/* * Copyright 2011 Nils Schneider * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. See COPYING for more details. */ #include #include #include #include #include "ocl.h" #include "findnonce.h" #include "miner.h" const uint32_t SHA256_K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; inline uint32_t ByteReverse(uint32_t value) { __asm__ ("bswap %0" : "=r" (value) : "0" (value)); return value; } #define rotate(x,y) ((x<>(sizeof(x)*8-y))) #define rotr(x,y) ((x>>y) | (x<<(sizeof(x)*8-y))) #define R(a, b, c, d, e, f, g, h, w, k) \ h = h + (rotate(e, 26) ^ rotate(e, 21) ^ rotate(e, 7)) + (g ^ (e & (f ^ g))) + k + w; \ d = d + h; \ h = h + (rotate(a, 30) ^ rotate(a, 19) ^ rotate(a, 10)) + ((a & b) | (c & (a | b))) void precalc_hash(dev_blk_ctx *blk, uint32_t *state, uint32_t *data) { cl_uint A, B, C, D, E, F, G, H; A = state[0]; B = state[1]; C = state[2]; D = state[3]; E = state[4]; F = state[5]; G = state[6]; H = state[7]; R(A, B, C, D, E, F, G, H, data[0], SHA256_K[0]); R(H, A, B, C, D, E, F, G, data[1], SHA256_K[1]); R(G, H, A, B, C, D, E, F, data[2], SHA256_K[2]); blk->cty_a = A; blk->cty_b = B; blk->cty_c = C; blk->cty_d = D; blk->cty_e = E; blk->cty_f = F; blk->cty_g = G; blk->cty_h = H; blk->ctx_a = state[0]; blk->ctx_b = state[1]; blk->ctx_c = state[2]; blk->ctx_d = state[3]; blk->ctx_e = state[4]; blk->ctx_f = state[5]; blk->ctx_g = state[6]; blk->ctx_h = state[7]; blk->merkle = data[0]; blk->ntime = data[1]; blk->nbits = data[2]; blk->W16 = blk->fW0 = data[0] + (rotr(data[1], 7) ^ rotr(data[1], 18) ^ (data[1] >> 3)); blk->W17 = blk->fW1 = data[1] + (rotr(data[2], 7) ^ rotr(data[2], 18) ^ (data[2] >> 3)) + 0x01100000; blk->W2 = data[2]; blk->fW2 = data[2] + (rotr(blk->fW0, 17) ^ rotr(blk->fW0, 19) ^ (blk->fW0 >> 10)); blk->fW3 = 0x11002000 + (rotr(blk->fW1, 17) ^ rotr(blk->fW1, 19) ^ (blk->fW1 >> 10)); blk->fW15 = 0x00000280 + (rotr(blk->fW0, 7) ^ rotr(blk->fW0, 18) ^ (blk->fW0 >> 3)); blk->fW01r = blk->fW0 + (rotr(blk->fW1, 7) ^ rotr(blk->fW1, 18) ^ (blk->fW1 >> 3)); blk->PreVal4 = blk->fcty_e = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + 0xe9b5dba5; blk->T1 = blk->fcty_e2 = (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); } #define P(t) (W[(t)&0xF] = W[(t-16)&0xF] + (rotate(W[(t-15)&0xF], 25) ^ rotate(W[(t-15)&0xF], 14) ^ (W[(t-15)&0xF] >> 3)) + W[(t-7)&0xF] + (rotate(W[(t-2)&0xF], 15) ^ rotate(W[(t-2)&0xF], 13) ^ (W[(t-2)&0xF] >> 10))) #define IR(u) \ R(A, B, C, D, E, F, G, H, W[u+0], SHA256_K[u+0]); \ R(H, A, B, C, D, E, F, G, W[u+1], SHA256_K[u+1]); \ R(G, H, A, B, C, D, E, F, W[u+2], SHA256_K[u+2]); \ R(F, G, H, A, B, C, D, E, W[u+3], SHA256_K[u+3]); \ R(E, F, G, H, A, B, C, D, W[u+4], SHA256_K[u+4]); \ R(D, E, F, G, H, A, B, C, W[u+5], SHA256_K[u+5]); \ R(C, D, E, F, G, H, A, B, W[u+6], SHA256_K[u+6]); \ R(B, C, D, E, F, G, H, A, W[u+7], SHA256_K[u+7]) #define FR(u) \ R(A, B, C, D, E, F, G, H, P(u+0), SHA256_K[u+0]); \ R(H, A, B, C, D, E, F, G, P(u+1), SHA256_K[u+1]); \ R(G, H, A, B, C, D, E, F, P(u+2), SHA256_K[u+2]); \ R(F, G, H, A, B, C, D, E, P(u+3), SHA256_K[u+3]); \ R(E, F, G, H, A, B, C, D, P(u+4), SHA256_K[u+4]); \ R(D, E, F, G, H, A, B, C, P(u+5), SHA256_K[u+5]); \ R(C, D, E, F, G, H, A, B, P(u+6), SHA256_K[u+6]); \ R(B, C, D, E, F, G, H, A, P(u+7), SHA256_K[u+7]) #define PIR(u) \ R(F, G, H, A, B, C, D, E, W[u+3], SHA256_K[u+3]); \ R(E, F, G, H, A, B, C, D, W[u+4], SHA256_K[u+4]); \ R(D, E, F, G, H, A, B, C, W[u+5], SHA256_K[u+5]); \ R(C, D, E, F, G, H, A, B, W[u+6], SHA256_K[u+6]); \ R(B, C, D, E, F, G, H, A, W[u+7], SHA256_K[u+7]) #define PFR(u) \ R(A, B, C, D, E, F, G, H, P(u+0), SHA256_K[u+0]); \ R(H, A, B, C, D, E, F, G, P(u+1), SHA256_K[u+1]); \ R(G, H, A, B, C, D, E, F, P(u+2), SHA256_K[u+2]); \ R(F, G, H, A, B, C, D, E, P(u+3), SHA256_K[u+3]); \ R(E, F, G, H, A, B, C, D, P(u+4), SHA256_K[u+4]); \ R(D, E, F, G, H, A, B, C, P(u+5), SHA256_K[u+5]) struct pc_data { struct thr_info *thr; struct work work; uint32_t res[MAXBUFFERS]; pthread_t pth; }; static void *postcalc_hash(void *userdata) { struct pc_data *pcd = (struct pc_data *)userdata; struct thr_info *thr = pcd->thr; dev_blk_ctx *blk = &pcd->work.blk; struct work *work = &pcd->work; uint32_t start; cl_uint A, B, C, D, E, F, G, H; cl_uint W[16]; cl_uint nonce; cl_uint best_g; uint32_t end; int entry = 0; cycle: while (entry < MAXBUFFERS) { if (pcd->res[entry]) { start = pcd->res[entry++]; break; } entry++; } if (entry == MAXBUFFERS) goto out; best_g = ~0; end = start + 1026; for (nonce = start; nonce != end; nonce+=1) { A = blk->cty_a; B = blk->cty_b; C = blk->cty_c; D = blk->cty_d; E = blk->cty_e; F = blk->cty_f; G = blk->cty_g; H = blk->cty_h; W[0] = blk->merkle; W[1] = blk->ntime; W[2] = blk->nbits; W[3] = nonce;; W[4] = 0x80000000; W[5] = 0x00000000; W[6] = 0x00000000; W[7] = 0x00000000; W[8] = 0x00000000; W[9] = 0x00000000; W[10] = 0x00000000; W[11] = 0x00000000; W[12] = 0x00000000; W[13] = 0x00000000; W[14] = 0x00000000; W[15] = 0x00000280; PIR(0); IR(8); FR(16); FR(24); FR(32); FR(40); FR(48); FR(56); W[0] = A + blk->ctx_a; W[1] = B + blk->ctx_b; W[2] = C + blk->ctx_c; W[3] = D + blk->ctx_d; W[4] = E + blk->ctx_e; W[5] = F + blk->ctx_f; W[6] = G + blk->ctx_g; W[7] = H + blk->ctx_h; W[8] = 0x80000000; W[9] = 0x00000000; W[10] = 0x00000000; W[11] = 0x00000000; W[12] = 0x00000000; W[13] = 0x00000000; W[14] = 0x00000000; W[15] = 0x00000100; A = 0x6a09e667; B = 0xbb67ae85; C = 0x3c6ef372; D = 0xa54ff53a; E = 0x510e527f; F = 0x9b05688c; G = 0x1f83d9ab; H = 0x5be0cd19; IR(0); IR(8); FR(16); FR(24); FR(32); FR(40); FR(48); PFR(56); if (unlikely(H == 0xA41F32E7)) { if (unlikely(submit_nonce(thr, work, nonce) == false)) { applog(LOG_ERR, "Failed to submit work, exiting"); break; } G += 0x1f83d9ab; G = ByteReverse(G); if (G < best_g) best_g = G; } } if (unlikely(best_g == ~0)) { if (opt_debug) applog(LOG_DEBUG, "No best_g found! Error in OpenCL code?"); hw_errors++; thr->cgpu->hw_errors++; } if (entry < MAXBUFFERS) goto cycle; out: pthread_detach(pthread_self()); free(pcd); return NULL; } void postcalc_hash_async(struct thr_info *thr, struct work *work, uint32_t *res) { struct pc_data *pcd = malloc(sizeof(struct pc_data)); if (unlikely(!pcd)) { applog(LOG_ERR, "Failed to malloc pc_data in postcalc_hash_async"); return; } pcd->thr = thr; memcpy(&pcd->work, work, sizeof(struct work)); memcpy(&pcd->res, res, BUFFERSIZE); if (pthread_create(&pcd->pth, NULL, postcalc_hash, (void *)pcd)) { applog(LOG_ERR, "Failed to create postcalc_hash thread"); return; } }