pool->sockbuf + len + 1, buflen - len + 1); else strcpy(pool->sockbuf, ""); pool->sgminer_pool_stats.times_received++; pool->sgminer_pool_stats.bytes_received += len; pool->sgminer_pool_stats.net_bytes_received += len; out: if (!sret) clear_sock(pool); else if (opt_protocol) applog(LOG_DEBUG, "RECVD: %s", sret); return sret; } /* Extracts a string value from a json array with error checking. To be used * when the value of the string returned is only examined and not to be stored. * See json_array_string below */ static char *__json_array_string(json_t *val, unsigned int entry) { json_t *arr_entry; if (json_is_null(val)) return NULL; if (!json_is_array(val)) return NULL; if (entry > json_array_size(val)) return NULL; arr_entry = json_array_get(val, entry); if (!json_is_string(arr_entry)) return NULL; return (char *)json_string_value(arr_entry); } /* Creates a freshly malloced dup of __json_array_string */ static char *json_array_string(json_t *val, unsigned int entry) { char *buf = __json_array_string(val, entry); if (buf) return strdup(buf); return NULL; } static char *blank_merkel = "0000000000000000000000000000000000000000000000000000000000000000"; static bool parse_notify(struct pool *pool, json_t *val) { char *job_id, *prev_hash, *coinbase1, *coinbase2, *bbversion, *nbit, *ntime, *header; size_t cb1_len, cb2_len, alloc_len; unsigned char *cb1, *cb2; bool clean, ret = false; int merkles, i; json_t *arr; arr = json_array_get(val, 4); if (!arr || !json_is_array(arr)) goto out; merkles = json_array_size(arr); job_id = json_array_string(val, 0); prev_hash = json_array_string(val, 1); coinbase1 = json_array_string(val, 2); coinbase2 = json_array_string(val, 3); bbversion = json_array_string(val, 5); nbit = json_array_string(val, 6); ntime = json_array_string(val, 7); clean = json_is_true(json_array_get(val, 8)); if (!job_id || !prev_hash || !coinbase1 || !coinbase2 || !bbversion || !nbit || !ntime) { /* Annoying but we must not leak memory */ if (job_id) free(job_id); if (prev_hash) free(prev_hash); if (coinbase1) free(coinbase1); if (coinbase2) free(coinbase2); if (bbversion) free(bbversion); if (nbit) free(nbit); if (ntime) free(ntime); goto out; } cg_wlock(&pool->data_lock); free(pool->swork.job_id); free(pool->swork.prev_hash); free(pool->swork.bbversion); free(pool->swork.nbit); free(pool->swork.ntime); pool->swork.job_id = job_id; pool->swork.prev_hash = prev_hash; cb1_len = strlen(coinbase1) / 2; cb2_len = strlen(coinbase2) / 2; pool->swork.bbversion = bbversion; pool->swork.nbit = nbit; pool->swork.ntime = ntime; pool->swork.clean = clean; alloc_len = pool->swork.cb_len = cb1_len + pool->n1_len + pool->n2size + cb2_len; pool->nonce2_offset = cb1_len + pool->n1_len; for (i = 0; i < pool->swork.merkles; i++) free(pool->swork.merkle_bin[i]); if (merkles) { pool->swork.merkle_bin = (unsigned char **)realloc(pool->swork.merkle_bin, sizeof(char *) * merkles + 1); for (i = 0; i < merkles; i++) { char *merkle = json_array_string(arr, i); pool->swork.merkle_bin[i] = (unsigned char *)malloc(32); if (unlikely(!pool->swork.merkle_bin[i])) quit(1, "Failed to malloc pool swork merkle_bin"); hex2bin(pool->swork.merkle_bin[i], merkle, 32); free(merkle); } } pool->swork.merkles = merkles; if (clean) pool->nonce2 = 0; pool->merkle_offset = strlen(pool->swork.bbversion) + strlen(pool->swork.prev_hash); pool->swork.header_len = pool->merkle_offset + /* merkle_hash */ 32 + strlen(pool->swork.ntime) + strlen(pool->swork.nbit) + /* nonce */ 8 + /* workpadding */ 96; pool->merkle_offset /= 2; pool->swork.header_len = pool->swork.header_len * 2 + 1; align_len(&pool->swork.header_len); header = (char *)alloca(pool->swork.header_len); snprintf(header, pool->swork.header_len, "%s%s%s%s%s%s%s", pool->swork.bbversion, pool->swork.prev_hash, blank_merkel, pool->swork.ntime, pool->swork.nbit, "00000000", /* nonce */ workpadding); if (unlikely(!hex2bin(pool->header_bin, header, 128))) quit(1, "Failed to convert header to header_bin in parse_notify"); cb1 = (unsigned char *)calloc(cb1_len, 1); if (unlikely(!cb1)) quithere(1, "Failed to calloc cb1 in parse_notify"); hex2bin(cb1, coinbase1, cb1_len); cb2 = (unsigned char *)calloc(cb2_len, 1); if (unlikely(!cb2)) quithere(1, "Failed to calloc cb2 in parse_notify"); hex2bin(cb2, coinbase2, cb2_len); free(pool->coinbase); align_len(&alloc_len); pool->coinbase = (unsigned char *)calloc(alloc_len, 1); if (unlikely(!pool->coinbase)) quit(1, "Failed to calloc pool coinbase in parse_notify"); memcpy(pool->coinbase, cb1, cb1_len); memcpy(pool->coinbase + cb1_len, pool->nonce1bin, pool->n1_len); memcpy(pool->coinbase + cb1_len + pool->n1_len + pool->n2size, cb2, cb2_len); cg_wunlock(&pool->data_lock); if (opt_protocol) { applog(LOG_DEBUG, "job_id: %s", job_id); applog(LOG_DEBUG, "prev_hash: %s", prev_hash); applog(LOG_DEBUG, "coinbase1: %s", coinbase1); applog(LOG_DEBUG, "coinbase2: %s", coinbase2); applog(LOG_DEBUG, "bbversion: %s", bbversion); applog(LOG_DEBUG, "nbit: %s", nbit); applog(LOG_DEBUG, "ntime: %s", ntime); applog(LOG_DEBUG, "clean: %s", clean ? "yes" : "no"); } free(coinbase1); free(coinbase2); free(cb1); free(cb2); /* A notify message is the closest stratum gets to a getwork */ pool->getwork_requested++; total_getworks++; ret = true; if (pool == current_pool()) opt_work_update = true; out: return ret; } static bool parse_diff(struct pool *pool, json_t *val) { double old_diff, diff; diff = json_number_value(json_array_get(val, 0)); if (diff == 0) return false; cg_wlock(&pool->data_lock); old_diff = pool->swork.diff; pool->swork.diff = diff; cg_wunlock(&pool->data_lock); if (old_diff != diff) { int idiff = diff; if ((double)idiff == diff) applog(LOG_NOTICE, "%s difficulty changed to %d", pool->poolname ,idiff); else applog(LOG_NOTICE, "%s difficulty changed to %f", pool->poolname, diff); } else applog(LOG_DEBUG, "%s difficulty set to %f", pool->poolname, diff); return true; } static bool parse_reconnect(struct pool *pool, json_t *val) { char *url, *port, address[256]; memset(address, 0, 255); url = (char *)json_string_value(json_array_get(val, 0)); if (!url) url = pool->sockaddr_url; port = (char *)json_string_value(json_array_get(val, 1)); if (!port) port = pool->stratum_port; sprintf(address, "%s:%s", url, port); if (!extract_sockaddr(address, &pool->sockaddr_url, &pool->stratum_port)) return false; pool->stratum_url = pool->sockaddr_url; applog(LOG_NOTICE, "Reconnect requested from %s to %s", pool->poolname, address); if (!restart_stratum(pool)) return false; return true; } static bool send_version(struct pool *pool, json_t *val) { char s[RBUFSIZE]; int id = json_integer_value(json_object_get(val, "id")); if (!id) return false; sprintf(s, "{\"id\": %d, \"result\": \""PACKAGE"/"VERSION"\", \"error\": null}", id); if (!stratum_send(pool, s, strlen(s))) return false; return true; } static bool show_message(struct pool *pool, json_t *val) { char *msg; if (!json_is_array(val)) return false; msg = (char *)json_string_value(json_array_get(val, 0)); if (!msg) return false; applog(LOG_NOTICE, "%s message: %s", pool->poolname, msg); return true; } bool parse_method(struct pool *pool, char *s) { json_t *val = NULL, *method, *err_val, *params; json_error_t err; bool ret = false; char *buf; if (!s) return ret; val = JSON_LOADS(s, &err); if (!val) { applog(LOG_INFO, "JSON decode failed(%d): %s", err.line, err.text); return ret; } method = json_object_get(val, "method"); if (!method) { json_decref(val); return ret; } err_val = json_object_get(val, "error"); params = json_object_get(val, "params"); if (err_val && !json_is_null(err_val)) { char *ss; if (err_val) ss = json_dumps(err_val, JSON_INDENT(3)); else ss = strdup("(unknown reason)"); applog(LOG_INFO, "JSON-RPC method decode failed: %s", ss); json_decref(val); free(ss); return ret; } buf = (char *)json_string_value(method); if (!buf) { json_decref(val); return ret; } if (!strncasecmp(buf, "mining.notify", 13)) { if (parse_notify(pool, params)) pool->stratum_notify = ret = true; else pool->stratum_notify = ret = false; json_decref(val); return ret; } if (!strncasecmp(buf, "mining.set_difficulty", 21) && parse_diff(pool, params)) { ret = true; json_decref(val); return ret; } if (!strncasecmp(buf, "client.reconnect", 16) && parse_reconnect(pool, params)) { ret = true; json_decref(val); return ret; } if (!strncasecmp(buf, "client.get_version", 18) && send_version(pool, val)) { ret = true; json_decref(val); return ret; } if (!strncasecmp(buf, "client.show_message", 19) && show_message(pool, params)) { ret = true; json_decref(val); return ret; } json_decref(val); return ret; } bool auth_stratum(struct pool *pool) { json_t *val = NULL, *res_val, *err_val; char s[RBUFSIZE], *sret = NULL; json_error_t err; bool ret = false; sprintf(s, "{\"id\": %d, \"method\": \"mining.authorize\", \"params\": [\"%s\", \"%s\"]}", swork_id++, pool->rpc_user, pool->rpc_pass); if (!stratum_send(pool, s, strlen(s))) return ret; /* Parse all data in the queue and anything left should be auth */ while (42) { sret = recv_line(pool); if (!sret) return ret; if (parse_method(pool, sret)) free(sret); else break; } val = JSON_LOADS(sret, &err); free(sret); res_val = json_object_get(val, "result"); err_val = json_object_get(val, "error"); if (!res_val || json_is_false(res_val) || (err_val && !json_is_null(err_val))) { char *ss; if (err_val) ss = json_dumps(err_val, JSON_INDENT(3)); else ss = strdup("(unknown reason)"); applog(LOG_INFO, "%s JSON stratum auth failed: %s", pool->poolname, ss); free(ss); goto out; } ret = true; applog(LOG_INFO, "Stratum authorisation success for %s", pool->poolname); pool->probed = true; successful_connect = true; out: json_decref(val); return ret; } static int recv_byte(int sockd) { char c; if (recv(sockd, &c, 1, 0) != -1) return c; return -1; } static bool http_negotiate(struct pool *pool, int sockd, bool http0) { char buf[1024]; int i, len; if (http0) { snprintf(buf, 1024, "CONNECT %s:%s HTTP/1.0\r\n\r\n", pool->sockaddr_url, pool->stratum_port); } else { snprintf(buf, 1024, "CONNECT %s:%s HTTP/1.1\r\nHost: %s:%s\r\n\r\n", pool->sockaddr_url, pool->stratum_port, pool->sockaddr_url, pool->stratum_port); } applog(LOG_DEBUG, "Sending proxy %s:%s - %s", pool->sockaddr_proxy_url, pool->sockaddr_proxy_port, buf); send(sockd, buf, strlen(buf), 0); len = recv(sockd, buf, 12, 0); if (len <= 0) { applog(LOG_WARNING, "Couldn't read from proxy %s:%s after sending CONNECT", pool->sockaddr_proxy_url, pool->sockaddr_proxy_port); return false; } buf[len] = '\0'; applog(LOG_DEBUG, "Received from proxy %s:%s - %s", pool->sockaddr_proxy_url, pool->sockaddr_proxy_port, buf); if (strcmp(buf, "HTTP/1.1 200") && strcmp(buf, "HTTP/1.0 200")) { applog(LOG_WARNING, "HTTP Error from proxy %s:%s - %s", pool->sockaddr_proxy_url, pool->sockaddr_proxy_port, buf); return false; } /* Ignore unwanted headers till we get desired response */ for (i = 0; i < 4; i++) { buf[i] = recv_byte(sockd); if (buf[i] == (char)-1) { applog(LOG_WARNING, "Couldn't read HTTP byte from proxy %s:%s", pool->sockaddr_proxy_url, pool->sockaddr_proxy_port); return false; } } while (strncmp(buf, "\r\n\r\n", 4)) { for (i = 0; i < 3; i++) buf[i] = buf[i + 1]; buf[3] = recv_byte(sockd); if (buf[3] == (char)-1) { applog(LOG_WARNING, "Couldn't read HTTP byte from proxy %s:%s", pool->sockaddr_proxy_url, pool->sockaddr_proxy_port); return false; } } applog(LOG_DEBUG, "Success negotiating with %s:%s HTTP proxy", pool->sockaddr_proxy_url, pool->sockaddr_proxy_port); return true; } static bool socks5_negotiate(struct pool *pool, int sockd) { unsigned char atyp, uclen; unsigned short port; char buf[515]; int i, len; buf[0] = 0x05; buf[1] = 0x01; buf[2] = 0x00; applog(LOG_DEBUG, "Attempting to negotiate with %s:%s SOCKS5 proxy", pool->sockaddr_proxy_url, pool->sockaddr_proxy_port ); send(sockd, buf, 3, 0); if (recv_byte(sockd) != 0x05 || recv_byte(sockd) != buf[2]) { applog(LOG_WARNING, "Bad response from %s:%s SOCKS5 server", pool->sockaddr_proxy_url, pool->sockaddr_proxy_port ); return false; } buf[0] = 0x05; buf[1] = 0x01; buf[2] = 0x00; buf[3] = 0x03; len = (strlen(pool->sockaddr_url)); if (len > 255) len = 255; uclen = len; buf[4] = (uclen & 0xff); memcpy(buf + 5, pool->sockaddr_url, len); port = atoi(pool->stratum_port); buf[5 + len] = (port >> 8); buf[6 + len] = (port & 0xff); send(sockd, buf, (7 + len), 0); if (recv_byte(sockd) != 0x05 || recv_byte(sockd) != 0x00) { applog(LOG_WARNING, "Bad response from %s:%s SOCKS5 server", pool->sockaddr_proxy_url, pool->sockaddr_proxy_port ); return false; } recv_byte(sockd); atyp = recv_byte(sockd); if (atyp == 0x01) { for (i = 0; i < 4; i++) recv_byte(sockd); } else if (atyp == 0x03) { len = recv_byte(sockd); for (i = 0; i < len; i++) recv_byte(sockd); } else { applog(LOG_WARNING, "Bad response from %s:%s SOCKS5 server", pool->sockaddr_proxy_url, pool->sockaddr_proxy_port ); return false; } for (i = 0; i < 2; i++) recv_byte(sockd); applog(LOG_DEBUG, "Success negotiating with %s:%s SOCKS5 proxy", pool->sockaddr_proxy_url, pool->sockaddr_proxy_port); return true; } static bool socks4_negotiate(struct pool *pool, int sockd, bool socks4a) { unsigned short port; in_addr_t inp; char buf[515]; int i, len; buf[0] = 0x04; buf[1] = 0x01; port = atoi(pool->stratum_port); buf[2] = port >> 8; buf[3] = port & 0xff; sprintf(&buf[8], "SGMINER"); /* See if we've been given an IP address directly to avoid needing to * resolve it. */ inp = inet_addr(pool->sockaddr_url); inp = ntohl(inp); if ((int)inp != -1) socks4a = false; else { /* Try to extract the IP address ourselves first */ struct addrinfo servinfobase, *servinfo, hints; servinfo = &servinfobase; memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_INET; /* IPV4 only */ if (!getaddrinfo(pool->sockaddr_url, NULL, &hints, &servinfo)) { struct sockaddr_in *saddr_in = (struct sockaddr_in *)servinfo->ai_addr; inp = ntohl(saddr_in->sin_addr.s_addr); socks4a = false; freeaddrinfo(servinfo); } } if (!socks4a) { if ((int)inp == -1) { applog(LOG_WARNING, "Invalid IP address specified for socks4 proxy: %s", pool->sockaddr_url); return false; } buf[4] = (inp >> 24) & 0xFF; buf[5] = (inp >> 16) & 0xFF; buf[6] = (inp >> 8) & 0xFF; buf[7] = (inp >> 0) & 0xFF; send(sockd, buf, 16, 0); } else { /* This appears to not be working but hopefully most will be * able to resolve IP addresses themselves. */ buf[4] = 0; buf[5] = 0; buf[6] = 0; buf[7] = 1; len = strlen(pool->sockaddr_url); if (len > 255) len = 255; memcpy(&buf[16], pool->sockaddr_url, len); len += 16; buf[len++] = '\0'; send(sockd, buf, len, 0); } if (recv_byte(sockd) != 0x00 || recv_byte(sockd) != 0x5a) { applog(LOG_WARNING, "Bad response from %s:%s SOCKS4 server", pool->sockaddr_proxy_url, pool->sockaddr_proxy_port); return false; } for (i = 0; i < 6; i++) recv_byte(sockd); return true; } static void noblock_socket(SOCKETTYPE fd) { #ifndef WIN32 int flags = fcntl(fd, F_GETFL, 0); fcntl(fd, F_SETFL, O_NONBLOCK | flags); #else u_long flags = 1; ioctlsocket(fd, FIONBIO, &flags); #endif } static void block_socket(SOCKETTYPE fd) { #ifndef WIN32 int flags = fcntl(fd, F_GETFL, 0); fcntl(fd, F_SETFL, flags & ~O_NONBLOCK); #else u_long flags = 0; ioctlsocket(fd, FIONBIO, &flags); #endif } static bool sock_connecting(void) { #ifndef WIN32 return errno == EINPROGRESS; #else return WSAGetLastError() == WSAEWOULDBLOCK; #endif } static bool setup_stratum_socket(struct pool *pool) { struct addrinfo servinfobase, *servinfo, *hints, *p; char *sockaddr_url, *sockaddr_port; int sockd; mutex_lock(&pool->stratum_lock); pool->stratum_active = false; if (pool->sock) CLOSESOCKET(pool->sock); pool->sock = 0; mutex_unlock(&pool->stratum_lock); hints = &pool->stratum_hints; memset(hints, 0, sizeof(struct addrinfo)); hints->ai_family = AF_UNSPEC; hints->ai_socktype = SOCK_STREAM; servinfo = &servinfobase; if (!pool->rpc_proxy && opt_socks_proxy) { pool->rpc_proxy = opt_socks_proxy; extract_sockaddr(pool->rpc_proxy, &pool->sockaddr_proxy_url, &pool->sockaddr_proxy_port); pool->rpc_proxytype = PROXY_SOCKS5; } if (pool->rpc_proxy) { sockaddr_url = pool->sockaddr_proxy_url; sockaddr_port = pool->sockaddr_proxy_port; } else { sockaddr_url = pool->sockaddr_url; sockaddr_port = pool->stratum_port; } if (getaddrinfo(sockaddr_url, sockaddr_port, hints, &servinfo) != 0) { if (!pool->probed) { applog(LOG_WARNING, "Failed to resolve (?wrong URL) %s:%s", sockaddr_url, sockaddr_port); pool->probed = true; } else { applog(LOG_INFO, "Failed to getaddrinfo for %s:%s", sockaddr_url, sockaddr_port); } return false; } for (p = servinfo; p != NULL; p = p->ai_next) { sockd = socket(p->ai_family, p->ai_socktype, p->ai_protocol); if (sockd == -1) { applog(LOG_DEBUG, "Failed socket"); continue; } /* Iterate non blocking over entries returned by getaddrinfo * to cope with round robin DNS entries, finding the first one * we can connect to quickly. */ noblock_socket(sockd); if (connect(sockd, p->ai_addr, p->ai_addrlen) == -1) { struct timeval tv_timeout = {1, 0}; int selret; fd_set rw; if (!sock_connecting()) { CLOSESOCKET(sockd); applog(LOG_DEBUG, "Failed sock connect"); continue; } FD_ZERO(&rw); FD_SET(sockd, &rw); selret = select(sockd + 1, NULL, &rw, NULL, &tv_timeout); if (selret > 0 && FD_ISSET(sockd, &rw)) { socklen_t len; int err, n; len = sizeof(err); n = getsockopt(sockd, SOL_SOCKET, SO_ERROR, (char *)&err, &len); if (!n && !err) { applog(LOG_DEBUG, "Succeeded delayed connect"); block_socket(sockd); break; } } CLOSESOCKET(sockd); applog(LOG_DEBUG, "Select timeout/failed connect"); continue; } applog(LOG_WARNING, "Succeeded immediate connect"); block_socket(sockd); break; } if (p == NULL) { applog(LOG_INFO, "Failed to connect to stratum on %s:%s", sockaddr_url, sockaddr_port); freeaddrinfo(servinfo); return false; } freeaddrinfo(servinfo); if (pool->rpc_proxy) { switch (pool->rpc_proxytype) { case PROXY_HTTP_1_0: if (!http_negotiate(pool, sockd, true)) return false; break; case PROXY_HTTP: if (!http_negotiate(pool, sockd, false)) return false; break; case PROXY_SOCKS5: case PROXY_SOCKS5H: if (!socks5_negotiate(pool, sockd)) return false; break; case PROXY_SOCKS4: if (!socks4_negotiate(pool, sockd, false)) return false; break; case PROXY_SOCKS4A: if (!socks4_negotiate(pool, sockd, true)) return false; break; default: applog(LOG_WARNING, "Unsupported proxy type for %s:%s", pool->sockaddr_proxy_url, pool->sockaddr_proxy_port); return false; break; } } if (!pool->sockbuf) { pool->sockbuf = (char *)calloc(RBUFSIZE, 1); if (!pool->sockbuf) quithere(1, "Failed to calloc pool sockbuf"); pool->sockbuf_size = RBUFSIZE; } pool->sock = sockd; keep_sockalive(sockd); return true; } static char *get_sessionid(json_t *val) { char *ret = NULL; json_t *arr_val; int arrsize, i; arr_val = json_array_get(val, 0); if (!arr_val || !json_is_array(arr_val)) goto out; arrsize = json_array_size(arr_val); for (i = 0; i < arrsize; i++) { json_t *arr = json_array_get(arr_val, i); char *notify; if (!arr | !json_is_array(arr)) break; notify = __json_array_string(arr, 0); if (!notify) continue; if (!strncasecmp(notify, "mining.notify", 13)) { ret = json_array_string(arr, 1); break; } } out: return ret; } void suspend_stratum(struct pool *pool) { clear_sockbuf(pool); applog(LOG_INFO, "Closing socket for stratum %s", pool->poolname); mutex_lock(&pool->stratum_lock); pool->stratum_active = pool->stratum_notify = false; if (pool->sock) CLOSESOCKET(pool->sock); pool->sock = 0; mutex_unlock(&pool->stratum_lock); } bool initiate_stratum(struct pool *pool) { bool ret = false, recvd = false, noresume = false, sockd = false; char s[RBUFSIZE], *sret = NULL, *nonce1, *sessionid; json_t *val = NULL, *res_val, *err_val; json_error_t err; int n2size; resend: if (!setup_stratum_socket(pool)) { sockd = false; goto out; } sockd = true; if (recvd) { /* Get rid of any crap lying around if we're resending */ clear_sock(pool); sprintf(s, "{\"id\": %d, \"method\": \"mining.subscribe\", \"params\": []}", swork_id++); } else { if (pool->sessionid) sprintf(s, "{\"id\": %d, \"method\": \"mining.subscribe\", \"params\": [\""PACKAGE"/"VERSION"\", \"%s\"]}", swork_id++, pool->sessionid); else sprintf(s, "{\"id\": %d, \"method\": \"mining.subscribe\", \"params\": [\""PACKAGE"/"VERSION"\"]}", swork_id++); } if (__stratum_send(pool, s, strlen(s)) != SEND_OK) { applog(LOG_DEBUG, "Failed to send s in initiate_stratum"); goto out; } if (!socket_full(pool, DEFAULT_SOCKWAIT)) { applog(LOG_DEBUG, "Timed out waiting for response in initiate_stratum"); goto out; } sret = recv_line(pool); if (!sret) goto out; recvd = true; val = JSON_LOADS(sret, &err); free(sret); if (!val) { applog(LOG_INFO, "JSON decode failed(%d): %s", err.line, err.text); goto out; } res_val = json_object_get(val, "result"); err_val = json_object_get(val, "error"); if (!res_val || json_is_null(res_val) || (err_val && !json_is_null(err_val))) { char *ss; if (err_val) ss = json_dumps(err_val, JSON_INDENT(3)); else ss = strdup("(unknown reason)"); applog(LOG_INFO, "JSON-RPC decode failed: %s", ss); free(ss); goto out; } sessionid = get_sessionid(res_val); if (!sessionid) applog(LOG_DEBUG, "Failed to get sessionid in initiate_stratum"); nonce1 = json_array_string(res_val, 1); if (!nonce1) { applog(LOG_INFO, "Failed to get nonce1 in initiate_stratum"); free(sessionid); goto out; } n2size = json_integer_value(json_array_get(res_val, 2)); if (!n2size) { applog(LOG_INFO, "Failed to get n2size in initiate_stratum"); free(sessionid); free(nonce1); goto out; } cg_wlock(&pool->data_lock); pool->sessionid = sessionid; pool->nonce1 = nonce1; pool->n1_len = strlen(nonce1) / 2; free(pool->nonce1bin); pool->nonce1bin = (unsigned char *)calloc(pool->n1_len, 1); if (unlikely(!pool->nonce1bin)) quithere(1, "Failed to calloc pool->nonce1bin"); hex2bin(pool->nonce1bin, pool->nonce1, pool->n1_len); pool->n2size = n2size; cg_wunlock(&pool->data_lock); if (sessionid) applog(LOG_DEBUG, "%s stratum session id: %s", pool->poolname, pool->sessionid); ret = true; out: if (ret) { if (!pool->stratum_url) pool->stratum_url = pool->sockaddr_url; pool->stratum_active = true; pool->swork.diff = 1; if (opt_protocol) { applog(LOG_DEBUG, "%s confirmed mining.subscribe with extranonce1 %s extran2size %d", pool->poolname, pool->nonce1, pool->n2size); } } else { if (recvd && !noresume) { /* Reset the sessionid used for stratum resuming in case the pool * does not support it, or does not know how to respond to the * presence of the sessionid parameter. */ cg_wlock(&pool->data_lock); free(pool->sessionid); free(pool->nonce1); pool->sessionid = pool->nonce1 = NULL; cg_wunlock(&pool->data_lock); applog(LOG_DEBUG, "Failed to resume stratum, trying afresh"); noresume = true; json_decref(val); goto resend; } applog(LOG_DEBUG, "Initiate stratum failed"); if (sockd) suspend_stratum(pool); } json_decref(val); return ret; } bool restart_stratum(struct pool *pool) { if (pool->stratum_active) suspend_stratum(pool); if (!initiate_stratum(pool)) return false; if (!auth_stratum(pool)) return false; return true; } void dev_error(struct cgpu_info *dev, enum dev_reason reason) { dev->device_last_not_well = time(NULL); dev->device_not_well_reason = reason; switch (reason) { case REASON_THREAD_FAIL_INIT: dev->thread_fail_init_count++; break; case REASON_THREAD_ZERO_HASH: dev->thread_zero_hash_count++; break; case REASON_THREAD_FAIL_QUEUE: dev->thread_fail_queue_count++; break; case REASON_DEV_SICK_IDLE_60: dev->dev_sick_idle_60_count++; break; case REASON_DEV_DEAD_IDLE_600: dev->dev_dead_idle_600_count++; break; case REASON_DEV_NOSTART: dev->dev_nostart_count++; break; case REASON_DEV_OVER_HEAT: dev->dev_over_heat_count++; break; case REASON_DEV_THERMAL_CUTOFF: dev->dev_thermal_cutoff_count++; break; case REASON_DEV_COMMS_ERROR: dev->dev_comms_error_count++; break; case REASON_DEV_THROTTLE: dev->dev_throttle_count++; break; } } /* Realloc an existing string to fit an extra string s, appending s to it. */ void *realloc_strcat(char *ptr, char *s) { size_t old = strlen(ptr), len = strlen(s); char *ret; if (!len) return ptr; len += old + 1; align_len(&len); ret = (char *)malloc(len); if (unlikely(!ret)) quithere(1, "Failed to malloc"); sprintf(ret, "%s%s", ptr, s); free(ptr); return ret; } /* Make a text readable version of a string using 0xNN for < ' ' or > '~' * Including 0x00 at the end * You must free the result yourself */ void *str_text(char *ptr) { unsigned char *uptr; char *ret, *txt; if (ptr == NULL) { ret = strdup("(null)"); if (unlikely(!ret)) quithere(1, "Failed to malloc null"); } uptr = (unsigned char *)ptr; ret = txt = (char *)malloc(strlen(ptr) * 4 + 5); // Guaranteed >= needed if (unlikely(!txt)) quithere(1, "Failed to malloc txt"); do { if (*uptr < ' ' || *uptr > '~') { sprintf(txt, "0x%02x", *uptr); txt += 4; } else *(txt++) = *uptr; } while (*(uptr++)); *txt = '\0'; return ret; } void RenameThread(const char* name) { #if defined(PR_SET_NAME) // Only the first 15 characters are used (16 - NUL terminator) prctl(PR_SET_NAME, name, 0, 0, 0); #elif (defined(__FreeBSD__) || defined(__OpenBSD__)) pthread_set_name_np(pthread_self(), name); #elif defined(MAC_OSX) pthread_setname_np(name); #else // Prevent warnings for unused parameters... (void)name; #endif } /* sgminer specific wrappers for true unnamed semaphore usage on platforms * that support them and for apple which does not. We use a single byte across * a pipe to emulate semaphore behaviour there. */ #ifdef __APPLE__ void _cgsem_init(cgsem_t *cgsem, const char *file, const char *func, const int line) { int flags, fd, i; if (pipe(cgsem->pipefd) == -1) quitfrom(1, file, func, line, "Failed pipe errno=%d", errno); /* Make the pipes FD_CLOEXEC to allow them to close should we call * execv on restart. */ for (i = 0; i < 2; i++) { fd = cgsem->pipefd[i]; flags = fcntl(fd, F_GETFD, 0); flags |= FD_CLOEXEC; if (fcntl(fd, F_SETFD, flags) == -1) quitfrom(1, file, func, line, "Failed to fcntl errno=%d", errno); } } void _cgsem_post(cgsem_t *cgsem, const char *file, const char *func, const int line) { const char buf = 1; int ret; ret = write(cgsem->pipefd[1], &buf, 1); if (unlikely(ret == 0)) applog(LOG_WARNING, "Failed to write errno=%d" IN_FMT_FFL, errno, file, func, line); } void _cgsem_wait(cgsem_t *cgsem, const char *file, const char *func, const int line) { char buf; int ret; ret = read(cgsem->pipefd[0], &buf, 1); if (unlikely(ret == 0)) applog(LOG_WARNING, "Failed to read errno=%d" IN_FMT_FFL, errno, file, func, line); } void cgsem_destroy(cgsem_t *cgsem) { close(cgsem->pipefd[1]); close(cgsem->pipefd[0]); } /* This is similar to sem_timedwait but takes a millisecond value */ int _cgsem_mswait(cgsem_t *cgsem, int ms, const char *file, const char *func, const int line) { struct timeval timeout; int ret, fd; fd_set rd; char buf; fd = cgsem->pipefd[0]; FD_ZERO(&rd); FD_SET(fd, &rd); ms_to_timeval(&timeout, ms); ret = select(fd + 1, &rd, NULL, NULL, &timeout); if (ret > 0) { ret = read(fd, &buf, 1); return 0; } if (likely(!ret)) return ETIMEDOUT; quitfrom(1, file, func, line, "Failed to sem_timedwait errno=%d cgsem=0x%p", errno, cgsem); /* We don't reach here */ return 0; } /* Reset semaphore count back to zero */ void cgsem_reset(cgsem_t *cgsem) { int ret, fd; fd_set rd; char buf; fd = cgsem->pipefd[0]; FD_ZERO(&rd); FD_SET(fd, &rd); do { struct timeval timeout = {0, 0}; ret = select(fd + 1, &rd, NULL, NULL, &timeout); if (ret > 0) ret = read(fd, &buf, 1); } while (ret > 0); } #else void _cgsem_init(cgsem_t *cgsem, const char *file, const char *func, const int line) { int ret; if ((ret = sem_init(cgsem, 0, 0))) quitfrom(1, file, func, line, "Failed to sem_init ret=%d errno=%d", ret, errno); } void _cgsem_post(cgsem_t *cgsem, const char *file, const char *func, const int line) { if (unlikely(sem_post(cgsem))) quitfrom(1, file, func, line, "Failed to sem_post errno=%d cgsem=0x%p", errno, cgsem); } void _cgsem_wait(cgsem_t *cgsem, const char *file, const char *func, const int line) { if (unlikely(sem_wait(cgsem))) quitfrom(1, file, func, line, "Failed to sem_wait errno=%d cgsem=0x%p", errno, cgsem); } int _cgsem_mswait(cgsem_t *cgsem, int ms, const char *file, const char *func, const int line) { struct timespec abs_timeout, ts_now; struct timeval tv_now; int ret; cgtime(&tv_now); timeval_to_spec(&ts_now, &tv_now); ms_to_timespec(&abs_timeout, ms); timeraddspec(&abs_timeout, &ts_now); ret = sem_timedwait(cgsem, &abs_timeout); if (ret) { if (likely(sock_timeout())) return ETIMEDOUT; quitfrom(1, file, func, line, "Failed to sem_timedwait errno=%d cgsem=0x%p", errno, cgsem); } return 0; } void cgsem_reset(cgsem_t *cgsem) { int ret; do { ret = sem_trywait(cgsem); } while (!ret); } void cgsem_destroy(cgsem_t *cgsem) { sem_destroy(cgsem); } #endif /* Provide a completion_timeout helper function for unreliable functions that * may die due to driver issues etc that time out if the function fails and * can then reliably return. */ struct cg_completion { cgsem_t cgsem; void (*fn)(void *fnarg); void *fnarg; }; void *completion_thread(void *arg) { struct cg_completion *cgc = (struct cg_completion *)arg; pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL); cgc->fn(cgc->fnarg); cgsem_post(&cgc->cgsem); return NULL; } bool cg_completion_timeout(void *fn, void *fnarg, int timeout) { struct cg_completion *cgc; pthread_t pthread; bool ret = false; cgc = (struct cg_completion *)malloc(sizeof(struct cg_completion)); if (unlikely(!cgc)) return ret; cgsem_init(&cgc->cgsem); #ifdef _MSC_VER cgc->fn = (void(__cdecl *)(void *))fn; #else cgc->fn = fn; #endif cgc->fnarg = fnarg; pthread_create(&pthread, NULL, completion_thread, (void *)cgc); ret = cgsem_mswait(&cgc->cgsem, timeout); if (!ret) { pthread_join(pthread, NULL); free(cgc); } else pthread_cancel(pthread); return !ret; } const unsigned char minNfactor = 10; const unsigned char maxNfactor = 30; const unsigned int vert_nChainStartTime = 1389306217; unsigned char vert_GetNfactor(const long int nTimestamp) { int l, n; long int s; l = 0; if (nTimestamp <= vert_nChainStartTime) { return minNfactor; } s = nTimestamp - vert_nChainStartTime; while ((s >> 1) > 3) { l += 1; s >>= 1; } s &= 3; n = (l * 158 + s * 28 - 2670) / 100; if (n < 0) n = 0; if (n > 255) printf( "GetNfactor(%ld) - something wrong(n == %d)\n", nTimestamp, n ); unsigned char N = ((unsigned char) n); //printf("GetNfactor: %d -> %d %d : %d / %d\n", nTimestamp - nChainStartTime, l, s, n, min(max(N, minNfactor), maxNfactor)); if (N < minNfactor) { return minNfactor; } else if (N > maxNfactor) { return maxNfactor; } return N; //return min(max(N, minNfactor), maxNfactor); }