/* * Copyright 2014 sgminer developers * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. See COPYING for more details. */ #include "algorithm.h" #include "sha2.h" #include "ocl.h" #include "scrypt.h" #include "animecoin.h" #include "inkcoin.h" #include "quarkcoin.h" #include "qubitcoin.h" #include "sifcoin.h" #include "darkcoin.h" #include "myriadcoin-groestl.h" #include "fuguecoin.h" #include "groestlcoin.h" #include "twecoin.h" #include "marucoin.h" #include "maxcoin.h" #include #include void gen_hash(const unsigned char *data, unsigned int len, unsigned char *hash) { unsigned char hash1[32]; sha256(data, len, hash1); sha256(hash1, 32, hash); } #define CL_SET_BLKARG(blkvar) status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->blkvar) #define CL_SET_ARG(var) status |= clSetKernelArg(*kernel, num++, sizeof(var), (void *)&var) #define CL_SET_VARG(args, var) status |= clSetKernelArg(*kernel, num++, args * sizeof(uint), (void *)var) static cl_int queue_scrypt_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads) { unsigned char *midstate = blk->work->midstate; cl_kernel *kernel = &clState->kernel; unsigned int num = 0; cl_uint le_target; cl_int status = 0; le_target = *(cl_uint *)(blk->work->device_target + 28); memcpy(clState->cldata, blk->work->data, 80); status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL); CL_SET_ARG(clState->CLbuffer0); CL_SET_ARG(clState->outputBuffer); CL_SET_ARG(clState->padbuffer8); CL_SET_VARG(4, &midstate[0]); CL_SET_VARG(4, &midstate[16]); CL_SET_ARG(le_target); return status; } static cl_int queue_maxcoin_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads) { cl_kernel *kernel = &clState->kernel; unsigned int num = 0; cl_int status = 0; flip80(clState->cldata, blk->work->data); status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL); CL_SET_ARG(clState->CLbuffer0); CL_SET_ARG(clState->outputBuffer); return status; } static cl_int queue_sph_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads) { cl_kernel *kernel = &clState->kernel; unsigned int num = 0; cl_ulong le_target; cl_int status = 0; le_target = *(cl_ulong *)(blk->work->device_target + 24); flip80(clState->cldata, blk->work->data); status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL); CL_SET_ARG(clState->CLbuffer0); CL_SET_ARG(clState->outputBuffer); CL_SET_ARG(le_target); return status; } static cl_int queue_darkcoin_mod_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads) { cl_kernel *kernel; unsigned int num; cl_ulong le_target; cl_int status = 0; le_target = *(cl_ulong *)(blk->work->device_target + 24); flip80(clState->cldata, blk->work->data); status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL); // blake - search kernel = &clState->kernel; num = 0; CL_SET_ARG(clState->CLbuffer0); CL_SET_ARG(clState->padbuffer8); // bmw - search1 kernel = clState->extra_kernels; num = 0; CL_SET_ARG(clState->padbuffer8); // groestl - search2 kernel++; num = 0; CL_SET_ARG(clState->padbuffer8); // skein - search3 kernel++; num = 0; CL_SET_ARG(clState->padbuffer8); // jh - search4 kernel++; num = 0; CL_SET_ARG(clState->padbuffer8); // keccak - search5 kernel++; num = 0; CL_SET_ARG(clState->padbuffer8); // luffa - search6 kernel++; num = 0; CL_SET_ARG(clState->padbuffer8); // cubehash - search7 kernel++; num = 0; CL_SET_ARG(clState->padbuffer8); // shavite - search8 kernel++; num = 0; CL_SET_ARG(clState->padbuffer8); // simd - search9 kernel++; num = 0; CL_SET_ARG(clState->padbuffer8); // echo - search10 kernel++; num = 0; CL_SET_ARG(clState->padbuffer8); CL_SET_ARG(clState->outputBuffer); CL_SET_ARG(le_target); return status; } typedef struct _algorithm_settings_t { const char *name; /* Human-readable identifier */ double diff_multiplier1; double diff_multiplier2; double share_diff_multiplier; uint32_t xintensity_shift; uint32_t intensity_shift; uint32_t found_idx; unsigned long long diff_nonce; unsigned long long diff_numerator; uint32_t diff1targ; size_t n_extra_kernels; long rw_buffer_size; cl_command_queue_properties cq_properties; void (*regenhash)(struct work *); cl_int (*queue_kernel)(struct __clState *, struct _dev_blk_ctx *, cl_uint); void (*gen_hash)(const unsigned char *, unsigned int, unsigned char *); } algorithm_settings_t; static algorithm_settings_t algos[] = { // kernels starting from this will have difficulty calculated by using litecoin algorithm #define A_SCRYPT(a) \ { a, 1, 65536, 65536, 0, 0, 0xFF, 0x0000ffff00000000ULL, 0xFFFFFFFFULL, 0x0000ffffUL, 0, -1, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, scrypt_regenhash, queue_scrypt_kernel, gen_hash} A_SCRYPT( "ckolivas" ), A_SCRYPT( "alexkarnew" ), A_SCRYPT( "alexkarnold" ), A_SCRYPT( "bufius" ), A_SCRYPT( "psw" ), A_SCRYPT( "zuikkis" ), #undef A_SCRYPT // kernels starting from this will have difficulty calculated by using quarkcoin algorithm #define A_QUARK(a, b) \ { a, 256, 256, 256, 0, 0, 0xFF, 0x000000ffff000000ULL, 0xFFFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, b, queue_sph_kernel, gen_hash} A_QUARK( "quarkcoin", quarkcoin_regenhash), A_QUARK( "qubitcoin", qubitcoin_regenhash), A_QUARK( "animecoin", animecoin_regenhash), A_QUARK( "sifcoin", sifcoin_regenhash), #undef A_QUARK // kernels starting from this will have difficulty calculated by using bitcoin algorithm #define A_DARK(a, b) \ { a, 1, 1, 1, 0, 0, 0xFF, 0x00000000ffff0000ULL, 0xFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, b, queue_sph_kernel, gen_hash} A_DARK( "darkcoin", darkcoin_regenhash), A_DARK( "inkcoin", inkcoin_regenhash), A_DARK( "myriadcoin-groestl", myriadcoin_groestl_regenhash), A_DARK( "marucoin", marucoin_regenhash), #undef A_DARK { "twecoin", 1, 1, 1, 0, 0, 0xFF, 0x00000000ffff0000ULL, 0xFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, twecoin_regenhash, queue_sph_kernel, sha256}, { "maxcoin", 1, 256, 1, 4, 15, 0x0F, 0x00000000ffff0000ULL, 0xFFFFULL, 0x000000ffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, maxcoin_regenhash, queue_maxcoin_kernel, sha256}, { "darkcoin-mod", 1, 1, 1, 0, 0, 0xFF, 0x00000000ffff0000ULL, 0xFFFFULL, 0x0000ffffUL, 10, 8 * 16 * 4194304, 0, darkcoin_regenhash, queue_darkcoin_mod_kernel, gen_hash}, // kernels starting from this will have difficulty calculated by using fuguecoin algorithm #define A_FUGUE(a, b) \ { a, 1, 256, 256, 0, 0, 0xFF, 0x00000000ffff0000ULL, 0xFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, b, queue_sph_kernel, sha256} A_FUGUE( "fuguecoin", fuguecoin_regenhash), A_FUGUE( "groestlcoin", groestlcoin_regenhash), #undef A_FUGUE // Terminator (do not remove) { NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, NULL, NULL} }; void copy_algorithm_settings(algorithm_t* dest, const char* algo) { algorithm_settings_t* src; // Find algorithm settings and copy for (src = algos; src->name; src++) { if (strcmp(src->name, algo) == 0) { strcpy(dest->name, src->name); dest->diff_multiplier1 = src->diff_multiplier1; dest->diff_multiplier2 = src->diff_multiplier2; dest->share_diff_multiplier = src->share_diff_multiplier; dest->xintensity_shift = src->xintensity_shift; dest->intensity_shift = src->intensity_shift; dest->found_idx = src->found_idx; dest->diff_nonce = src->diff_nonce; dest->diff_numerator = src->diff_numerator; dest->diff1targ = src->diff1targ; dest->n_extra_kernels = src->n_extra_kernels; dest->rw_buffer_size = src->rw_buffer_size; dest->cq_properties = src->cq_properties; dest->regenhash = src->regenhash; dest->queue_kernel = src->queue_kernel; dest->gen_hash = src->gen_hash; break; } } // if not found if (src->name == NULL) { applog(LOG_WARNING, "Algorithm %s not found, using %s.", algo, algos->name); copy_algorithm_settings(dest, algos->name); } } void set_algorithm(algorithm_t* algo, const char* newname_alias) { const char* newname; uint8_t nfactor = 10; // scrypt is default ckolivas kernel if (strcmp(newname_alias, "scrypt") == 0) newname = "ckolivas"; // Adaptive N-factor Scrypt is default ckolivas kernel with nfactor 11 else if ((strcmp(newname_alias, "adaptive-n-factor") == 0) || (strcmp(newname_alias, "adaptive-nfactor") == 0) || (strcmp(newname_alias, "nscrypt") == 0) || (strcmp(newname_alias, "adaptive-nscrypt") == 0) || (strcmp(newname_alias, "adaptive-n-scrypt") == 0)) { newname = "ckolivas"; nfactor = 11; // Not an alias } else newname = newname_alias; copy_algorithm_settings(algo, newname); // Doesn't matter for non-scrypt algorithms set_algorithm_nfactor(algo, nfactor); } void set_algorithm_nfactor(algorithm_t* algo, const uint8_t nfactor) { algo->nfactor = nfactor; algo->n = (1 << nfactor); } bool cmp_algorithm(algorithm_t* algo1, algorithm_t* algo2) { return (strcmp(algo1->name, algo2->name) == 0) && (algo1->nfactor == algo2->nfactor); }